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The problem of quantizing classical observables is a venerable 

one. It is well known that it is impossible to fully quantize all 

classical observables [1-3]; in fact, it is not even possible to con- 

sistently quantize the algebra of polynomials on a Euclidean phase 

space [1,3-6]. Consequently, research has centered on both quantiz- 

ing restricted classes of observables [1,7,8] and weakening the notion 

of a "full" quantization [2,8-10]. To these ends, numerous quantiza- 

tion schemes have been developed (see, e.g., [7,10-15])o 

In this paper, I study the quantization of quadratic momentum ob- 

servables using the geometric quantization procedure of Kostant and 

Souriau [12-14] in the Schr~dinger representation° 

Consider a classical system with an oriented n-dimensional con- 

figuration space M. It is convenient (but certainly not necessary) in 

what follows to assume that M comes equipped with a semi-Riemannian 

metric g. Let V = ker T~ be the vertical polarization on phase space 

T'M, where ~:T~M ÷ M is the projection. 

I take the prequantization line bundle to be trivial and use the 

orientation on M to induce a metaplectic structure for V on T*M. Rela- 

tive to this data, the quantum Hilbert space is L2(M, Idet gl½) o 

Turning now to the classical observables, denote by CN(V) the sub- 

space of C~(T~M) consisting of functions which are at most Nth-degree 

polynomials along the fibers of ~o Then C0(V) = ~*C~(M) is the set of 

configuration observables. The space CI(V ) consists of linear momentum 

observables PX + f' where f e Co(V) and PX is the momentum in the di- 

rection of the vector field X on M. 

The linear momentum observables play a distinguished role in quant- 

ization theory since they form a Schrodinger subalgebra [2,16] of the 

Poisson algebra C=(T*M). In particular, this means that elements of 

CI(V) can be unambiguously and equivalently quantized in all viable 

quantization schemes [2,8]. This is so in geometric quantization be- 

cause the flow of (the Hamiltonian vector field of) each such observable 

preserves the vertical polarization. Specifically, PZ + f ~ CI(V) is 

quantized as the operator 

Q(Px + f) = -i(X + ½div X) (i) 

375 



2 ½), 
on L (M,[det gl where ~ = i. 

However, trouble arises when quantizing momentum observables of 

degree two or higher. Even when applicable, different quantization 

procedures will typically yield ambiguous and/or inequivalent results. 

Geroch [17] gives a succinct discussion of the problems that can occur. 

For example, due to factor-ordering ambiguities, the Canonical quantiza- 

tion of an element of CN(V) is only determined up to the addition of a 

differential operator of order N-2; this quantization is therefore well 

defined only in the semiclassical limit (see [15] for details and [8] 

for an illustration). In geometric quantization, on the other hand, 

such observables present difficulties because their flows do not pre- 

serve the vertical polarization. By suitably pairing V with some trans- 

verse polarization V , Kostant [12] is able to avoid this problem and 
y ~ 

can actually quantize all polynomial momentum observables. But may 

not exist and, when it does, the quantizations resulting from different 

V ~ choices of agree only in the semiclassical limit. For this reason, I 

work solely with the vertical polarization, ioe., in the Schrodinger 

representation° Quantization then requires "moving" V and employs the 

Blattner-Kostant-Sternberg kernels [13,14]. 

Regarding C2(V) , the main result is 

Theorem: Suppose that {X 1 .... ,X K } is a collection of linearly 

independent commuting vector fields on M. Let Y and ~ be any homogene- 

ous quadratic and linear polynomials, respectively. Then 

Q[Y(PxI,...,PXK) + ~(C I (V))) 

= y(QPxI ..... QPXK) + ~(Q[CI(V)]). (2) 

Remark: There are several strong analytic and geometric condi- 

tions, not made explicit here, which must be satisfied before (2) rig- 

orously follows. If any of these conditions fail, as is commonly the 

case, then (2) must be interpreted in a formal sense. These technical 

matters are discussed in [13,14,18]. 

