MOMENTUM MAPS & CLASSICAL FIELDS

4. Gauge Symmetries and IV Constraints

MARK J. GOTAY
Overview:

Here I discuss:

- gauge groups
Overview:

Here I discuss:

- gauge groups
- the Vanishing Theorem
Overview:

Here I discuss:

- gauge groups
- the Vanishing Theorem
- the relationship between the E-M map and (first class) secondary constraints
Gauge Groups

Let G be a group of automorphisms of Y.

- Assume that G is a covariance group, i.e., L is G-covariant.
Let G be a group of automorphisms of Y.

- Assume that G is a covariance group, i.e., L is G-covariant.

Proposition

The induced action of G on Y stabilizes the space of solutions to the E–L equations.

- The proof relies upon: L equivariant $\implies \Theta_L$ invariant, and the way the E–L equations are formulated in terms of the Cartan form.
Gauge Groups

Let \mathcal{G} be a group of automorphisms of \mathcal{Y}.

- Assume that \mathcal{G} is a covariance group, i.e., \mathcal{L} is \mathcal{G}-covariant.

Proposition

The induced action of \mathcal{G} on \mathcal{Y} stabilizes the space of solutions to the E–L equations.

- The proof relies upon: \mathcal{L} equivariant $\implies \Theta_{\mathcal{L}}$ invariant, and the way the E–L equations are formulated in terms of the Cartan form.

- Thus a covariance group is a symmetry group.
Chern–Simons shows that the converse fails.

What distinguishes a gauge group from a mere covariance group is:

Localizability

G localizable provided that for each pair of disjoint hypersurfaces Σ_1 and Σ_2 in X and each $\xi \in g$, there is a Lie algebra element $\chi \in g$ such that

$\chi Y |_{\pi^{-1}XY(\Sigma_1)} = \xi Y |_{\pi^{-1}XY(\Sigma_1)}$ and

$\chi Y |_{\pi^{-1}XY(\Sigma_2)} = 0$

For strings, $\text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+)$ is localizable.

The Poincaré group is not.
- Chern–Simons shows that the converse fails.

- What distinguishes a **gauge** group from a mere covariance group is:
• Chern–Simons shows that the converse fails.

• What distinguishes a **gauge** group from a mere covariance group is:

Localizability

\mathcal{G} **localizable** provided that for each pair of disjoint hypersurfaces Σ_1 and Σ_2 in X and each $\xi \in g$, there is a Lie algebra element $\chi \in g$ such that

$$\chi_Y|\pi_{XY}^{-1}(\Sigma_1) = \xi_Y|\pi_{XY}^{-1}(\Sigma_1) \text{ and } \chi_Y|\pi_{XY}^{-1}(\Sigma_2) = 0$$
Chern–Simons shows that the converse fails.

What distinguishes a gauge group from a mere covariance group is:

Localizability

\mathcal{G} localizable provided that for each pair of disjoint hypersurfaces Σ_1 and Σ_2 in X and each $\xi \in \mathfrak{g}$, there is a Lie algebra element $\chi \in \mathfrak{g}$ such that

$$\chi_Y|_{\pi^{-1}_{X_Y}(\Sigma_1)} = \xi_Y|_{\pi^{-1}_{X_Y}(\Sigma_1)} \text{ and } \chi_Y|_{\pi^{-1}_{X_Y}(\Sigma_2)} = 0$$

For strings, $\text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+)$ is localizable
Chern–Simons shows that the converse fails.

What distinguishes a **gauge** group from a mere covariance group is:

Localizability

A group \mathcal{G} is **localizable** provided that for each pair of disjoint hypersurfaces Σ_1 and Σ_2 in X and each $\xi \in \mathfrak{g}$, there is a Lie algebra element $\chi \in \mathfrak{g}$ such that

\[
\chi \mid_{\pi^{-1}_{XY}(\Sigma_1)} = \xi \mid_{\pi^{-1}_{XY}(\Sigma_1)} \quad \text{and} \quad \chi \mid_{\pi^{-1}_{XY}(\Sigma_2)} = 0
\]

For strings, $\text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+)$ is localizable

The Poincaré group is not.
A **gauge group** is a localizable covariance group.
Definition

A gauge group is a localizable covariance group

- Later we’ll require that the gauge group of a CFT be maximal.
A gauge group is a localizable covariance group.

