Scientific General Events

  • The goal of the conference is to promote cross-disciplinary research in statistical methods in engineering, science and technology. This is to be interpreted broadly to cover a wide range of application areas including environment, information and manufacturing sciences. The conference is intended to stimulate interactions among statisticians, researchers in the application areas, and industrial practitioners. It will provide a forum where participants can describe current research, identify important problems and areas of application, and formulate future research directions.

  • The general topic of the conference was the theory and application of
    discrete structures and its goal was to highlight the most salient
    trends in the field, which has close links to such diverse areas as
    cryptography, computer science, large-scale networks and biology. The
    conference brought together researchers from the various disciplines
    with which discrete and algorithmic mathematics interact.



    Particular areas of interest were the following: graphs and digraphs, hypergraphs,
    matroids, ordered sets, designs, coding theory, enumeration,
    combinatorics of words, discrete optimization, discrete and
    computational geometry, lattice point enumeration, combinatorial
    algorithms, computational complexity, and applications of discrete and
    algorithmic mathematics, including (but not limited to) web graphs,
    computational biology, telecommunication networks, and information


  • The goal of this workshop is to highlight emerging new topics in
    spatial probability, and related areas where probabilistic ideas play
    an important role. The emphasis is on types of questions and approaches
    that are not largely based on existing techniques. We have invited
    researchers with a variety of backgrounds, to help cross-fertilization
    between areas. Some topics that the organizers have in mind are below,
    although speakers have the freedom to choose what they find suitable.



    Combinatorial optimization problems with a stochastic component are a source of
    challenging open questions. Examples are the traveling salesman problem
    on a random set of points, other optimal path problems on random data,
    and allocation problems. Heuristics from statistical physics often
    suggest conjectures, open to investigation. Interacting spatial
    processes has been an active area since the 1970s, with interesting
    connections to other fields of mathematics such as random permutations,
    and PDEs. Such processes with non-local interactions have not been
    studied extensively. Interesting examples of deterministic processes
    have been found, where randomness plays a role in the analysis, such as
    crystal growth or sandpiles. These types of connections between
    deterministic and random are likely to be the source of intriguing
    questions in the future.

  • Abstract harmonic analysis and related topics (Banach algebra, operator spaces, geometric functional analysis, etc.).

  • The ties between combinatorics and probability run so deep that for
    many deep and interesting problems, it is nonsensical to try to assign
    one category or the other. The subject of this workshop is these sorts
    of problems, many of which in fact come from the theoretical computer
    science and statistical physics communities. Most of the speakers
    straddle two or several of these areas in their research. We expect the
    workshop to both expose participants to cutting edge research in
    combinatorics and probability, and, importantly, to lead to fruitful
    discussions and the opening of new avenues of research.

  • Alberta Colleges Mathematics Conference - May 1 & 2, 2009

    This annual conference presents talks on teaching issues specific to college math course offerings and provides an opportunity to meet colleagues from Alberta's post secondary institutions, discuss teaching, technology and curriculum and to share perspectives on experiences and common interests of mathematics in Alberta.



    North South Dialogue in Mathematics - May 1, 2009

    The annual Dialogue will take place Friday, running concurrently with the Alberta Colleges Mathematics Conference. This year will feature two consecutive sessions on:


    Mathematical Biology & Mathematical Finance

    Abstracts available in the download section of this page.



  • A one-day regional conference featuring five invited lectures with ample opportunity for interaction, discussion and socialization between participants.

  • Pure mathematics; Applied mathematics & mathematical physics; Statistics; and Industrial & computational mathematics.
  • The Cascade Topology Seminar is a biennial gathering of topologists from the Pacific Northwest and Southwestern Canada.



  • The Hybridizable Discontinuous Galerkin Methods



    This one-day conference builds on the success of the last five
    "Combinatorics Day" events, all supported by PIMS.  The purpose of the
    "Combinatorics Day" is two-fold.  First, to bring together people
    working in different areas of combinatorics (primarily from Alberta
    universities) to exchange ideas and to foster an environment for
    cooperation.  Second, to take advantage of the presence of many
    prominent mathematicians at the Banff International Research Station
    (BIRS) for a 5 day meeting on "Invariants of Incidence Matrices" from
    March 29 to April 3, 2009.


    This is a unique opportunity, and will be great for graduate students
    and Faculty from the three Alberta universities.

  • The themes for the workshop are facts and uncertainties of climate change and its effects on coastal systems and marine safety, and the use of modern statistical tools to address some of these important issues.


  • This is a short course on Statistical Software and Extreme Value Analysis.


  • Combinatorial Game Theory---games of pure strategy where there are no chance devices---had its beginnings in 1902 and a major breakthrough in the theory was enunciated in the books "On Numbers and Games", Conway, 1978, and "Winning Ways", Berlekamp, Conway & Guy, 1980. This part of the theory works well when the games break up into components. This talk will look at the players in the area over the last 100 years---some who got it right, some who got it wrong, and some who just missed. At the same time, I will introduce some of the main concepts of Combinatorial Game Theory. Only High School level math is required to understand most of the talk, although having played a few games of (any of) Chess, Checkers, Go, Amazons or Nim will help.

  • This conference is mainly supported by the Global Center of Excellence (GCOE).  It is based on a joint research project between PIMS and Kyoto University.

    For more information, visit the external site, by clicking here [dead link removed].

  • Sections of line bundles on moduli spaces of sheaves on rational surfaces and Le Potier's strange duality