Sketch of Proof: Write 

X(PxI'''''PXK) = xZJPx'Px'z J 

where the X zJ are constants. Without loss of generality, it may be as- 

sumed that yzJ has rank K (for otherwise it would be possible to elimi- 

nate some constant linear combinations of the P ' Xi s). Then a constant 

linear transformation X. ÷ Y. brings y into the form 

K 
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where E. = ±i. Furthermore, by the assumptions on the Xi and the con- 

struction of the Yi' there exist~ a coordinate system {qa}, a = l,..o,n, 

such that Yi = ~i' i = I,...,Ko Finally, since any element of CI(V) 

can be written as PZ + f for some Z and f, the observable to be quantiz- 

ed becomes 

2 za 
e i P i  + (q)Pa + f ( q ) '  

w h e r e  Pa = P~a ° 

W i t h  t h i s  n o r m a l  f o r m ,  i t  i s  now s t r a i g h t f o r w a r d  t o  c o m p u t e  t h e  LHS 

o f  ( 2 )  v i a  t h e  BKS t r a n s f o r m  ( s e e  § 5 - 7  o f  [ 1 3 ]  f o r  t h e  d e t a i l s  o f  s u c h  

c a l c u l a t i o n s ) o  The  d e s i r e d  r e s u l t  t h e n  f o l l o w s  f r o m  a c o m p a r i s o n  o f  

t h i s  w i t h  t h e  RHS o f  ( 2 ) ,  w h i c h  i s  e a s i l y  c o m p u t e d  i n  t h e s e  c o o r d i n a t e s  

u s i n g  ( 1 ) .  • 

I now e x a m i n e  s o m e  o f  t h e  i m p l i c a t i o n s  o f  t h i s  r e s u l t .  

First of all, note that (2) yields 

2 2 
QF = (QF) (3) 

for all F e CI(V ). This may or may not be surprising, but in any case 

is at variance with the predictions of most other quantization schemes 

(e.g., [9-12,15]). On the other hand, (3) is consistent with von Neu- 

mann's rule (I) [19]. 

Secondly, simple examples show that (2) does not respect the 

"Poisson bracket ÷ commutator" ruleo This is unfortunate, but not en- 

tirely unexpected [1-7]. 

Thirdly, the conditions on the Xi's indicate that the Theorem is 

capable of quantizing only a limited subset of C2(V). But these re- 

quirements -- involutivity in particular -- are essential; the Theorem 

will fail without them. 

For instance, it is not difficult to see that quantization cannot 

be multiplicative over noncommuting observables in general [7,17]o In- 

deed, suppose that X is nonvanishing and that g is a positive function 

-IX on M chose D in such a way that [gX,g ] # 0. Then 

(QPx ) 2 = QpX 2 = Q (pgXPg_l X ) 

is not equal to the symmetrized RHS of (2), which in this case is just 

the anti-commutator of QPgx with QPg-Ixo Thus the Theorem is also in- 

compatible with the "product ÷ anti-commutator" ruleo 

More significant, however, is the fact that quantization is not 

necessarily additive over noncommuting observables. In particular, it 
2 

follows from (i) and (3) that QPx depends only upon X ~ X. But 

~px 2 + Qpy2 will not usually depend only upon X ~ X + Y ~ Y unless 

[X,Y] = 0. A simple example is provided by the free particle Hamilton- 

ian on M = R 2 in polar coordinates. 
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Thus geometric quantization violates yon Neumann's additivity axiom 

(II) [19] and again this is at odds with most other quantization tech- 

niques. 

The lack of additivity is really what prevents one from quantizing 

general elements of C2(V). On the other hand, the Theorem shows that 

one need only consider observables which are homogeneous quadratic in 

the momenta. Such an observable may be written 

ab 
Y = Y (q)paPb . 

Only in special cases can Y be easily quantizedo 

For example, if rk y = 1 everywhere, then up to sign there exists a 

unique globally defined vector field X on M such that yab= xaxb. Then 
2 

= PX can be directly quantized. 

When rk y > 1 and the hypotheses of the Theorem are not satisfied, 

one must quantize Y by brute force. There is no problem with this in 

principle, but the BKS computations are intractable° To simplify them, 

it is necessary to find a suitable normal form for Y (note that the con- 

ditions on the Xi's in the Theorem also serve to guarantee the existence 

of such a normal form)° 

Other than the cases covered by the Theorem, apparently the only 

instance in which a suitable normal form exists is when rk y = n. In 

particular, consider the Hamiltonian 

H = ;~gabpaPb + V(q) 

which can be formally quantized in Riemann normal coordinates [13,14]o 

The result is 

- 6 + v(q) 

where A is the Laplace-Beltrami operator and R is the scalar curvature 

of g. 
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