Later we’ll require that the gauge group of a CFT be maximal.

Some CFTs have no gauge symmetries: Proca on a frozen background. BUT: this is not generally covariant.
Definition

A **gauge group** is a localizable covariance group

- Later we’ll require that the gauge group of a CFT be maximal.

- Some CFTs have no gauge symmetries: Proca on a frozen background. BUT: this is not generally covariant.

- Any **generally covariant** ("parametrized") CFT has nontrivial gauge symmetry, since for such theories the projection of $\mathcal{G} \subset \text{Aut}(Y)$ in $\text{Diff}(X)$ in “large”.
Definition

Instantaneous gauge transformations

These are diffeomorphisms of the final constraint set C_{τ} which preserve the induced presymplectic form ϖ_{τ}. The instantaneous gauge algebra is $\ker \varpi_{\tau}$. Of course, G usually does not act in the instantaneous formalism. Nonetheless, using the instantaneous energy-momentum map $E_{\tau}: P_{\tau} \to g^*$, naturally defines a Lie subalgebra $g_{C_{\tau}} \subset X(C_{\tau})$ which serves as an (infinitesimal) action. (Elements of $g_{C_{\tau}}$ are the Hamiltonian VFs of the $E_{\tau}(\xi)$.)
Definition

Instantaneous gauge transformations

These are diffeomorphisms of the final constraint set C_τ which preserve the induced presymplectic form ω_τ.
Instantaneous gauge transformations

- These are diffeomorphisms of the final constraint set C_τ which preserve the induced presymplectic form ϖ_τ
- The instantaneous gauge algebra is $\ker\varpi_\tau$
Instantaneous gauge transformations

- These are diffeomorphisms of the **final constraint set** C_τ which preserve the induced **presymplectic form** ϖ_τ.

- The **instantaneous gauge algebra** is $\ker \varpi_\tau$.

- Of course, \mathcal{G} usually does not act in the instantaneous formalism.
Definition

Instantaneous gauge transformations

- These are diffeomorphisms of the final constraint set C_τ which preserve the induced presymplectic form \wp_τ

- The instantaneous gauge algebra is $\text{ker} \, \wp_\tau$

- Of course, \mathcal{G} usually does not act in the instantaneous formalism.

- Nonetheless, using the instantaneous energy-momentum map $\mathcal{E}_\tau : \mathcal{P}_\tau \to \mathfrak{g}^*$, \mathfrak{g} naturally defines a Lie subalgebra $\mathfrak{g}_{C_\tau} \subset \mathfrak{X}(C_\tau)$ which serves as an (infinitesimal) action. (Elements of \mathfrak{g}_{C_τ} are the Hamiltonian VFs of the $\mathcal{E}_\tau(\xi)$.)
Key assumption here: all fields are variational.
Key assumption here: all fields are variational.

It follows that *if \(\mathcal{G} \) is a gauge group in the covariant sense and all fields are variational, then \(\mathcal{G} \) "acts" on \(C_T \) by gauge transformations in the instantaneous sense.*
Key assumption here: all fields are variational.

It follows that *if* \mathcal{G} *is a gauge group in the covariant sense and all fields are variational*, then \mathcal{G} "acts" on C_τ by gauge transformations in the instantaneous sense.

Definition

A gauge group is **full** if $g_{C_\tau} = \ker \mathcal{W}_\tau$.
• Key assumption here: all fields are \textit{variational}.

