Abstract: L-spaces are 3-manifolds with simplest possible Heegaard Floer homology. These arise naturally in many applications of Heegaard Floer theory, and as a result it has been asked if there is an alternate characterization of this class of 3-manifolds. A recent conjecture suggests the following: A 3-manifold is an L-space if and only if its fundamental group is not left-orderable. This talk will attempt to put this conjecture in context and describe some of the evidence supporting it.