1. Semi-simplicity. If \(G \) is a group and \(F \) is a field, an \(FG\)-module \(M \) is a vector space over \(F \) with a linear \(G \)-action \(G \times M \to M \), i.e., one that satisfies
\[
\sigma(ax + by) = a\sigma(x) + b\sigma(y), \quad \sigma \in G, x, y \in M, a, b \in F.
\]
Thus, every \(\sigma \in G \) acts on \(M \) as a linear transformation \(\Delta(\sigma) \). Instead of considering the \(FG\)-module \(M \), we could equivalently speak of the representation \(\Delta \), which is a homomorphism \(G \to \text{Aut}_F(M) \).

CONVENTION: In this course, the groups \(G \) to be represented are tacitly assumed to have finite order, and all \(FG\)-modules, to have finite dimension over \(F \).

THEOREM (Maschke): Suppose that the order \(|G| \) is prime to the characteristic of \(F \), and let \(N \subseteq M \) be \(FG\)-modules. Then \(M = N \oplus N' \), where \(N' \subseteq M \) is an \(FG\)-module.

Proof. We need a left inverse ("retraction") \(p \in \text{Hom}_{FG}(M, N) \) for the inclusion \(N \hookrightarrow M \). It is easy to produce such a thing, say \(f \), in \(\text{Hom}_F(M, N) \). Take it and define
\[
p(x) = \frac{1}{|G|} \sum_G \sigma f(\sigma^{-1}x).
\]
For \(x \in N \), we have \(f(x) = x \) and hence \(p(x) = x \), so \(p \) is still a left inverse. Moreover, \(p(\tau x) = \tau p(x) \) for all \(\tau \in G \), q.e.d.

By induction, every \(FG\)-module \(M \) splits into a direct sum \(L_1 \oplus \cdots \oplus L_t \) of \(FG\)-modules which are irreducible in the sense that they have no \(FG\)-submodules. The uniqueness of the irreducible components \(L_i \), up to isomorphism, follows at once from general theorems (e.g. Jordan-Hölder or Krull-Schmidt), but we shall soon see it more directly.

Henceforth assume that the characteristic of \(F \) is prime to \(n = |G| \).

The group algebra \(FG \) consists of all "polynomials" \(\alpha = \sum_G a_\sigma \sigma \), with products \(\alpha \beta \) defined by the distributive law and the multiplication in \(G \).

LEMMA 1.1: Let \(L \) and \(N \) be irreducible \(FG\)-modules with \(L \subseteq FG \) a left ideal. Then \(LN = 0 \) unless \(L \) and \(N \) are isomorphic.

Proof. For every \(x \in N \), the product \(Lx \) is either \(O \) or \(N \), since it is an \(FG\)-submodule of \(N \). In case \(Lx = N \), the surjection \(L \to N \) by \(\lambda \mapsto \lambda x \) is an isomorphism, q.e.d.

COROLLARY: Let \(FG = L_1 \oplus \cdots \oplus L_t \) be a complete decomposition of \(FG \) as a (left) \(FG\)-module. Then every irreducible \(FG\)-module \(N \) is isomorphic to a suitable \(L_j \).

Proof. Since \((FG)N = N\), we must have \(L_j N \neq 0 \) for some \(j \). Then \(L_j \cong N \) by the Lemma; q.e.d.

Now collect the aforementioned \(L_j \) into isomorphism classes, say \(\mathcal{T}_1, \ldots, \mathcal{T}_s \), and let \(M_i \) be the direct sum of all the \(L_j \) which belong to \(\mathcal{T}_i \). Thus
\[
FG = M_1 \oplus \cdots \oplus M_s,
\]
with each \(M_i \) a sum of (say \(m_i \)) irreducible components of the same isomorphism type. \(\text{Note:} \) by the Lemma, \(i \neq j \) implies \(M_i M_j = 0 \).

LEMMA 1.2: If \(\pi_1 : FG \to M_i \subseteq FG \) is the obvious projection, \(\pi_i(\alpha) = \pi_i(1) \cdot \alpha \), for all \(\alpha \in FG \).

Proof.
\[
\pi_i(1)\alpha = \sum_j \pi_i(1)\pi_j(\alpha) = \pi_i(1)\pi_i(\alpha) = \sum_j \pi_j(1)\pi_i(\alpha) = 1 \cdot \pi_i(\alpha), \quad \text{q.e.d.}
\]

It is customary to abbreviate \(\pi_i(1) = e_i \). Since \(M_i \) is a left \(FG\)-module, it is obvious that \(\pi_i(\alpha) = \alpha e_i \), that \(e_i e_j = \delta_{ij} e_i \) (Kroneckers’s \(\delta \)), and that \(1 = e_1 + \cdots + e_s \). The force of the lemma is that the \(e_i \) are central. In particular, \((\alpha e_i)(\beta e_i) = \alpha \beta e_i\) shows each \(M_i \) to be a ring with unity \(e_i \).
2. Characters. In this section, we keep the notation of the preceding one. In particular, \(I_1, \ldots, I_s \) are the available isomorphism classes of irreducible \(FG \)-modules, and \(e_1, \ldots, e_s \) are the corresponding central idempotents of \(FG \). An irreducible \(L \) in \(I_i \) is annihilated by all \(e_j \), except for \(e_i \), which acts on it as the identity. Let us once and for all choose a set \(L_1, \ldots, L_s \) of representatives for \(I_1, \ldots, I_s \).

