MOMENTUM MAPS & CLASSICAL FIELDS

2. Covariant Field Theory

MARK J. GOTAY
Overview:

I develop some basic CFT from a covariant viewpoint, including:

- Geometry of the jet bundle and the Euler–Lagrange equations (analogous to that of the tangent bundle & the Lagrange equations in mechanics)
Overview:

I develop some basic CFT from a covariant viewpoint, including:

- Geometry of the jet bundle and the Euler–Lagrange equations (analogous to that of the tangent bundle & the Lagrange equations in mechanics)

- Multisymplectic geometry (analogous to the geometry of the cotangent bundle)
Overview:

I develop some basic CFT from a covariant viewpoint, including:

- Geometry of the jet bundle and the Euler–Lagrange equations (analogous to that of the tangent bundle & the Lagrange equations in mechanics)

- Multisymplectic geometry (analogous to the geometry of the cotangent bundle)

- Conservation laws and Noether’s theorem using covariant momentum maps (generalizing the concept of momentum map familiar from mechanics)
Two Viewpoints:

- **Instantaneous or (“3+1”)** — dynamics described in terms of the infinite-dimensional space of fields at a given instant of time, whereas
Two Viewpoints:

- **Instantaneous or (“3+1”)** — dynamics described in terms of the *infinite*-dimensional space of fields at a given instant of *time*, whereas

- **Covariant (or multisymplectic)** — dynamics described in terms of the *finite*-dimensional space of fields at a given event in *spacetime*.
Two Viewpoints:

- **Instantaneous or ("3+1")** — dynamics described in terms of the infinite-dimensional space of fields at a given instant of time, whereas

- **Covariant (or multisymplectic)** — dynamics described in terms of the finite-dimensional space of fields at a given event in spacetime.

Both are useful and have their own advantages.
Covariant Configuration Bundle Y

- X is oriented $(n + 1)$-dimensional “spacetime”
Covariant Configuration Bundle Y

- X is oriented $(n + 1)$-dimensional “spacetime”

- $\pi_{XY} : Y \to X$ is the covariant configuration bundle, with fiber Y_x over $x \in X$
Covariant Configuration Bundle Y

- X is oriented $(n + 1)$-dimensional “spacetime”
- $\pi_{XY} : Y \to X$ is the covariant configuration bundle, with fiber Y_x over $x \in X$
- Sections $\phi : X \to Y$ are the physical fields
Covariant Configuration Bundle Y

- X is oriented $(n + 1)$-dimensional “spacetime”

- $\pi_{XY} : Y \to X$ is the covariant configuration bundle, with fiber Y_x over $x \in X$

- Sections $\phi : X \to Y$ are the physical fields

- Compare $Y = \mathbb{R} \times Q \to \mathbb{R}$ in (time-dependent) mechanics

- Coordinates $(x^\mu, y^A) = (x^0, x^1, \ldots, x^n, y^1, \ldots, y^N)$ on Y.

- Conventions
Bosonic String:

- Polyakov formulation
Bosonic String:

- Polyakov formulation
- \((X, h)\) is a 2-dimensional spacetime
Bosonic String:

- Polyakov formulation

- \((X, h)\) is a 2-dimensional spacetime

- \((M, g)\) is a \((d + 1)\)-dimensional spacetime
Bosonic String:

- Polyakov formulation
- \((X, h)\) is a 2-dimensional spacetime
- \((M, g)\) is a \((d + 1)\)-dimensional spacetime
- Strings are maps \(\phi : X \to M\) (i.e., sections of \(X \to X \times M\))
- Think of \(\phi\) as being an \(M\)-valued scalar field on \(X\)
Bosonic String:

- Polyakov formulation
- \((X, h)\) is a 2-dimensional spacetime
- \((M, g)\) is a \((d + 1)\)-dimensional spacetime
- Strings are maps \(\phi : X \to M\) (i.e., sections of \(X \to X \times M\))
- Think of \(\phi\) as being an \(M\)-valued scalar field on \(X\)
- Also treat the metric \(h\) on \(X\) as a field
Bosonic String:

- Polyakov formulation

- \((X, h)\) is a 2-dimensional spacetime

- \((M, g)\) is a \((d + 1)\)-dimensional spacetime

- Strings are maps \(\phi : X \rightarrow M\) (i.e., sections of \(X \rightarrow X \times M\))

- Think of \(\phi\) as being an \(M\)-valued scalar field on \(X\)

- Also treat the metric \(h\) on \(X\) as a field

- \(Y = (X \times M) \times_X \text{Lor}(X)\)
Bosonic String:

- Polyakov formulation
- \((X, h)\) is a 2-dimensional spacetime
- \((M, g)\) is a \((d + 1)\)-dimensional spacetime
- Strings are maps \(\phi : X \to M\) (i.e., sections of \(X \to X \times M\))
- Think of \(\phi\) as being an \(M\)-valued scalar field on \(X\)
- Also treat the metric \(h\) on \(X\) as a field
- \(Y = (X \times M) \times_X \text{Lor}(X)\)
The Jet Bundle JY

For first order theories:

$$J_x Y = \{[\phi] \mid \phi_1 \equiv \phi_2 \text{ at } x \text{ iff } \phi_1(x) = \phi_2(x) \text{ and } T_x \phi_1 = T_x \phi_2\}$$
The Jet Bundle J_Y

For first order theories:

- $J_x Y = \{ [\phi] \mid \phi_1 \equiv \phi_2 \text{ at } x \text{ iff } \phi_1(x) = \phi_2(x) \text{ and } T_x \phi_1 = T_x \phi_2 \}$

- $J_Y \to Y$ is an affine bundle, with fiber over $y \in Y_x$ being

$$J_y Y = \{ \gamma \in L(T_x X, T_y Y) \mid T\pi_{X,Y} \circ \gamma = \text{Id}_{T_x X} \}$$
The Jet Bundle JY

For first order theories:

1. $J_x Y = \{[\phi] \mid \phi_1 \equiv \phi_2 \text{ at } x \text{ iff } \phi_1(x) = \phi_2(x) \text{ and } T_x \phi_1 = T_x \phi_2\}$

2. $JY \to Y$ is an affine bundle, with fiber over $y \in Y_x$ being

\[J_y Y = \{\gamma \in L(T_x X, T_y Y) \mid T_{\pi_X,Y} \circ \gamma = \text{Id}_{T_x X}\} \]

3. Underlying vector bundle has fiber

\[L(T_x X, V_y Y) = \{\gamma \in L(T_x X, T_y Y) \mid T_{\pi_X,Y} \circ \gamma = 0\} \]
The Jet Bundle J_Y

For first order theories:

- $J_x Y = \{ [\phi] \mid \phi_1 \equiv \phi_2 \text{ at } x \text{ iff } \phi_1(x) = \phi_2(x) \text{ and } T_x \phi_1 = T_x \phi_2 \}$

- $J_Y \to Y$ is an affine bundle, with fiber over $y \in Y_x$ being

$$J_y Y = \{ \gamma \in L(T_x X, T_y Y) \mid T_{\pi_X,Y} \circ \gamma = \text{Id}_{T_x X} \}$$

- Underlying vector bundle has fiber

$$L(T_x X, V_y Y) = \{ \gamma \in L(T_x X, T_y Y) \mid T_{\pi_X,Y} \circ \gamma = 0 \}$$

- Coordinates on J_Y are (x^μ, y^A, v^B_{ν})
The jet prolongation of $\phi : X \to Y$ is $j\phi : X \to JY$ given by $x \mapsto T_x\phi$
The jet prolongation of $\phi : X \rightarrow Y$ is $j\phi : X \rightarrow JY$ given by $x \mapsto T_x \phi$.

