Klaus Hoechsmann, Oct. 13, 2008

An Easy Proof of Quadratic Reciprocity.

In the Journal of the Australian Math. Society (1991), G. Rousseau of the University of Leicester (UK) published a particularly simple version of Gauss’s fifth proof of the Law of Quadratic Reciprocity. The present write-up is an attempt to digest it.

The proof consists in computing the product over \(\mathbb{Z}_{pq}^\times/\{\pm1\} \), where \(p \) and \(q \) denote odd primes, in two different ways, by choosing a “natural” system of representatives on either side of the isomorphism

\[
\mathbb{Z}_{pq}^\times \rightarrow \mathbb{Z}_p^\times \times \mathbb{Z}_q^\times, \tag{*}
\]

which takes the group \(\{\pm1\} \) into the one generated by \((-1, -1)\). Here \(\mathbb{Z}_m \) stands for \(\mathbb{Z}/m\mathbb{Z} \); moreover we shall set \(h(m) = (m-1)/2 \) for any odd \(m \).

On the right of (*), the elements are pairs, and we choose the \(h(p) \times (q-1) \) rectangular array

\[
\{(i, j) \mid 1 \leq i \leq h(p), 1 \leq j < q\} \tag{1}
\]
as our system of representatives. Multiplying across the \(i \)th row yields \((i^{q-1}, (q-1)!)_1\), and we get

\[
\left((h(p)!)^{q-1}, ((q-1)!)_1 \right)^{h(p)} = \left((h(p)!)^{p-1}, (q-1)!_1 \right)^{h(q)}, \left((q-1)!_1 \right)^{h(p)} \tag{2}
\]

by going across the whole array — using \(\mathbb{Z}_p^\times = \{\pm1, \pm2, \ldots, \pm h(p)\} \) for the expansion in the first component.

On the left of (*), we choose the first half of the natural numbers \(< pq \), without the multiples of \(p \) and \(q \), explicitly:

\[
\{1, 2, \ldots, h(p)q\} - \{p, 2p, \ldots, h(q)p\} - \{q, 2q, \ldots, h(p)q\}. \tag{3}
\]
The plan is to take the product over this system modulo both \(p \) and \(q \), obtaining an element \((\pi(p), \pi(q)) \in \mathbb{Z}_p^\times \times \mathbb{Z}_q^\times\), which can then be compared with (2). For \(\pi(q) \), we begin with the \(h(p) \times (q-1) \) rectangular array

\[
\{(iq + j) \mid 0 \leq i < h(p), 1 \leq j < q\} \tag{4}
\]
which falls short of \(h(pq) \) by the numbers \(h(p)q + 1, h(p)q + 2, \ldots, h(p)q + h(q) = h(pq) \), but retains the \(p \)-multiples \(p, 2p, \ldots, h(q)p \). We cunningly substitute the former for the latter; i.e., change \(kp \) into \(k + h(p)q \), for \(1 \leq k \leq h(q) \), and now have an array which is both clean and complete.

Modulo \(q \), each \(kp \) has changed by a factor \(p^{-1} \). Multiplying all this, we thus obtain

\[
\pi(q) = ((q-1)!)_1^{h(p)} p^{-h(q)} \in \mathbb{Z}_q, \tag{5}
\]
the first factor from the \(h(p) \) rows in (4), the second one from these \(h(q) \) changes. Mutatis mutandis we get \(\pi(p) \). Now Euler’s Criterion ties \(p^{-h(q)} \) to the Legendre Symbol \(\left(\frac{p}{q}\right) \), and, comparing \((\pi(p), \pi(q))\) with (2), we finally have

\[
\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{h(p)h(q)} \quad \text{Q.E.D.} \tag{6}
\]