• It follows that \textit{if } \mathcal{G} \textit{ is a gauge group in the covariant sense and all fields are variational, then } \mathcal{G} \textit{ “acts” on } \mathcal{C}_\tau \textit{ by gauge transformations in the instantaneous sense.}

\textbf{Definition}

A gauge group is \textbf{full} if \(g_{\mathcal{C}_\tau} = \ker \varpi_{\tau} \)

• Should be viewed as a check on the correct choice of gauge group. We \textbf{assume} this.
Key assumption here: all fields are variational.

It follows that if \mathcal{G} is a gauge group in the covariant sense and all fields are variational, then \mathcal{G} "acts" on \mathcal{C}_τ by gauge transformations in the instantaneous sense.

Definition

A gauge group is **full** if $g_{\mathcal{C}_\tau} = \ker \varpi_\tau$

Should be viewed as a check on the correct choice of gauge group. We **assume** this.

Recall that \mathcal{G} is assumed known at the outset.
This is a sort of maximality condition on \mathcal{G} (but see below)
This is a sort of maximality condition on \mathcal{G} (but see below)

For strings, both $\text{Diff}(X) \rtimes C^\infty(X, \mathbb{R}^+)$ and its subgroup $\text{Diff}(X)$ are full.
This is a sort of maximality condition on \(G \) (but see below)

For strings, both \(\text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+) \) and its subgroup \(\text{Diff}(X) \) are full.

A sufficient condition for fullness will come later.
The Vanishing Theorem

Here we begin the program of relating initial value constraints to zero levels of the energy-momentum map by proving the Vanishing Theorem

- Let Σ_+ and Σ_- be two hypersurfaces in X which form the boundary of a compact region; we call Σ_+ and Σ_- an admissible pair of hypersurfaces.

(We have in mind the case of a spacetime X with Σ_+ and Σ_- deformations of a given hypersurface to the future and past, respectively)
Figure: An admissible pair of hypersurfaces
Lemma

For every compact oriented hypersurface Σ there is a *disjoint* hypersurface Σ' such that (Σ, Σ') form an admissible pair.
Lemma

For every compact oriented hypersurface Σ there is a disjoint hypersurface Σ' such that (Σ, Σ') form an admissible pair.

Now suppose that we have a field theory with gauge group \mathcal{G} in which all fields are variational. Then from the first Noether theorem and Stokes’ theorem,

$$
\int_{\Sigma^+} \tau^*_+ (j^1 \phi)^* J^L (\xi) = \int_{\Sigma^-} \tau^*_- (j^1 \phi)^* J^L (\xi).
$$

for every solution ϕ of the Euler–Lagrange equations and admissible pair of hypersurfaces Σ^+ and Σ^-, where $\tau_{\pm} : \Sigma_{\pm} \rightarrow X$ are the inclusions.
By localizability, this integral vanishes.
By localizability, this integral vanishes.

Vanishing Thm

Let \mathcal{L} be the Lagrangian density for a field theory with gauge group G. Then for any solution ϕ of the Euler–Lagrange equations and hypersurface Σ, the energy-momentum map on Σ in the Lagrangian representation vanishes:

$$\int_{\Sigma} \tau^* (j^1\phi)^* J^\mathcal{L}(\xi) = 0$$

for all $\xi \in g$, where $\tau : \Sigma \rightarrow X$ is the inclusion.
Bosonic String

Using the expression already given for the Lagrangian multimomentum map given previously, the VT forces:

$$g_{AB}(h^{00}\phi^A,0\phi^B,0) - h_{11}^{AB}\phi^A,1\phi^B,1) = 0$$

—superHamiltonian constraint in Lagrangian disguise

$$g_{AB}h^{0\mu}\phi^B,\mu\phi^A,1 = 0$$

—supermomentum constraint in Lagrangian disguise
Bosonic String

Using the expression already given for the Lagrangian multimomentum map given previously, the VT forces:

\[g_{AB}(h^{00}_{\phi^A,0,\phi^B,0} - h^{11}_{\phi^A,1,\phi^B,1}) = 0 \]

