# UBC Probability Seminar: Mathav Murugan

## Topic

Conformal Assoaud dimension as the critical exponent for combinatorial modulus

## Details

The conformal Assouad dimension is the infimum of all possible values of the Assouad dimension after a quasisymmetric change of metric. We show that the conformal Assouad dimension equals a critical exponent associated with the combinatorial modulus for any compact doubling metric space. This generalizes a similar result obtained by Carrasco Piaggio for the Ahlfors regular conformal dimension to a larger family of spaces.

## Additional Information

This is a Past Event

Event Type

**Scientific, Seminar**

Date

**December 7, 2022**

Time

**-**

Location

University of British Columbia