In coordinates, $j\phi$ is

$$x^\mu \mapsto (x^\mu, \phi^A(x^\mu), \partial_\nu \phi(x^\mu))$$
The jet prolongation of $\phi : X \to Y$ is $j\phi : X \to JY$ given by

$$x \mapsto T_x \phi$$

In coordinates, $j\phi$ is

$$x^\mu \mapsto (x^\mu, \phi^A(x^\mu), \partial_\nu \phi(x^\mu))$$

A section $X \to JY$ is holonomic provided it's of the form $j\phi$ for some $\phi : X \to Y$
The jet prolongation of $\phi: X \to Y$ is $j\phi: X \to JY$ given by

$$x \mapsto T_x\phi$$

In coordinates, $j\phi$ is

$$x^\mu \mapsto (x^\mu, \phi^A(x^\mu), \partial_\nu \phi(x^\mu))$$

A section $X \to JY$ is holonomic provided it’s of the form $j\phi$ for some $\phi: X \to Y$

Compare mechanics: $JY \approx \mathbb{R} \times TQ$
The Dual Jet Bundle

- $J^\ast Y$ is the affine dual of JY
The Dual Jet Bundle

- $J^\star Y$ is the affine dual of JY

- Its fiber over $y \in Y_x$ is

$$\{\text{affine maps } J_y Y \to \wedge^{n+1}_x X\}$$

Use affine maps as JY is an affine bundle.
The Dual Jet Bundle

- JY^* is the affine dual of JY

- Its fiber over $y \in Y_x$ is
 \[
 \{ \text{affine maps } J_y Y \to \Lambda_{x}^{n+1} X \}
 \]

 Use affine maps as JY is an affine bundle.

- Fiber coordinates on $JY^* \to Y$ are (p, p_A^μ), corresponding to the affine map
 \[
 v^A_\mu \mapsto (p + p_A^\mu v^A_\mu) \, d^{n+1}x
 \]

 where
 \[
 d^{n+1}x = dx^0 \wedge dx^1 \wedge \cdots \wedge dx^n
 \]
The Dual Jet Bundle

- $J^* Y$ is the affine dual of $J Y$
- Its fiber over $y \in Y_X$ is
 \[\{ \text{affine maps } J_y Y \to \wedge_{X}^{n+1} X \} \]
- Use affine maps as $J Y$ is an affine bundle.
- Fiber coordinates on $J^* Y \to Y$ are (p, p_A^μ), corresponding to the affine map
 \[v^A_\mu \mapsto (p + p_A^\mu v^A_\mu) d^{n+1}x \]
 where
 \[d^{n+1}x = dx^0 \wedge dx^1 \wedge \cdots \wedge dx^n \]
- $J^* Y$ is a vector bundle.
- In mechanics, $J^* Y \approx T^* \mathbb{R} \times T^* Q$
Proposition: $JY^* \simeq Z$, where

$$Z_y = \{ z \in \Lambda_{y}^{n+1} Y \mid i_v i_w z = 0 \text{ for all } v, w \in V_y Y \}.$$
Proposition: $JY^* \cong Z$, where

$$Z_y = \{ z \in \Lambda_y^{n+1} Y \mid i_v i_w z = 0 \text{ for all } v, w \in V_y Y \}.$$

- $z \in Z$ takes the form

$$z = pd^{n+1}x + pA^\mu dy^A \wedge d^n x_\mu$$

where $d^n x_\mu = \partial_\mu \perp d^{n+1}x$.

Proposition: $JY^* \cong Z$, where

$$Z_y = \{ z \in \Lambda_{y}^{n+1} Y \mid i_v i_w z = 0 \text{ for all } v, w \in V_y Y \}.$$

- $z \in Z$ takes the form

$$z = p d^{n+1} x + p_A^\mu dy^A \land d'^n x_\mu$$

where $d'^n x_\mu = \partial_\mu \land d^{n+1} x$.

