2000a:53153 53D50 81S10

Gotay, Mark J. (1-HI)

On the Groenewold-Van Hove problem for \mathbb{R}^{2n} . (English. English summary)

J. Math. Phys. 40 (1999), no. 4, 2107-2116.

The classical results of Groenewold and Van Hove state, roughly speaking, that one cannot quantize every classical observable on the phase space \mathbb{R}^{2n} in a way consistent with Schrodinger quantization.

In the paper under review the author shows rigorously that there exists an obstruction to quantizing the Poisson algebra of polynomials on \mathbf{R}^{2n} in such a way that the Heisenberg algebra generated by canonical coordinates is represented irreducibly, thereby filling a gap in Groenewold's original proof. Moreover, for n=1, the maximal quantizable Lie subalgebras of polynomials are determined and their possible quantizations are explicitly constructed. These are the extended symplectic algebra $\operatorname{hsp}(2,\mathbf{R})$ with the extended metaplectic representation, and the coordinate (or position) algebra C(2) with the representations

$$\sigma_a(f(q)p+g(q)) = -i\hbar \left(f(q) \frac{\partial}{\partial q} + \left(\frac{1}{2} + ia \right) \frac{\partial f}{\partial q}(q) \right) + g(q),$$

where $a \in \mathbf{R}$.

 $Janusz\;Grabowski\;(\operatorname{PL-WASW})$