Miscellaneous Notes

Matrix Exp. Let X(t) be a fundamental matrix of a homogeneous linear d.e. with coefficient matrix A(t), not necessarily constant. Note that X(t) is well-defined up to an invertible factor on the right; hence $X(t)X(0)^{-1}$ is independent of the choice of X(t); we shall denote it by $X_A(t)$.

 $X_A(t)$ is characterized by $\dot{X}_A = AX_A$ and $X_A(0) = I$. If A is constant, $X_A(t) = expAt$.

Let B be another matrix. The identity

$$\frac{d}{dt}(X_A X_B) = (A+B)X_A X_B + (X_A B - BX_A)X_B$$

shows that $X_A X_B = X_{A+B}$ iff B commutes with X_A . If A and B are constant, this means that AB = BA (look at terms of degree 1 in the power series).

NOTE: If A is not constant, it does not define a vector-field, and $X_A(t)$ is not a flow in the usual sense.

Binomial Trials and Difference Equations. By a bell-curve of width σ centered at μ , we mean a positive solution of the differential equation

$$\frac{dy}{dx} = -\frac{x - \mu}{\sigma^2} y.$$

Fix a natural number n and positive reals p, q with p + q = 1. On the interval [-1, n + 1], consider the piece- wise linear function b(x) which is 0 at the end- points and has

$$b(k) = \binom{n}{k} p^k q^{n-k}$$

at integers k in between. On each subinterval (k, k + 1), its slope b(k + 1) - b(k) turns out to be very easily computed in terms of the intermediate point $x_k = q(k + 1) + pk$, namely

$$b(k+1) - b(k) = -\frac{x_k - np}{(n+1)pq}b(x_k).$$

Thus, on the discrete set of points $(x_k, b(x_k))$, the graph of b(x) satisfies the differential equation for bell-curves of width $\sigma_n = \sqrt{(n+1)pq}$ centered at $\mu_n = np$.

For a picture less dependent on n, we transfer our graph to a (u, v)-plane, with $u = (x - \mu_n)/\sigma_n$ and $v = \sigma_n y$. The points $(x_k, b(x_k))$ go into (u_k, v_k) at which the image graph now has slope $-u_k v_k$, i.e. looks like a bell curve of width 1 centered at 0, its support reaching from $-(np+1)/\sigma_n$ to $(nq+1)/\sigma_n$. For large n it therefore seems (!) that the graph can be reconstructed from its apex —using Stirling's formula to get b([n/2])— by solving the linear d.e. v' = -uv via finite differences.

Remark: Of course we are not seriously advocating such a reconstruction, for which there would be the exact (but non-linear) formula b(k+1) - b(k) = c(k)b(k), where c(k) = ((n+1)p - (k+1))/(k+1)q. Rather, we are trying to show an a priori proximity between binomial and normal distribution. The unusual +1 in our formula for σ_n probably comes from working with the piece-wise linear function b instead of the usual histogram.

Musical Mnemonic. Succesive intervals of the diatonic scale are:

$$\alpha, \beta, \epsilon, \alpha, \beta, \alpha, \epsilon$$

, where $\alpha = 1 + 1/8$, $\beta = 1 + 1/9$, $\epsilon = 1 + 1/15$. The rest of the drama follows from this. Note, for instance: however you define F-sharp, the scale of G gets off to a bad start. Even worse, the interval from D to A is $\alpha\beta^2\epsilon$ instead of the perfect fifth $\alpha^2\beta\epsilon$. The twelfth root of 2 was applied to this puzzle in 1686 by one Werckmeister. A previous expert had come close by using 18/17.

The Gradient of a Quadratic Form. Let A be a linear transformation on a Eucidean space and put $Q(X) = AX \bullet X$. The identity $Q(X+V) - Q(X) = (A+A^t)X \bullet V + Q(V)$ clearly shows that

$$\nabla Q(X) = (A + A^t)X.$$

For those who are not comfortable with Frechet derivatives, we could use the same identity to compute the directional derivative $D_UQ(X) = \lim_{h\to 0} [Q(X+hU)-Q(X)]/h = (A+A^t)X \bullet U$. Either way it is immediate that, for *symmetric* A, the problem of maximizing Q(X) on the unit sphere (using Lagrange multipliers) is identical to the eigenvalue problem.

Combinations with Repeats. According to Melzak the following pretty argument is due to Euler. If $S_k = \{1, ..., k\}$, let F(n, k) and G(n, k) stand for the increasing and non-decreasing functions $S_k \to S_n$, respectively. The cardinality of the former is good old C(n, k); what is the cardinality of G(n, k), the set of "combinations with repeats"?

Given $g \in G(n, k)$, construct a function $f \in F(n+k-1, k)$ by making f(x) = g(x) + x - 1. Conversely, given such an f, put g(x) = f(x) - x + 1; then g(x+1) = f(x+1) - x > f(x) - x, i.e. $g(x+1) \ge g(x)$. Hence G(n, k) is in one-to-one correspondence with F(n+k-1, k).