Let \(\Delta : G \to \text{Aut}_F(M) \) be the representation associated with an \(FG \)-module \(M \). If \(\chi(\sigma) \) denotes the trace of \(\Delta(\sigma) \), the map \(\chi : G \to F \) is called the character of \(\Delta \) or of \(M \). We use the same name and notation for the associated linear functional \(FG \to F \).

Lemma 2.1: The \(FG \)-modules \(M \) and \(M' \) have the same character if they are isomorphic. The converse holds for \(F \) of characteristic 0.

Proof. Any isomorphism \(T : M \to M' \) must satisfy \(T\Delta(\sigma) = \Delta'(\sigma)T \), i.e., \(\Delta'(\sigma) = T\Delta(\sigma)T^{-1} \), for all \(\sigma \in G \); hence \(\chi = \chi' \). In particular, each isomorphism class \(I_i \) corresponds to a single character \(\chi_i \).

Now imagine a decomposition \(M = N_1 \oplus \cdots \oplus N_s \) into irreducibles. Then \(\chi(e_i) = \mu_i \delta_i \), where \(\mu_i \) is the multiplicity with which members of \(I_i \) occur among these components. If \(F \) has characteristic 0, this makes \(\chi = \chi' \) imply \(\mu_i = \mu'_i \), for all \(i \), so that \(M \) is isomorphic to \(M' \), q.e.d.

The next lemma shows how to compute the central idempotents \(e_1, \ldots, e_s \). Remember that \(M_i = (FG)e_i \) splits into \(m_i \) irreducible components, so that its character equals \(m_i \chi_i \).

Lemma 2.2:

\[
e_i = \frac{m_i}{n} \sum_{\sigma \in G} \chi_i(\sigma^{-1})\sigma.
\]

Proof. Let \(\chi_\infty \) be the character of \(FG \) itself. Then \(\chi_\infty(1) = n \), and \(\chi_\infty(\sigma) = 0 \) whenever \(1 \neq \sigma \in G \). For \(\alpha = \sum_\sigma a_\sigma \tau \), this means that \(\chi_\infty(\sigma^{-1}\alpha) = na_\sigma \). On the other hand, \(\chi_\infty = \sum_j m_j \chi_j \) by (3), whence \(na_\sigma = \sum_j m_j \chi_j(\sigma^{-1}\alpha) \).

For \(\alpha = e_i \), this becomes \(na_\sigma = \sum_j m_j \chi_j(\sigma^{-1}e_i) = m_i \chi_i(\sigma^{-1}) \). The last equality is due to the fact that left multiplication by \(\sigma^{-1}e_i \) annihilates \(M_j \), for \(i \neq j \), and acts on \(M_i \) like \(\sigma^{-1} \); q.e.d.

Evaluating \(\chi_j(e_i) \) in (4), while keeping in mind that \(e_i \) acts like \(I_d \) on \(L_i \) and like 0 on all the other \(L_j \), we obtain the “first orthogonality relations”:

\[
\frac{1}{n} \sum_{\sigma \in G} \chi_i(\sigma^{-1})\chi_j(\sigma) = \begin{cases} 0 & \text{if } i \neq j \\ d_i/m_i & \text{if } i = j \end{cases}.
\]

To get a handle on the total number \(s \) of irreducible characters, we study the centre \(Z(FG) \). Breaking up \(G \) into its conjugacy classes \(C_1, \ldots, C_r \), we let \(\gamma_\nu \in FG \) stand for the sum over all \(\sigma \in C_\nu \). Clearly, \(\alpha = \sum_\nu a_\sigma \gamma_\nu \) in \(FG \) is central if and only if \(\alpha \) is fixed under conjugation by all \(\tau \in G \). This means that its coefficients \(a_\sigma \) must be constant on each \(C_\nu \), and hence \(\alpha \) is linear combination of the \(\gamma_\nu \). It follows that \(\gamma_1, \ldots, \gamma_r \) is a basis of \(Z(FG) \). On the other hand, \(e_1, \ldots, e_s \) is a linearly independent set in \(Z(FG) \); any relation \(e_1 e_1 + \cdots + e_s e_s = 0 \) would yield \(c_i e_i = 0 \) when multiplied by \(e_i \). Hence

\[
s \leq r \quad \text{and} \quad n = m_1 d_1 + \cdots + m_s d_s,
\]

where \(d_i \) denotes the \(F \)-dimension of a typical \(L \) in \(I_i \). Together, these relations are helpful for tracking down the possible types of irreducible \(FG \)-modules.

