## PIMS Distinguished Visitor Series: Kumar Murty

- Date: 04/14/2015

University of Lethbridge

Rational Points on Elliptic Curves

The classical problem of Diophantine equations is to solve polynomial equations over the rationals. More generally, we may consider solutions over an extension of the rationals. If the equations define an elliptic curve (or more generally, an Abelian variety), there is more structure. In particular, the set of rational points forms a group which is finitely generated. What happens if we consider the same problem over an infinite extension (or equivalently, over an infinite tower of extensions)? The problem becomes very subtle and is the subject of current research. We shall describe some of the recent results in this area.

**Tuesday, April 14, 2015** | 12:15-1:05 pm

**TH241, Turcotte Hall**, University of Lethbridge

Presented by the Department of Mathematics & Computer Science

For more information visit uleth.ca/artsci/event/74454.