PIMS-USaskatchewan Applied Mathematics Seminar Series: Gerda de Vries

  • Date: 02/02/2017
  • Time: 13:30
Gerda de Vries, University of Alberta

University of Saskatchewan


A Model of Microtubule Organization in the Presence of Motor Proteins


Microtubules and motor proteins interact in vivo and in vitro to form higher-order structures such as bundles, asters, and vortices. In vivo, the organization of microtubules is connected directly to cellular processes such as cell division, motility, and polarization. To address questions surrounding the mechanism underlying microtubule organization, we have developed a system of integro-partial differential equations that describes the interactions between microtubules and motor proteins. Our model takes into account motor protein speed, processivity, density, and directionality, as well as microtubule treadmilling and re-organization due to interactions with motors. Our model is able to provide a quantitative and qualitative description of microtubule patterning. Simulations results show that plus-end directed motor proteins form vortex patterns at low motor density, while minus-end directed motor proteins form aster patterns at similar densities. Also, a mixture of motor proteins with opposite directionality can organize microtubules into anti-parallel bundles such as are observed in spindle formation.

Other Information: 

Location: Room 165, Physics Building