- Intrinsically, the isomorphism $\vartheta : Z \to JY^*$ is

$$\langle \vartheta(z), \gamma \rangle = \gamma^* z \in \Lambda_{x}^{n+1} X$$

where $z \in Z_y$, $\gamma \in J_y Y$ and $x = \pi_{XY}(y)$.
Since Z is a bundle of $(n+1)$-forms, it carries a tautological $(n+1)$-form Θ defined by

$$\Theta(z) = \pi^*_Y z$$

and Θ is the multi-Liouville form, $\Omega = -d\Theta$ is the multisymplectic form. (Z, Ω) is the covariant or multi-phase space.
Canonical forms:

- Since Z is a bundle of $(n+1)$-forms, it carries a tautological $(n+1)$-form Θ defined by

$$\Theta(z) = \pi^*_YZ$$

- In coordinates,

$$\Theta = p_A^\mu dy^A \wedge d^n x_\mu + pd^{n+1}x$$

$\Omega = -d\Theta$ is the multisymplectic form.

(Z, Ω) is the covariant or multi-phase space.
Canonical forms:

- Since Z is a bundle of $(n+1)$-forms, it carries a tautological $(n+1)$-form Θ defined by

$$\Theta(z) = \pi^* Y Z$$

- In coordinates,

$$\Theta = p_A^\mu dy^A \wedge d^n x_\mu + p d^{n+1} x$$

- Θ is the multi-Liouville form, $\Omega = -d\Theta$ is the multisymplectic form. (Z, Ω) is the covariant or multi-phase space.
Remarks:

- The affine terms $pd^{n+1}x$ in Z and Θ are crucial; they are responsible for
 - the existence of canonical forms
The affine terms $pd^{n+1}x$ in Z and Θ are crucial; they are responsible for

- the existence of canonical forms
- incorporating the superhamiltonian into the multimomentum map
Remarks:

- The affine terms $pd^{n+1}x$ in Z and Θ are crucial; they are responsible for
 - the existence of canonical forms
 - incorporating the superhamiltonian into the multimomentum map

- $-p$ is the covariant Hamiltonian; the p_A^μ are multimomenta
Remarks:

- The affine terms $pd^{n+1}x$ in Z and Θ are crucial; they are responsible for
 - the existence of canonical forms
 - incorporating the superhamiltoian into the multimomentum map

- $-p$ is the covariant Hamiltonian; the p_A^μ are multimomenta

- General multisymplectic geometry?
Remarks:

- The affine terms $pd^{n+1}x$ in Z and Θ are crucial; they are responsible for
 - the existence of canonical forms
 - incorporating the superhamiltonian into the multimomentum map

- $-p$ is the covariant Hamiltonian; the p_A^{μ} are multimomenta

- General multisymplectic geometry?

- Poisson brackets?
Bosonic String:

Coordinates on JY: $(x^\mu, \phi^A, h_{\sigma\rho}, \phi^A_{\mu}, h_{\sigma\rho\mu})$
Bosonic String:

- Coordinates on JY: \((x^\mu, \phi^A, h_{\sigma\rho}, \phi^A_{\mu}, h_{\sigma\rho\mu})\)
- Coordinates on Z: \((x^\mu, \phi^A, h_{\sigma\rho}, p, p^A_{\mu}, \rho^{\sigma\rho\mu})\)
Lagrangian Dynamics

The Lagrangian density:

\[L: JY \rightarrow \Lambda^{n+1} X \]

In coordinates

\[L = L(x^\mu, y^A, v^A_{\mu}) \, d^n + 1 \times x. \]

No regularity assumption on \(L \); it would fail in almost all examples.
Lagrangian Dynamics

The Lagrangian density:

\[\mathcal{L} : JY \rightarrow \Lambda^{n+1} X \]
The Lagrangian density:

\[L : JY \rightarrow \wedge^{n+1} X \]

In coordinates \(L = L(x^\mu, y^A, v^A_{\mu}) \, d^{n+1}x \).

