Newton versus Pell.

Let a and b be natural numbers, and think of a/b as derived from the algebraic integer $\alpha = a + b\sqrt{2}$. If a/b is an approximation of $\sqrt{2}$, the next step by Newton's Method would yield

$$\frac{a^2+2b^2}{2ab}\,,$$

which corresponds to $\alpha^2=(a+b\sqrt{2})^2$. Let us say that a/b is a good approximation if $a^2-2b^2=\pm 1$, i.e., if the norm of α is a unit — so (a,b) is a solution of Pell's equation. Obviously all further steps in Newton's Method then have the same property.

Since all units in $\mathbf{Z}[\sqrt{2}]$ are powers of $\varepsilon = 1 + \sqrt{2}$, the terms of the Newton sequence would occur among those of $\alpha \varepsilon^n$. It is interesting to note the shape of the "next step" $\alpha \mapsto \alpha \varepsilon$ in this scenario (call it *Pell's Method* for short). Since $\alpha \varepsilon = (a+2b) + (a+b)\sqrt{2}$, we would get

$$\frac{a+2b}{a+b} = 1 + \frac{b}{a+b} = 1 + \frac{1}{1+a/b},$$

in other words, the continued fraction development. Though much slower than Newton (enumerating versus successive doubling), it has well-known charms of its own.