Circle Group and Projective Line.

1. For any field K of characteristic $\neq 2$, the *circle group* $S^1(K)$ consists of ordered pairs $x, y \in K$ such that $x^2 + y^2 = 1$, with multiplication

$$(x,y)\cdot(u,v) = (xu - yv, xv + yu). \tag{*}$$

By abuse of language, K will be called "real" or "complex" depending on whether X^2+1 is or is not irreducible. In either case, let K[i] be the quadratic ring extension with $i^2=-1$, and $N:K[i]\longrightarrow K$ denote its norm map. For a typical element a+bi of K[i], this norm equals $(a+bi)(a-bi)=a^2+b^2$. Thereby $S^1(K)$ becomes the subgroup $\ker N\subseteq K[i]^{\times}$.

Proposition: If K is complex, and $\iota \in K$ satisfies $\iota^2 = -1$, the map $(a,b) \mapsto (a+\iota b)$ defines an isomorphism $S^1(K) \simeq K^{\times}$. If K is real, the inclusion $\ker N \subset S^1(K[i])$ identifies $S^1(K)$ with a multiplicative subgroup of the complex field K[i].

The first statement comes from $(a+bi) \mapsto (a+\iota b, a-\iota b)$ defining a ring isomorphism $K[i] \longrightarrow K \oplus K$ which maps ker N onto $\{(c,c^{-1})\}$. The second statement is obvious.

If K has q elements, the cardinality of $S^1(K)$ is $(q^2 - 1)/(q - 1) = q + 1$ or q - 1 elements, depending on whether K is real or complex. In either case, $S^1(K)$ is cyclic.

2. As we all know, the Ancients invented the famous map

$$\delta: P^1(K) \longrightarrow P^2(K)$$
 by $\delta(u, v) = (u^2 - v^2, 2uv, u^2 + v^2),$ (†)

whose image lies on the curve Δ defined by $x^2 + y^2 = z^2$. It is clearly injective, since any given $u^2 - v^2 = a$ and $u^2 + v^2 = c$ determine a $(u, \pm v)$, and the sign is fixed (up to homogeneity) by the second component of $\delta(u, v)$. In fact, $\delta: P^1(K) \longrightarrow \Delta$ is bijective, since $(2uv)^2$ is the difference $c^2 - a^2$ so that 2uv could be set equal to b, if we are aiming at a point (a, b, c) such that $a^2 + b^2 = c^2$.

If K is closed under square roots, any "conic" can be given the form $x^2 + y^2 = z^2$, and therefore is isomorphic to $P^1(K)$.

A more geometric view of the bijection $\delta: P^1(K) \longrightarrow \Delta$ is obtained by identifying $P^1(K)$ with the pencil of lines passing through the point (-1,0,1). Their equations are of the form x+z=ty, and each of them (except the one with t=0) intersects Δ in exactly one other point. Indeed, $y^2=z^2-x^2=(z+x)(z-x)$ together with $t^2y^2=(z+x)^2$ and $z+x\neq 0$ implies $z+x=t^2(z-x)$, i.e., $(t^2+1)x=(t^2-1)z$. Unravelling that equation yields $(x,y,z)=\delta(t,1)$.