No regularity assumption on \(L \); it would fail in almost all examples.
The Legendre transformation:

\[\mathcal{F} \mathcal{L} : JY \rightarrow JY^* \text{ defined by} \]

\[\langle \mathcal{F} \mathcal{L}(\gamma), \gamma' \rangle = \mathcal{L}(\gamma) + \frac{d}{d\varepsilon} \mathcal{L}(\gamma + \varepsilon(\gamma' - \gamma)) \bigg|_{\varepsilon=0}. \]
The Legendre transformation:

- $\mathcal{F} \mathcal{L} : JY \rightarrow JY^*$ defined by

$$\langle \mathcal{F} \mathcal{L}(\gamma), \gamma' \rangle = \mathcal{L}(\gamma) + \frac{d}{d\varepsilon} \mathcal{L}(\gamma + \varepsilon(\gamma' - \gamma)) \bigg|_{\varepsilon=0}.$$

- In coordinates

$$p_A^\mu = \frac{\partial L}{\partial v_A^\mu} \quad \text{and} \quad p = L - \frac{\partial L}{\partial v_A^\mu} v_A^\mu.$$
The Cartan form:

\[\Theta_L = (F_L)^* \Theta \]
The Cartan form:

- $\Theta_L = (FL)^* \Theta$

- In coordinates

$$\Theta_L = \frac{\partial L}{\partial v^A_\mu} \, dy^A \wedge d^n x_\mu + \left(L - \frac{\partial L}{\partial v^A_\mu} \, v^A_\mu \right) d^{n+1} x.$$
The Cartan form:

- $\Theta_L = (F L)^* \Theta$

In coordinates

$$\Theta_L = \frac{\partial L}{\partial V^A_\mu} dy^A \wedge d^n x_\mu + \left(L - \frac{\partial L}{\partial V^A_\mu} V^A_\mu \right) d^{n+1} x.$$

- Cool fact: $\mathcal{L}(j_\phi) = (j_\phi)^* \Theta_L$
The Euler–Lagrange equations:

The following are equivalent. For a section \(\phi : X \to Y \),

- \(\phi \) is a critical point of the action

\[
\mathcal{A}(\phi) = \int_X \mathcal{L}(j\phi)
\]
The Euler–Lagrange equations:

The following are equivalent. For a section \(\phi : X \rightarrow Y \),

- \(\phi \) is a critical point of the action
 \[
 \mathcal{A}(\phi) = \int_X \mathcal{L}(j\phi)
 \]

- For all vector fields \(\xi \) on \(JY \),
 \[
 j\phi^*(\xi \downarrow \Theta\mathcal{L}) = 0
 \]
The Euler–Lagrange equations:

The following are equivalent. For a section \(\phi : X \to Y \),

- \(\phi \) is a critical point of the action
 \[A(\phi) = \int_X L(j\phi) \]

- For all vector fields \(\xi \) on \(JY \),
 \[j_{\phi}^*(\xi \downarrow d\Theta_L) = 0 \]

- In coordinates
 \[\frac{\partial L}{\partial y^A}(j\phi) - \frac{\partial}{\partial x^\mu} \left(\frac{\partial L}{\partial v^A_{\mu}}(j\phi) \right) = 0. \]
Bosonic String:

The Lagrangian is the (negative of the) energy:

\[\mathcal{L} = -\frac{1}{2} \sqrt{-hh} h^\rho{}_{\sigma} g_{AB} v^A{}_{\sigma} v^B{}_{\rho} d^2x \]
Bosonic String:

The Lagrangian is the (negative of the) energy:

\[\mathcal{L} = -\frac{1}{2} \sqrt{-h} h^{\sigma \rho} g_{A B} v^A_{\sigma} v^B_{\rho} \, d^2 x \]

- The Legendre transform is

\[p^A_{\mu} = -\sqrt{-h} h^{\mu \nu} g_{A B} v^B_{\nu} \]

\[\rho^{\sigma \rho \mu} = 0 \]

\[p = \frac{1}{2} \sqrt{-h} h^{\mu \nu} g_{A B} v^A_{\mu} v^B_{\nu} \]
Bosonic String:

The Lagrangian is the (negative of the) energy:

\[
\mathcal{L} = -\frac{1}{2} \sqrt{-h} h^{\sigma\rho} g_{AB} v^A_\sigma v^B_\rho \, d^2x
\]