—superHamiltonian constraint in Lagrangian disguise

\[g_{AB} h^{0\mu}_{\phi^B,\mu,\phi^A,1} = 0 \]

—supermomentum constraint in Lagrangian disguise
Goals are to show that:

\[(\text{first class}) \text{ secondary IV constraints}\]
Goals are to show that:

- the vanishing of the instantaneous EM map over Σ_T yields (first class) secondary IV constraints
Goals are to show that:

- the vanishing of the instantaneous EM map over Σ_T yields (first class) secondary IV constraints
- it yields all such constraints.
(First Class) Secondary Constraints

Goals are to show that:

- the vanishing of the instantaneous EM map over Σ_{τ} yields (first class) secondary IV constraints
- it yields all such constraints.

Thm

Suppose that the Euler–Lagrange equations are well-posed. Then

$$C_{\tau} \subset \mathcal{E}_{\tau}^{-1}(0)$$
Proof

Let \((\varphi, \pi) \in C_\tau\). Then there is a solution \(\phi \in \mathcal{Y}\) of the Euler–Lagrange equations with initial data \((\varphi, \pi)\). Set
\[\sigma = FL \circ j \phi \circ \tau\] so that \(\sigma\) is a holonomic lift of \((\varphi, \pi)\). Now apply the Vanishing Theorem to \(\phi\), obtaining for each \(\xi \in \mathfrak{g}\),

\[
0 = \int_{\Sigma} \tau^* (j \phi)^* J^L(\xi) = \int_{\Sigma} \tau^* (j \phi)^* FL^* J(\xi)
\]

\[
= \int_{\Sigma} \sigma^* J(\xi) = \langle E_\tau(\sigma), \xi \rangle
\]

\[
= \langle E_\tau(\varphi, \pi), \xi \rangle
\]

as \(\sigma\) is a holonomic lift of \((\varphi, \pi)\). Thus \((\varphi, \pi) \in \mathcal{E}_\tau^{-1}(0)\). \(\blacksquare\)
This result shows that the conditions $\langle \mathcal{E}_\tau, \xi \rangle = 0$ are secondary initial value constraints.
This result shows that the conditions $\langle \mathcal{E}_\tau, \xi \rangle = 0$ are secondary initial value constraints.

The well-posedness hypothesis can be substantially weakened: need only require $\text{Sol} \neq \emptyset$
This result shows that the conditions $\langle \mathcal{E}_\tau, \xi \rangle = 0$ are secondary initial value constraints.

The well-posedness hypothesis can be substantially weakened: need only require $\text{Sol} \neq \emptyset$

Recall the standing assumption that all secondary constraints are first class
Energy-Momentum Theorem, Version I

If \mathcal{G} is full and $\mathcal{E}_{\tau}^{-1}(0)$ is connected, then

$$C_{\tau} = \mathcal{E}_{\tau}^{-1}(0)$$
Energy-Momentum Theorem, Version I
If \mathcal{G} is full and $\mathcal{E}_\tau^{-1}(0)$ is connected, then

$$C_\tau = \mathcal{E}_\tau^{-1}(0)$$

Energy-Momentum Theorem, Version II
If $\mathcal{E}_\tau^{-1}(0)$ is coisotropic, then

$$C_\tau = \mathcal{E}_\tau^{-1}(0)$$
Version II is more appealing than Version I, as:

- It requires no a priori knowledge of $C\tau$.
- Its hypothesis is straightforward (although not necessarily trivial) to verify in practice.
- It eliminates the necessity of having to worry about the connectedness of $E^{-1}\tau(0)$.

