# PIMS Speaker Series (Part I): Peter Schneider

## Topic

## Speakers

## Details

In the local Langlands program the (smooth) representation theory of p-adic reductive groups G in characteristic zero plays a key role. For any compact open subgroup K of G there is a so called Hecke algebra H(G,K). The representation theory of G is equivalent to the module theories over all these algebras H(G,K). Very important examples of such subgroups K are the Iwahori subgroup and the pro-p Iwahori subgroup. By a theorem of Bernstein the Hecke algebras of these subgroups (and many others) have finite global dimension.

In recent years the same representation theory of G but over an algebraically closed field of characteristic p has become more and more important. But little is known yet. Again one can define analogous Hecke algebras. Their relation to the representation theory of G is still very mysterious. Moreover they are no longer of finite global dimension. In joint work with R. Ollivier we prove that over any field the algebra H(G,K), for K the (pro-p) Iwahori subgroup, is Gorenstein.

## Additional Information

This is part one of a two part series. (Part II on October 23rd)

Location: ESB 2012

Peter Schneider

**Scientific, Distinguished Lecture**

**October 17, 2012**

**-**