Topology Seminar: Claudius Zibrowius

  • Date: 10/16/2019
  • Time: 14:45
Claudius Zibrowius, UBC

University of British Columbia


On symmetries of peculiar modules; or, \delta-graded link Floer homology is mutation invariant


Conway mutation is an operation on links that is notoriously difficult to detect: it preserves many link invariants such as the signature, the Alexander polynomial or, more generally, the HOMFLY polynomial. Baldwin and Levine conjectured that δ-graded link Floer  omology also belongs in this list—despite the fact that *bigraded* link Floer homology can distinguish some mutant knots such as the famous Kinoshita-Terasaka and Conway knots.


In [arXiv:1909.04267], I proved Baldwin and Levine's conjecture by studying symmetry properties of peculiar modules, an immersed curve invariant of 4-ended tangles. In this talk, I will sketch this proof.

Other Information: 

ESB 4127