We also obtain a useful criterion for fullness:

$$Thm\ G_{full}^{+}C_{\tau}\ coisotropic\iff C_{\tau}=E^{-1}\tau(0)\iff E^{-1}\tau(0)\ coisotopic.$$
Version II is more appealing than Version I, as:

- it requires no *a priori* knowledge of C_τ
Version II is more appealing than Version I, as:

- it requires no *a priori* knowledge of C_τ
- its hypothesis is straightforward (although not necessarily trivial!) to verify in practice
Version II is more appealing than Version I, as:

- it requires no *a priori* knowledge of C_τ

- its hypothesis is straightforward (although not necessarily trivial!) to verify in practice

- it eliminates the necessity of having to worry about the connectedness of $E_{\tau}^{-1}(0)$

We also obtain a useful criterion for fullness:

$$\text{Thm } G_{\text{full}} + C_\tau \text{ coisotropic } \iff C_\tau = E_{\tau}^{-1}(0) \iff E_{\tau}^{-1}(0) \text{ coisotopic}. $$
Version II is more appealing than Version I, as:

- it requires no *a priori* knowledge of C_τ
- its hypothesis is straightforward (although not necessarily trivial!) to verify in practice
- it eliminates the necessity of having to worry about the connectedness of $\mathcal{E}_\tau^{-1}(0)$

We also obtain a useful criterion for fullness:
Version II is more appealing than Version I, as:

- it requires no *a priori* knowledge of C_τ
- its hypothesis is straightforward (although not necessarily trivial!) to verify in practice
- it eliminates the necessity of having to worry about the connectedness of $E_{\tau}^{-1}(0)$

We also obtain a useful criterion for fullness:

$$\mathcal{G} \text{ full } + \ C_\tau \text{ coisotropic } \iff C_\tau = E_{\tau}^{-1}(0) \iff E_{\tau}^{-1}(0) \text{ coisotropic.}$$
Further results
Further results

- These theorems can (for the most part) be extended to the case when second class constraints are present.
Further results

- These theorems can (for the most part) be extended to the case when second class constraints are present.

- One has similar results for primary constraints vis-à-vis a certain momentum map.
The Adjoint Formalism

Dynamic and Atlas Fields

The arena for dynamics is the primary constraint set $P_\tau \subset T^* Y_\tau$. Our first task is to invariantly split the fields and their momenta on (P_τ, ω_τ) into the dynamic fields ψ and their conjugate momenta ρ and the nondynamic atlas fields α.

Cotangent reduction gives $P_\tau / (\ker \omega_\tau)$ $\approx T^* D_\tau \ker \omega_\tau$ are kinematic directions D_τ comprise the dynamic fields
The arena for dynamics is the primary constraint set $\mathcal{P}_\tau \subset T^*\mathcal{Y}_\tau$. Our first task is to invariently split the fields and their momenta on $(\mathcal{P}_\tau, \omega_\tau)$ into the dynamic fields ψ and their conjugate momenta ρ and the nondynamic atlas fields α.
The arena for dynamics is the primary constraint set $\mathcal{P}_\tau \subset T^*\mathcal{Y}_\tau$. Our first task is to invariently split the fields and their momenta on $(\mathcal{P}_\tau, \omega_\tau)$ into the dynamic fields ψ and their conjugate momenta ρ and the nondynamic atlas fields α.

Cotangent reduction gives

$$\mathcal{P}_\tau/(\ker \omega_\tau) \approx T^*\mathcal{D}_\tau$$
The arena for dynamics is the primary constraint set $\mathcal{P}_\tau \subset T^*\mathcal{Y}_\tau$. Our first task is to invariently split the fields and their momenta on $(\mathcal{P}_\tau, \omega_\tau)$ into the dynamic fields ψ and their conjugate momenta ρ and the nondynamic atlas fields α.

Cotangent reduction gives

$$\mathcal{P}_\tau / (\ker \omega_\tau) \approx T^* \mathcal{D}_\tau$$

- $\ker \omega_\tau$ are kinematic directions
The Adjoint Formalism

Dynamic and Atlas Fields

The arena for dynamics is the primary constraint set \(\mathcal{P}_\tau \subset T^*Y_\tau \). Our first task is to invariantly split the fields and their momenta on \((\mathcal{P}_\tau, \omega_\tau) \) into the dynamic fields \(\psi \) and their conjugate momenta \(\rho \) and the nondynamic atlas fields \(\alpha \).

