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Gauge Groups

Let G be a group of automorphisms of Y .

Assume that G is a covariance group, i.e., L is G-covariant.

Proposition
The induced action of G on Y stabilizes the space of solutions
to the E–L equations.

The proof relies upon: L equivariant =⇒ ΘL invariant, and
the way the E–L equations are formulated in terms of the
Cartan form.

Thus a covariance group is a symmetry group.
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Chern–Simons shows that the converse fails.

What distinguishes a gauge group from a mere covariance
group is:

Localizability
G localizable provided that for each pair of disjoint
hypersurfaces Σ1 and Σ2 in X and each ξ ∈ g, there is a Lie
algebra element χ ∈ g such that

χY |π−1
XY (Σ1) = ξY |π−1

XY (Σ1) and χY |π−1
XY (Σ2) = 0

For strings, Diff(X ) n C∞(X ,R+) is localizable

The Poincaré group is not.
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Definition
A gauge group is a localizable covariance group

Later we’ll require that the gauge group of a CFT be
maximal.

Some CFTs have no gauge symmetries: Proca on a frozen
background. BUT: this is not generally covariant.

Any generally covariant (“parametrized”) CFT has
nontrivial gauge symmetry, since for such theories the
projection of G ⊂ Aut(Y ) in Diff(X ) in “large”.
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Definition
Instantaneous gauge transformations

These are diffeomorphisms of the final constraint set Cτ
which preserve the induced presymplectic form $τ

The instantaneous gauge algebra is ker$τ

Of course, G usually does not act in the instantaneous
formalism.

Nonetheless, using the instantaneous energy-momentum
map Eτ : Pτ → g∗, g naturally defines a Lie subalgebra
gCτ ⊂ X(Cτ ) which serves as an (infinitesimal) action.
(Elements of gCτ are the Hamiltonian VFs of the Eτ (ξ).)
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Key assumption here: all fields are variational.

It follows that if G is a gauge group in the covariant sense
and all fields are variational, then G “acts" on Cτ by gauge
transformations in the instantaneous sense.

Definition
A gauge group is full if gCτ = ker$τ

Should be viewed as a check on the correct choice of
gauge group. We assume this.

Recall that G is assumed known at the outset.
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This is a sort of maximality condition on G (but see below)

For strings, both Diff(X ) n C∞(X ,R+) and its subgroup
Diff(X ) are full.

A sufficient condition for fullness will come later.
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The Vanishing Theorem

Here we begin the program of relating initial value constraints to
zero levels of the energy-momentum map by proving the
Vanishing Theorem

Let Σ+ and Σ− be two hypersurfaces in X which form the
boundary of a compact region; we call Σ+ and Σ− an
admissible pair of hypersurfaces.

(We have in mind the case of a spacetime X with Σ+ and
Σ− deformations of a given hypersurface to the future and
past, respectively)



X 

Σ
+

Σ
–

Figure: An admissible pair of hypersurfaces



Lemma
For every compact oriented hypersurface Σ there is a disjoint
hypersurface Σ′ such that (Σ,Σ′) form an admissible pair.

Now suppose that we have a field theory with gauge group G in
which all fields are variational. Then from the first Noether
theorem and Stokes’ theorem,∫

Σ+

τ∗+(j1φ)∗JL(ξ) =

∫
Σ−

τ∗−(j1φ)∗JL(ξ).

for every solution φ of the Euler–Lagrange equations and
admissible pair of hypersurfaces Σ+ and Σ−, where
τ± : Σ± → X are the inclusions.
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By localizability, this integral vanishes.

Vanishing Thm

Let L be the Lagrangian density for a field theory with gauge
group G. Then for any solution φ of the Euler–Lagrange
equations and hypersurface Σ, the energy-momentum map on
Σ in the Lagrangian representation vanishes:∫

Σ
τ∗(j1φ)∗JL(ξ) = 0

for all ξ ∈ g, where τ : Σ→ X is the inclusion.
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Bosonic String

Using the expression already given for the Lagrangian
multimomentum map given previously, the VT forces:

gAB(h00φA
,0φ

B
,0 − h11φA

,1φ
B
,1) = 0

—superHamiltonian constraint in Lagrangian disguise

gABh0µφB
,µφ

A
,1 = 0

—supermomentum constraint in Lagrangian disguise
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(First Class) Secondary Constraints

Goals are to show that:

the vanishing of the instantaneous EM map over Στ yields
(first class) secondary IV constraints

it yields all such constraints.