- The Legendre transform is
 \[
p_A^\mu = -\sqrt{-h} h^{\mu\nu} g_{AB} v^B_\nu
\]
 \[
 \rho^{\sigma\rho\mu} = 0
\]
 \[
p = \frac{1}{2} \sqrt{-h} h^{\mu\nu} g_{AB} v^A_\mu v^B_\nu
\]

- So the Cartan form is
 \[
 \Theta_{\mathcal{L}} = \sqrt{-h} \left(-h^{\mu\nu} g_{AB} v^B_\nu d\phi^A \wedge dx^\mu + \frac{1}{2} \sqrt{-h} h^{\mu\nu} g_{AB} v^A_\mu v^B_\nu d^2x \right).
 \]
The E–L equations $\delta L/\delta \phi^A = 0$ and $\delta L/\delta h_{\alpha\beta} = 0$ are

\[
(h^{\mu\nu} g_{AB}(\phi) \phi^B_{,\nu};\mu)_{;\mu} = 0
\]

(1)

\[
\left(\frac{1}{2} \sqrt{-h} h^{\mu\nu} g_{AB}(\phi) \phi^A_{,\mu} \phi^B_{,\nu}\right) h_{\alpha\beta} = g_{CD}(\phi) \phi^C_{,\alpha} \phi^D_{,\beta}
\]

(2)
The E–L equations $\delta L/\delta \phi^A = 0$ and $\delta L/\delta h_{\alpha\beta} = 0$ are

$$
(h^{\mu\nu} g_{AB}(\phi) \phi^B_{,\nu};_{\mu} = 0
$$

(1)

$$
\left(\frac{1}{2} \sqrt{-h} h^{\mu\nu} g_{AB}(\phi) \phi^A_{,\mu} \phi^B_{,\nu}\right) h_{\alpha\beta} = g_{CD}(\phi) \phi^C_{,\alpha} \phi^D_{,\beta}
$$

(2)

- (1) is the harmonic map equation for ϕ
The E–L equations $\delta L/\delta \phi^A = 0$ and $\delta L/\delta h_{\alpha\beta} = 0$ are

$$
(h^\mu{}^\nu g_{AB}(\phi)\phi^B_{,\nu};\mu)_\mu = 0 \tag{1}
$$

$$
\left(\frac{1}{2} \sqrt{-h} h^\mu{}^\nu g_{AB}(\phi)\phi^A_{,\mu}\phi^B_{,\nu}\right) h_{\alpha\beta} = g_{CD}(\phi)\phi^C_{,\alpha}\phi^D_{,\beta} \tag{2}
$$

- (1) is the harmonic map equation for ϕ

- (2) does two things:
 - it says h is conformally related to $\phi^* g$: $\Lambda^2 h_{\alpha\beta} = (\phi^* g)_{\alpha\beta}$,
The E–L equations \(\delta L/\delta \phi^A = 0 \) and \(\delta L/\delta h_{\alpha\beta} = 0 \) are

\[
(h^{\mu\nu} g_{AB}(\phi) \phi^B_{,\mu})_{,\nu} = 0
\]

(1)

\[
\left(\frac{1}{2} \sqrt{-h} h^{\mu\nu} g_{AB}(\phi) \phi^A_{,\mu} \phi^B_{,\nu} \right) h_{\alpha\beta} = g_{CD}(\phi) \phi^C_{,\alpha} \phi^D_{,\beta}
\]

(2)

- (1) is the harmonic map equation for \(\phi \)
- (2) does two things:
 - it says \(h \) is conformally related to \(\phi^* g \): \(\Lambda^2 h_{\alpha\beta} = (\phi^* g)_{\alpha\beta} \),
 - and it determines the conformal factor: \(\Lambda^2 = \frac{1}{2} h^{\mu\nu} g_{AB}(\phi) \phi^A_{,\mu} \phi^B_{,\nu} \)
Covariant Momentum Maps & Noether’s Theorem

Suppose η is an automorphism of Y, covering a diffeomorphism of X. We may lift η to an automorphism of various bundles over Y.