Cotangent reduction gives

\[
\mathcal{P}_\tau/(\ker \omega_\tau) \approx T^*\mathcal{D}_\tau
\]

- \(\ker \omega_\tau \) are kinematic directions
- \(\mathcal{D}_\tau \) comprise the dynamic fields
Massive bundle-theoretic constructions lead to

\[
\mathcal{P}_\tau \approx T^*D_\tau \times A_\tau
\]
Massive bundle-theoretic constructions lead to

Thm

\[P_\tau \approx T^*D_\tau \times A_\tau \]

- \(A_\tau \) comprise the atlas fields
Massive bundle-theoretic constructions lead to

\[
\mathcal{P}_\tau \approx T^* D_\tau \times A_\tau
\]

- \(A_\tau \) comprise the atlas fields
- They are certain invariant combinations involving kinematic fields and elements of \(\mathfrak{g} \)
Massive bundle-theoretic constructions lead to

\[\mathcal{P}_\tau \simeq T^*\mathcal{D}_\tau \times \mathcal{A}_\tau \]

- \(\mathcal{A}_\tau \) comprise the atlas fields
- They are certain invariant combinations involving kinematic fields and elements of \(\mathfrak{g} \)
- Instead of dynamics on the presymplectic space \(\mathcal{P}_\tau \), we have “parametric dynamics” on the symplectic space \(T^*\mathcal{D}_\tau \)
Massive bundle-theoretic constructions lead to

Thm

\[\mathcal{P}_\tau \cong T^*\mathcal{D}_\tau \times \mathcal{A}_\tau \]

- \(\mathcal{A}_\tau \) comprise the atlas fields

- They are certain invariant combinations involving kinematic fields and elements of \(\mathfrak{g} \)

- Instead of dynamics on the presymplectic space \(\mathcal{P}_\tau \), we have “parametric dynamics” on the symplectic space \(T^*\mathcal{D}_\tau \)

- The Thm does not hold if one replaces “atlas fields” by “kinematic fields” (subtle)
Then the atlas construction leads to

Thm

\[H_{\tau,\zeta} \text{ is linear in the atlas fields } \alpha_j \]
Then the atlas construction leads to

Thm

\[H_{\tau,\zeta} \text{ is linear in the atlas fields } \alpha_j \]

- This devolves to the Hamiltonian being linear in \(\zeta \)
Then the atlas construction leads to

\textbf{Thm}

\[H_{\tau,\zeta} \text{ is linear in the atlas fields } \alpha_j \]

- This devolves to the Hamiltonian being linear in \(\zeta \)
- BUT the Thm does not hold if one replaces “atlas fields” by “kinematic fields” \textit{(subtle)}

Combining these results with the Energy-Momentum theorem, we obtain item 4 of the introduction

\textbf{Thm}

\[H_{\tau,\zeta} = \int_{\Sigma_{\tau}} \alpha_j \Phi^i(\Psi, \rho) d^n x_0 \]
The Adjoint Equations

\[H = \langle \alpha, \Phi \rangle \] on \[A \times T^* \mathcal{D} \]

Write \[\Pi : T^* \mathcal{D} \to T \mathcal{D} \] for the "Poisson tensor"; i.e., the tensor such that the Hamiltonian vector field \[X_f = \Pi \cdot df \]

So Hamilton's equations \[X_H(\psi,\rho) = \omega = dh(\psi,\rho) = \Pi(\psi,\rho) \cdot \langle \alpha, D\Phi(\psi,\rho) \rangle. \]
The Adjoint Equations

We simplify the discussion for clarity, dropping all subscripts.

- Write $H = \langle \alpha, \Phi \rangle$ on $\mathcal{A} \times T^* \mathcal{D}$
The Adjoint Equations

We simplify the discussion for clarity, dropping all subscripts.