Exercise: If \(F \) has characteristic 0, show that \(n \mid m_i \). (Hint: The eigenvalues of any \(\Delta(\sigma) \) are of the form \(\zeta^\nu \), where \(\zeta \) is a primitive \(n \)-th root of 1. Let \(V_i \) be the \(Z \)-module generated by the elements \(\zeta^\nu e_i \), for \(\sigma \in G \) and \(\nu = 1, \ldots, n \). Multiplying (4) by \((n/m_i)e_i \), obtain a relation which says that \((n/m_i)V_i \subset V_i \). Using determinants, conclude that \(n/m_i \) is the root of a certain monic polynomial over \(Z \).)

2
3. Matrices. This section is in three parts: an abstract examination of matrices, some consequences for the components M_i of FG in the sum (3), and finally another version of the orthogonality relations (5).

I. Let R be any ring, V a (left) R-module, $E = \text{End}_R(V)$ its ring of endomorphisms. Then the ring $\mathcal{M}_m(E)$ of $m \times m$ matrices over E is naturally isomorphic to $\text{End}_R(W)$, where $W = V \oplus \cdots \oplus V$ has m components. Indeed, a matrix (a_{ij}) with entries in E defines the endomorphism $\alpha : W \to W$ mapping $w = (v_1, \ldots, v_m)$ to the m-tuple whose i-th component is $\sum_j a_{ij}v_j$. Conversely, the matrix entry $a_{ij} \in E$ can be retrieved by following the obvious j-th injection $V \to W$ by a given $\alpha : W \to W$ and the i-th projection $W \to V$. Finally, it can be checked that the composite $\beta \alpha$ of two endomorphisms corresponds to the matrix product obtained by summing the composites $b_{ik}a_{kj}$ over k.

Let R^o the “opposite” of R, i.e., a ring with the same elements as R but with the order of multiplication reversed. R^o is naturally identifiable with the ring of right multiplications in R, and this, in turn, is canonically isomorphic to $\text{End}_R(R)$, the endomorphisms of R as a left R-module.

Lemma 3.1: Suppose that R, as a left R-module, is isomorphic to the direct sum $V \oplus \cdots \oplus V$ of m copies of some R-module V. Then R is isomorphic to the ring $\mathcal{M}_m(E^o)$, where $E = \text{End}_R(V)$.

Proof. By the preceding discussion, $R^o \simeq \mathcal{M}_m(E)$. To finish the proof, we note that the matrix transpose yields an isomorphism $\mathcal{M}_m(E^o) \to \mathcal{M}_m(E^o)$, a verification we leave to the reader, q.e.d.

II. Recall from Section 1, that FG is the Cartesian product of rings M_1, \ldots, M_s, each M_i being the direct sum of m_i left ideals all isomorphic to a single L_i. Since L_i is irreducible, all its non-zero endomorphisms are invertible (their kernels must be trivial, their images all of L_i), and hence $\text{End}_{FG}(L_i)^o$ is a division algebra D_i over F. Applying Lemma 3.1 to $R = M_i$, we therefore have a ring isomorphism

$$M_i \simeq \mathcal{M}_{m_i}(D_i)$$

for every $i = 1, \ldots, s$. Letting δ_i denote the F-dimension of D_i, we conclude moreover that

$$\dim_F M_i = m_i^2\delta_i, \quad d_i = \dim_F L_i = m_i\delta_i, \quad \text{and} \quad n = m_1^2\delta_1 + \cdots + m_s^2\delta_s. \tag{8}$$

Since every element of any D_i generates a finite field extension of F, we have $D_i = F$ and $\delta_i = 1$ for all i, whenever F is algebraically closed.

III. The quotient d_i/m_i appearing in the orthogonality relations (5) has thus been unmasked as δ_i. Since characters are obviously constant on conjugacy classes we can rewrite these relations in the form

$$\frac{1}{n\delta_i} \sum_{\nu=1}^r x_i(C_{\nu})x_j(C_{\nu}^*)h_{\nu} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}, \tag{9}$$

with $h_{\nu} = |C_{\nu}|$ and $C_{\nu}^* = \{ \sigma \mid \sigma^{-1} \in C_{\nu} \}$. This can be interpreted as saying that the identity matrix I_s is the product of the $s \times r$ matrix $(x_i(C_{\nu}))$ and the $r \times s$ matrix $(x_j(C_{\nu}^*)h_{\nu}/n\delta_j)$, where i and j always denote the row and column indices, respectively. If these matrices are square, the product of the factors can be reversed. In other words,

$$\frac{h_{\nu}}{n} \sum_{\nu=1}^r x_\nu(C_{\nu}^*)x_\nu(C_{\nu})/\delta_\nu = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}, \tag{10}$$

provided that $s = r$. These are the “second orthogonality relations”.

The proviso $r = s$ is always satisfied if F is algebraically closed: in that case, each M_i is a full matrix ring over F, and $Z(FG) = Z(M_1) \oplus \cdots \oplus Z(M_s)$ is the Cartesian product of s copies of F. As a further bonus, the δ_i then disappear from the formula.