Mini-symposium in PDE

  • Start Date: 11/12/2009
  • End Date: 11/13/2009
Speaker(s):

Andrea Bertozzi (UCLA)

Reinhard Illner (University of Victoria)

Robert McCann (University of Toronto)  

Ben Stephens (University of Washington)

 

Location: 

University of British Columbia

Description: 

Reinhard Illner (University of Victoria), Traffic flow and traffic jams: from kinetic theory to functional differential equations

 

I will speak on certain kinetic and macroscopic models of traffic flow. After a review of the concept of a fundamental diagram the high-density regime will be considered, and the emergence of macroscopic models with nolocalities will be discussed. Numerical evidence (and real traffic
data) suggest that travelling "braking" waves form and propagate in response to trigger events. A traveling wave ansatz for solutions of the macroscopic models leads to an unusual functional differential
equation, for which preliminary studies will be shown.

 

 

Ben Stephens (University of Washington) Fourth order diffusion with geometric link to second order diffusion

 

We describe a fourth order family generalizing the linear-mobility thin film equation on R^n. In joint work with R. McCann we derive formally sharp converence rates to self-similarity, using a link to Denzler-McCann's analysis of a second order diffusion. We then show (joint with Matthes, McCann, Savare) that a certain range of nonlinearity allows the obtaining of rigorous results for the fourth-order evolution in 1 dimension.

 

 

Robert McCann (University of Toronto), Extremal Doubly Stochastic Measures and Optimal Transportation

 

Imagine some commodity being produced at various locations and consumed at others. Given the cost per unit mass transported, the optimal transportation problem is to pair consumers with producers so as to minimize total transportation costs. Despite much study, surprisingly little is understood about this problem when the producers and consumers are continuously distributed over smooth manifolds, and optimality is measured against a cost function encoding some geometry of the product space.

 

This talk will be an introduction to the optimal transportation, its relation to Birkhoff's problem of characterizing of extremality among doubly stochastic measures, and recent progress linking the two. It culminates in the presentation of a criterion for uniqueness of solutions which subsumes all previous criteria, yet which is among the very first to apply to smooth costs on compact manifolds, and only then when the topological type of one of the two underlying manifolds is the sphere.

Schedule: 

Thursday, November 12, 2009

 

3:00pm-4:00pm Reinhard Illner (University of Victoria)

Title: Traffic flow and traffic jams: from kinetic theory to functional differential equations

Room: West Mall Annex Room 110

 

Friday, November 13, 2009

 

1:00pm-2:00pm Ben Stephens (University of Washington)

Title: Fourth order diffusion with geometric link to second order diffusion

Room: West Mall Annex Room 110

 

2:00pm-3:00pm Andrea Bertozzi (UCLA)

Title: Dynamics of Kinematic Aggregation Patterns

Room:Math Annex Room 1100

 

3:00pm-4:00pm Robert McCann (University of Toronto)

Note: Joint with Math Colloquium

Title: Extremal Doubly Stochastic Measures and Optimal Transportation

Room: Math Annex Room 1100

 

Organizers:

Young-Heon Kim (UBC)

Stephen Gustafson (UBC)

Other Information: 

This mini-symposium is organized by the PIMS Collaborative Research Group in Partial Differential Equations.

Sponsor: 

pims