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@ the relationship between the E-M map and (first class)
secondary constraints
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@ Assume that G is a covariance group, i.e., £ is G-covariant.

Proposition

The induced action of G on ) stabilizes the space of solutions
to the E-L equations.

@ The proof relies upon: £ equivariant = ©, invariant, and
the way the E-L equations are formulated in terms of the
Cartan form.

@ Thus a covariance group is a symmetry group.
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@ The Poincaré group is not.
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A gauge group is a localizable covariance group

—

@ Later we’ll require that the gauge group of a CFT be
maximal.

@ Some CFTs have no gauge symmetries: Proca on a frozen
background. BUT: this is not generally covariant.

@ Any generally covariant (“parametrized”) CFT has
nontrivial gauge symmetry, since for such theories the
projection of G C Aut(Y) in Diff(X) in “large”.
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Definition
Instantaneous gauge transformations

@ These are diffeomorphisms of the final constraint set C,
which preserve the induced presymplectic form w,

@ The instantaneous gauge algebra is ker w.,

@ Of course, G usually does not act in the instantaneous
formalism.

@ Nonetheless, using the instantaneous energy-momentum
map &- : Pr — g*, g naturally defines a Lie subalgebra
gc. C X(C;) which serves as an (infinitesimal) action.
(Elements of g¢. are the Hamiltonian VFs of the £,(¢).)
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@ Key assumption here: all fields are variational.

@ It follows that if G is a gauge group in the covariant sense
and all fields are variational, then G “acts" on C, by gauge
transformations in the instantaneous sense.

Definition
A gauge group is full if gc. = ker w,

@ Should be viewed as a check on the correct choice of
gauge group. We assume this.

@ Recall that G is assumed known at the outset.
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@ This is a sort of maximality condition on G (but see below)

@ For strings, both Diff(X) x C>(X,R™") and its subgroup
Diff(X) are full.

@ A sufficient condition for fullness will come later.



The Vanishing Theorem

Here we begin the program of relating initial value constraints to
zero levels of the energy-momentum map by proving the
Vanishing Theorem

@ Let ¥, and X_ be two hypersurfaces in X which form the
boundary of a compact region; we call X, and ¥_ an
admissible pair of hypersurfaces.

(We have in mind the case of a spacetime X with ¥, and
Y _ deformations of a given hypersurface to the future and
past, respectively)
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Figure: An admissible pair of hypersurfaces



For every compact oriented hypersurface ¥ there is a disjoint
hypersurface ¥’ such that (X, ') form an admissible pair.




For every compact oriented hypersurface ¥ there is a disjoint
hypersurface ¥’ such that (X, ') form an admissible pair.

Now suppose that we have a field theory with gauge group G in
which all fields are variational. Then from the first Noether
theorem and Stokes’ theorem,

[ mders@ = [ rgerse
pat y_
for every solution ¢ of the Euler—Lagrange equations and

admissible pair of hypersurfaces ¥, and ¥ _, where
7+ : x4+ — X are the inclusions.
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By localizability, this integral vanishes.

Vanishing Thm

Let £ be the Lagrangian density for a field theory with gauge
group G. Then for any solution ¢ of the Euler—Lagrange
equations and hypersurface ¥, the energy-momentum map on
Y in the Lagrangian representation vanishes:

JRONEGR
>

for all £ € g, where 7 : ¥ — X is the inclusion.
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Using the expression already given for the Lagrangian
multimomentum map given previously, the VT forces:

® gag(h%®¢" 0pB o — h'1¢A 198 1) =0
—superHamiltonian constraint in Lagrangian disguise
® gagh®¢B "1 =0

—supermomentum constraint in Lagrangian disguise
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(First Class) Secondary Constraints

Goals are to show that:

@ the vanishing of the instantaneous EM map over ¥ yields
(first class) secondary IV constraints

@ it yields all such constraints.

Suppose that the Euler-Lagrange equations are well-posed.
Then

C. c £71(0)




Proof )

Let (¢, ) € C.. Then there is a solution ¢ € Y of the
Euler—Lagrange equations with initial data (¢, 7). Set

o =FLojpor sothat ois aholonomic lift of (¢, 7). Now apply
the Vanishing Theorem to ¢, obtaining for each ¢ € g,

0 /Z (j6) JE(E) = /z (j6) FL ()

= (& (e, 7),€)

as o is a holonomic lift of (p, 7). Thus (p,7) € £-1(0). B
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@ This result shows that the conditions (£;,£) = 0 are
secondary initial value constraints.

@ The well-posedness hypothesis can be substantially
weakened: need only require Sol # &

@ Recall the standing assumption that all secondary
constraints are first class
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If G is full and £-7(0) is connected, then

C- = &;1(0)

Energy-Momentum Theorem, Version I

If £-1(0) is coisotropic, then

G =2
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Version Il is more appealing than Version |, as:

@ it requires no a priori knowledge of C-

@ its hypothesis is straightforward (although not necessarily
trivial!) to verify in practice

@ it eliminates the necessity of having to worry about the
connectedness of £-1(0)

We also obtain a useful criterion for fullness:

G full + C, coisotropic < C, = &-1(0) & &1(0) coisotopic.
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Further results )

@ These theorems can (for the most part) be extended to the
case when second class constraints are present

@ One has similar results for primary constraints vis-a-vis a
certain momentum map
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@ They are certain invariant combinations involving kinematic
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have “parametric dynamics” on the symplectic space T*D,

@ The Thm does not hold if one replaces “atlas fields” by
“kinematic fields” (subtle)
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Then the atlas construction leads to

H: ¢ is linear in the atlas fields «;

@ This devolves to the Hamiltonian being linear in ¢

@ BUT the Thm does not hold if one replaces “atlas fields” by
“kinematic fields” (subtle)

Combining these results with the Energy-Momentum theorem,
we obtain item 4 of the introduction
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The Adjoint Equations J

We simplify the discussion for clarity, dropping all subscripts.

@ Write H = (a,®) on A x T*D

@ Write N : T*D — TD for the “Poisson tensor"; i.e., the
tensor such that the Hamiltonian vector field

X, =n-df

@ So Hamilton’s equations Xy (v, p) - w = dH(4, p) are

(%) =) dbt ) =1(60) - (0, DO ).
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