Jet prolongations: $\eta_{JY} : JY \rightarrow JY$ defined by $\eta_{JY}(\gamma) = T\eta_{Y} \circ \gamma \circ T\eta_{X}^{-1}$

Canonical lifts: $\eta_{Z} : Z \rightarrow Z$ defined by $\eta_{Z}(z) = (\eta_{Y})^{\ast}(z)$

Proposition

Canonical lifts are special covariant canonical transformations: $\eta^{\ast}Z \Theta = \Theta$
Covariant Momentum Maps & Noether’s Theorem

Suppose η is an automorphism of Y, covering a diffeomorphism of X. We may lift η to an automorphism of various bundles over Y.
Suppose η is an automorphism of Y, covering a diffeomorphism of X. We may lift η to an automorphism of various bundles over Y.

- **Jet prolongations:** $\eta_{JY} := j\eta_Y : JY \to JY$ defined by
 $$\eta_{JY}(\gamma) = T\eta_Y \circ \gamma \circ T\eta_X^{-1}$$
Suppose η is an automorphism of Y, covering a diffeomorphism of X. We may lift η to an automorphism of various bundles over Y.

- **Jet prolongations:** $\eta_{JY} := j\eta_Y : JY \to JY$ defined by
 \[\eta_{JY}(\gamma) = T\eta_Y \circ \gamma \circ T\eta_X^{-1} \]

- **Canonical lifts:** $\eta_Z : Z \to Z$ defined by
 \[\eta_Z(Z) = (\eta_Y)_*(Z) \]
Covariant Momentum Maps & Noether’s Theorem

Suppose \(\eta \) is an automorphism of \(Y \), covering a diffeomorphism of \(X \). We may lift \(\eta \) to an automorphism of various bundles over \(Y \).

- **Jet prolongations:** \(\eta_{JY} := j \eta_Y : JY \to JY \) defined by
 \[
 \eta_{JY}(\gamma) = T\eta_Y \circ \gamma \circ T\eta_X^{-1}
 \]

- **Canonical lifts:** \(\eta_Z : Z \to Z \) defined by
 \[
 \eta_Z(z) = (\eta_Y)_*(z)
 \]

Proposition

Canonical lifts are special covariant canonical transformations:

\[
\eta_Z^* \Theta = \Theta
\]
Multimomentum Maps

Suppose \mathcal{G} is a Lie group of automorphisms of Y (not necessarily finite-dimensional).

Suppose \mathcal{G} is a Lie group of automorphisms of Y (not necessarily finite-dimensional).
Suppose G is a Lie group of automorphisms of Y (not necessarily finite-dimensional). If G acts by covariant canonical transformations (or multisymplectomorphisms), a covariant momentum map (or multimomentum map) for this action is a map

$$J : Z \rightarrow g^* \otimes \Lambda^n Z = L(g, \Lambda^n Z)$$
Suppose G is a Lie group of automorphisms of Y (not necessarily finite-dimensional). If G acts by covariant canonical transformations (or multisymplectomorphisms), a covariant momentum map (or multimomentum map) for this action is a map

$$J : Z \rightarrow g^* \otimes \Lambda^n Z = L(g, \Lambda^n Z)$$

such that

$$dJ(\xi) = \xi_Z \lrcorner \Omega$$

Here ξ_Z is the infinitesimal generator on Z corresponding to $\xi \in g = \text{Lie}(G)$.

Multimomentum Maps

Suppose \mathcal{G} is a Lie group of automorphisms of Y (not necessarily finite-dimensional). If \mathcal{G} acts by covariant canonical transformations (or multisymplectomorphisms), a covariant momentum map (or multimomentum map) for this action is a map

$$J : Z \rightarrow g^* \otimes \Lambda^n Z = L(g, \Lambda^n Z)$$

such that

$$dJ(\xi) = \xi_Z \lrcorner \Omega$$

Here ξ_Z is the infinitesimal generator on Z corresponding to $\xi \in g = \text{Lie}(\mathcal{G})$.

