The abelian/nonabelian correspondence in Gromov-Witten theory II
- Date: 03/13/2008
Lecturer(s):
Bumsig Kim, Korea Institute for Advanced Study
Location:
University of British Columbia
Topic:
Given a "good" action of a reductive complex algebraic group G on a
projective manifold X, the abelian/nonabelian correspondence refers to
a precise relation that exists between topological invariants
(cohomology, K-theory) of the Geometric Invariant Theory quotients X//G
and X//T, where T is a maximal abelian subgroup in G. In this series of
talks, we will explain how to extend this relation to the (genus zero)
Gromov-Witten theories of the two quotients, based on joint works with
Aaron Bertram and Claude Sabbah.
Other Information:
PIMS Lecture Series (Lecture 2)