The Cross Product. For $V, W \in \mathbb{R}^3$, define $V \times W$ by

$$(V \times W) \bullet X = \det(V, W, X)$$
 for all $X \in \mathbf{R}^3$.

Then it is obvious that

$$A^t(AV \times AW) = \det A \cdot (V \times W),$$

for any 3×3 -matrix A. Hence the product is invariant under rotations.

Moreover it is clear that $V \times W$ is orthogonal to V, W. To interpret its length, let U be a unit vector parallel to it. Then $|V \times W| = |(V \times W) \bullet U| = |\det(V, W, U)|$, which equals the area of the parallelogram given by V, W.

The Simplex Method. A linear optimization problem involves a (consistent) system AX = B of linear equations and a linear pay-off function C on the solution set thereof. It is in *standard form* if A is fully reduced, B is non-negative, and C is expressed in terms of the "free" variables. The simplex method treats such a problem by moving from one standard form to an adjacent one while making sure that C is increased. The following three steps are iterated.

- 1. Look at the formula for C to decide which one of the free variables (if any) should be "entered".
- 2. Which row, in the corresponding column, can be used as a pivot without introducing negatives on the right? Check constant-to-coefficient ratios.
- 3. Sweep out the column chosen in (1) using the row chosen in (2). Don't forget to include (and thus modify) the formula for C in this process. Go back to (1).

Sion's Lemma. Here is Maurice's version of the singular value decomposition.

Let $A:U\to V$ be linear, and r be the maximum value of |Au| for u on the unit sphere. Put $E=\{u\in U\,|Au\bullet Au=r^2u\bullet u\}$. Then

$$u \in E, x \in U \implies Au \bullet Ax = r^2u \bullet x.$$

In particular, E is a linear space, and $A(E^\perp)\subseteq A(E)^\perp.$

Proof: Applying Cauchy-Schwarz to the non-negative bilinear form $C(x,y) = r^2 x \bullet y - Ax \bullet Ay$, we get $|C(u,x)|^2 \le 0$ because C(u,u) = 0.

The Möbius Function. The set of functions $f: \mathbb{N} \to D$, where D is any domain, is a ring under pointwise addition and convolution

$$(f * g)(n) = \sum_{d|n} f(d)g(n/d).$$

Its identity is the characteristic function of the set $\{1\}$.

By the fundamental theorem of arithmetic, this ring is isomorphic to the ring of formal power series in countably many indeterminates X_{ν} (corresponding to prime p_{ν}). An element f is invertible iff f(1) is a unit in D. Such an f is called *multiplicative* if f(1) = 1 and $f = \prod_{\nu} f_{\nu}$, where each f_{ν} is a power series in the single indeterminate X_{ν} .

The function e which is identically equal to 1, is a case in point. It is the product of geometric series in each of the X_{ν} ; hence its inverse μ , called the *Möbius function*, is the product $\prod_{\nu} (1 - X_{\nu})$. Thus, as a function, $\mu(n) = (-1)^k$ if n has k simple prime factors; if any prime occurs in n with multiplicity > 1, the value of $\mu(n)$ is zero.

Since the equations g = f * e and $f = \mu * g$ are equivalent, we have explicitly

$$g(n) = \sum_{d \mid n} f(d) \qquad \Longleftrightarrow \qquad f(n) = \sum_{d \mid n} \mu(d) g(n/d).$$

This is called Möbius inversion.

Dissection Puzzles.

- 1. Let the vertices of a regular dodecagon be numbered as on a clock. Making four cuts from 6 and 7 to 11 and 2, we get six pieces which fit together to form a square. The sides of the latter are the edges joining 7 with 11 and 6 with 2. Compute all relevant angles to check that the fit is perfect (note that 278 is a right angle by Thales).
- 2. An equilateral triangle can be separated into 5 pieces which may be used to form either two or three smaller equilateral triangles. One of the cuts, parallel to the "base", produces a trapezoid; two more, perpendicular to the base, then make a rectangle in which the last cut is a diagonal. The first cut divides two of the sides in the ratio 3:2, with the trapezoid getting the smaller height.
- 3. What is the shape of an isosceles triangle Δ which can be divided into two smaller isosceles triangles by a single cut? Let the legs and base of Δ have lengths 1 and b, and let α and β denote the angles at base and roof, respectively.

If $\alpha > \beta$, the cut must divide one of the base angles, and α remains a base angle for one of the smaller triangles, say Δ' , which is therefore similar to Δ . This similarity implies $b^2 = 1 - b$, hence the *golden ratio* for legs to base.

 β is the base angle of the other isosceles piece Δ'' , and also the roof angle of Δ' . Hence $\alpha = \beta + \beta$. Moreover, the roof angle of Δ'' , being the exterior to the base angle of Δ' , is $\alpha + \beta = 3\beta$. Summing angles in Δ'' , we now get 5β , and thus α is the centre angle of a regular pentagon. Therefore Euclid constructs the latter by first making an isosceles triangle based on the golden ratio (which he gets from the diagonal of a rectangular half-square).

For the case $\beta > \alpha$, a similar analysis shows that Δ must have the shape of the Δ'' above.