Local Interaction Games with Random Matching
Topic
We state conditions for existence and uniqueness of equilibria in
evolutionary models with an infinity of locally and globally
interacting agents. Agents face repeated discrete choice problems.
Their utility depends on the actions of some designated neighbors and
the average choice throughout the whole population. We show that the
dynamics on the level of aggregate behavior can be described by a
deterministic measure-valued integral equation. If some form of
positive complementarities prevails we establish convergence and
ergodicity results for aggregate activities. We apply our convergence
results to study a glass of population games with random matching.
Speakers
Additional Information
MITACS Math Finance Seminar 2007
Ulrich Horst (Humboldt University Berlin)
Ulrich Horst (Humboldt University Berlin)
This is a Past Event
Event Type
Scientific, Seminar
Date
March 22, 2007
Time
-
Location