Thm
Suppose that the Euler–Lagrange equations are well-posed.
Then

Cτ ⊂ E−1
τ (0)
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Proof

Let (ϕ, π) ∈ Cτ . Then there is a solution φ ∈ Y of the
Euler–Lagrange equations with initial data (ϕ, π). Set
σ = FL ◦ jφ ◦ τ so that σ is a holonomic lift of (ϕ, π). Now apply
the Vanishing Theorem to φ, obtaining for each ξ ∈ g,

0 =

∫
Σ
τ∗( jφ)∗JL(ξ) =

∫
Σ
τ∗( jφ)∗FL∗J(ξ)

=

∫
Σ
σ∗J(ξ) = 〈Eτ (σ), ξ〉

= 〈Eτ (ϕ, π), ξ〉

as σ is a holonomic lift of (ϕ, π). Thus (ϕ, π) ∈ E−1
τ (0). �



This result shows that the conditions 〈Eτ , ξ〉 = 0 are
secondary initial value constraints.

The well-posedness hypothesis can be substantially
weakened: need only require Sol 6= ∅

Recall the standing assumption that all secondary
constraints are first class
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Energy-Momentum Theorem, Version I

If G is full and E−1
τ (0) is connected, then

Cτ = E−1
τ (0)

Energy-Momentum Theorem, Version II

If E−1
τ (0) is coisotropic, then

Cτ = E−1
τ (0)
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Version II is more appealing than Version I, as:

it requires no a priori knowledge of Cτ

its hypothesis is straightforward (although not necessarily
trivial!) to verify in practice

it eliminates the necessity of having to worry about the
connectedness of E−1

τ (0)

We also obtain a useful criterion for fullness:

Thm

G full + Cτ coisotropic ⇔ Cτ = E−1
τ (0) ⇔ E−1

τ (0) coisotopic.
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Further results

These theorems can (for the most part) be extended to the
case when second class constraints are present

One has similar results for primary constraints vis-à-vis a
certain momentum map
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The Adjoint Formalism

Dynamic and Atlas Fields

The arena for dynamics is the primary constraint set
Pτ ⊂ T ∗Yτ . Our first task is to invariantly split the fields and
their momenta on (Pτ , ωτ ) into the dynamic fields ψ and their
conjugate momenta ρ and the nondynamic atlas fields α.

Cotangent reduction gives

Pτ/(kerωτ ) ≈ T ∗Dτ

kerωτ are kinematic directions

Dτ comprise the dynamic fields
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Massive bundle-theoretic constructions lead to

Thm
Pτ ≈ T ∗Dτ ×Aτ

Aτ comprise the atlas fields

They are certain invariant combinations involving kinematic
fields and elements of g

Instead of dynamics on the presymplectic space Pτ , we
have “parametric dynamics” on the symplectic space T ∗Dτ

The Thm does not hold if one replaces “atlas fields” by
“kinematic fields” (subtle)
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Then the atlas construction leads to

Thm
Hτ,ζ is linear in the atlas fields αi

This devolves to the Hamiltonian being linear in ζ

BUT the Thm does not hold if one replaces “atlas fields” by
“kinematic fields” (subtle)

Combining these results with the Energy-Momentum theorem,
we obtain item 4 of the introduction

Thm

Hτ,ζ =

∫
Στ

αi Φi(Ψ, ρ)dnx0
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The Adjoint Equations

We simplify the discussion for clarity, dropping all subscripts.

Write H = 〈α,Φ〉 on A× T ∗D

Write Π : T ∗D → TD for the “Poisson tensor"; i.e., the
tensor such that the Hamiltonian vector field

Xf = Π · df

So Hamilton’s equations XH(ψ, ρ) ω = dH(ψ, ρ) are(
ψ̇
ρ̇

)
= Π(ψ, ρ) · dh(ψ, ρ) = Π(ψ, ρ) · 〈α,DΦ(ψ, ρ)〉.
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Introduce an almost complex structure
J(ψ, ρ) : T(ψ,ρ)D → T(ψ,ρ)D by

J(ψ, ρ) · W = Π(ψ, ρ) · 〈W,−〉

Finally, define the adjoint of DΦ(ψ, ρ) according to

〈α,DΦ(ψ, ρ) · W〉 := 〈DΦ(ψ, ρ)∗α,W〉.

Then we obtain Hamilton’s equations in adjoint form(
ψ̇
ρ̇

)
= J(ψ, ρ) · DΦ(ψ, ρ)∗ · α

which is item 5!
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