Discrete Math Seminar: Jose Samper

  • Date: 11/03/2015
  • Time: 16:00
Lecturer(s):
Jose Samper, University of Washington
Location: 

University of British Columbia

Topic: 

Relaxing the matroid axioms

Description: 

Motivated by a question of Duval and Reiner about eigenvalues of combinatorial Laplacians, we develop a generalization of (ordered) matroid theory to wider classes of simplicial complexes. In addition to all independence complexes of matroids, each such class contains all pure shifted simplicial complexes, and it retains a little piece of matroidal spirit/structure. To achieve this, we relax the various cryptomorphic definitions of a matroid. In contrast to the matroid setting, these relaxations are independent of each other, i.e., they produce different extensions. Imposing various combinations of these new axioms allows us to provide analogues of many classical matroid structures and properties. Examples of such properties include the Tutte polynomial, lexicographic shellability of the complex, the existence of a meaningful nbc-complex and its shellability, the Billera-Jia-Reiner quasisymmetric function, and many others. We then discuss the h-vectors of complexes that satisfy our relaxed version of the exchange axiom, extend Stanley's pure O-sequence conjecture about the h-vector of a matroid, solve this conjecture for the special case of shifted complexes, and speculate a bit about the general case. Based on joint works with Jeremy Martin, Ernest Chong and Steven Klee.

Other Information: 

Location: ESB 4127