- Write $H = \langle \alpha, \Phi \rangle$ on $\mathcal{A} \times T^*\mathcal{D}$

- Write $\Pi : T^*\mathcal{D} \to T\mathcal{D}$ for the “Poisson tensor”; i.e., the tensor such that the Hamiltonian vector field

$$X_f = \Pi \cdot df$$
The Adjoint Equations

We simplify the discussion for clarity, dropping all subscripts.

- Write $H = \langle \alpha, \Phi \rangle$ on $\mathcal{A} \times T^*\mathcal{D}$

- Write $\Pi : T^*\mathcal{D} \to T\mathcal{D}$ for the “Poisson tensor”; i.e., the tensor such that the Hamiltonian vector field

$$X_f = \Pi \cdot df$$

- So Hamilton’s equations $X_H(\psi, \rho) \cdot \omega = dH(\psi, \rho)$ are

$$\left(\begin{array}{c} \dot{\psi} \\ \dot{\rho} \end{array} \right) = \Pi(\psi, \rho) \cdot dh(\psi, \rho) = \Pi(\psi, \rho) \cdot \langle \alpha, D\Phi(\psi, \rho) \rangle.$$
Introduce an almost complex structure
\[\mathcal{J}(\psi, \rho) : T_{(\psi, \rho)} \mathcal{D} \to T_{(\psi, \rho)} \mathcal{D} \]
by
\[\mathcal{J}(\psi, \rho) \cdot \mathcal{W} = \Pi(\psi, \rho) \cdot \langle \mathcal{W}, - \rangle \]
Introduce an almost complex structure
\[\mathbb{J}(\psi, \rho) : T_{(\psi, \rho)}\mathcal{D} \rightarrow T_{(\psi, \rho)}\mathcal{D} \] by
\[\mathbb{J}(\psi, \rho) \cdot \mathcal{W} = \Pi(\psi, \rho) \cdot \langle \mathcal{W}, - \rangle \]

Finally, define the adjoint of \(D\Phi(\psi, \rho) \) according to
\[\langle \alpha, D\Phi(\psi, \rho) \cdot \mathcal{W} \rangle := \langle D\Phi(\psi, \rho)^* \alpha, \mathcal{W} \rangle. \]
Introduce an almost complex structure
\(J(\psi, \rho) : T_{(\psi, \rho)} D \rightarrow T_{(\psi, \rho)} D \) by

\[
J(\psi, \rho) \cdot \mathcal{W} = \Pi(\psi, \rho) \cdot \langle \mathcal{W}, - \rangle
\]

Finally, define the adjoint of \(D\Phi(\psi, \rho) \) according to

\[
\langle \alpha, D\Phi(\psi, \rho) \cdot \mathcal{W} \rangle := \langle D\Phi(\psi, \rho)^* \alpha, \mathcal{W} \rangle.
\]

Then we obtain Hamilton’s equations in adjoint form

\[
\begin{pmatrix}
\dot{\psi} \\
\dot{\rho}
\end{pmatrix} = J(\psi, \rho) \cdot D\Phi(\psi, \rho)^* \cdot \alpha
\]

which is item 5!
Introduce an almost complex structure
\[\mathbb{J}(\psi, \rho) : T(\psi, \rho) \mathcal{D} \rightarrow T(\psi, \rho) \mathcal{D} \]
by
\[\mathbb{J}(\psi, \rho) \cdot \mathcal{W} = \Pi(\psi, \rho) \cdot \langle \mathcal{W}, - \rangle \]

Finally, define the adjoint of \(D\Phi(\psi, \rho) \) according to
\[\langle \alpha, D\Phi(\psi, \rho) \cdot \mathcal{W} \rangle := \langle D\Phi(\psi, \rho)^* \alpha, \mathcal{W} \rangle. \]

Then we obtain Hamilton’s equations in adjoint form
\[\left(\begin{array}{c} \dot{\psi} \\ \dot{\rho} \end{array} \right) = \mathbb{J}(\psi, \rho) \cdot D\Phi(\psi, \rho)^* \cdot \alpha \]
which is item 5!