J intertwines the group action with the multisymplectic structure via the above equation.
Proposition

If \mathcal{G} acts by special covariant canonical transformations, then

$$J(\xi) = \xi_Z \downarrow \Theta$$

is a special covariant momentum map.
Proposition

If \mathcal{G} acts by special covariant canonical transformations, then

$$J(\xi) = \xi_Z \lrcorner \Theta$$

is a special covariant momentum map.

Indeed, $dJ(\xi) = di_{\xi_Z} \Theta = (\mathbb{L}_{\xi_Z} - i_{\xi_Z} d')\Theta = i_{\xi_Z} \Omega.$
Proposition

If \mathcal{G} acts by special covariant canonical transformations, then

$$J(\xi) = \xi_Z \lrcorner \Theta$$

is a special covariant momentum map.

- Indeed, $dJ(\xi) = di_{\xi_Z} \Theta = (\mathbb{L}_{\xi_Z} - i_{\xi_Z} d') \Theta = i_{\xi_Z} \Omega$.

- An alternate formula: $J(\xi)(z) = \pi^*_Y (\xi_Y \lrcorner z)$
Proposition

If G acts by special covariant canonical transformations, then

$$J(\xi) = \xi_Z \hookrightarrow \Theta$$

is a special covariant momentum map.

- Indeed, $dJ(\xi) = di_{\xi_Z} \Theta = (\mathbb{L}_{\xi_Z} - i_{\xi} d')\Theta = i_{\xi_Z} \Omega$.

- An alternate formula: $J(\xi)(z) = \pi^*_{YZ}(\xi_Y \hookrightarrow z)$

- In coordinates: if we write $\xi_Y = \xi^\mu \frac{\partial}{\partial x^\mu} + \xi^A \frac{\partial}{\partial y^A}$,

 $$J(\xi) = (p_A^\mu \xi^A + p_{\xi^\mu}) d^n x_\mu - p_A^{\nu} \xi^\nu dy^A \wedge d^{n-1}x_{\mu\nu}$$
Bosonic String

The gauge group is $\mathcal{G} = \text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+)$.
Bosonic String

The gauge group is $\mathcal{G} = \text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+)$

- $\text{Diff}(X)$ acts on $C^\infty(X, \mathbb{R}^+)$ by $\eta \cdot \Lambda = \Lambda \circ \eta^{-1}$
Bosonic String

The gauge group is $\mathcal{G} = \text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+)$

- $\text{Diff}(X)$ acts on $C^\infty(X, \mathbb{R}^+)$ by $\eta \cdot \Lambda = \Lambda \circ \eta^{-1}$

- $(\eta, \Lambda) \in \mathcal{G}$ sends $(\phi, h) \in Y_x$ to

$$ (\eta, \Lambda) \cdot (\phi, h) = \left(\phi, \Lambda^2(\eta(x))(\eta^{-1})^* h \right) $$

in $Y_{\eta(x)}$
Bosonic String

The gauge group is $G = \text{Diff}(X) \ltimes \mathcal{C}^\infty(X, \mathbb{R}^+)$

- $\text{Diff}(X)$ acts on $\mathcal{C}^\infty(X, \mathbb{R}^+)$ by $\eta \cdot \Lambda = \Lambda \circ \eta^{-1}$
- $(\eta, \Lambda) \in G$ sends $(\phi, h) \in Y_x$ to
 $$(\eta, \Lambda) \cdot (\phi, h) = \left(\phi, \Lambda^2(\eta(x))(\eta^{-1})^* h\right)$$
 in $Y_{\eta(x)}$
- $\text{Diff}(X)$ — material relabelings
Bosonic String

The gauge group is \(\mathcal{G} = \text{Diff}(X) \ltimes C^\infty(X, \mathbb{R}^+) \)

- \(\text{Diff}(X) \) acts on \(C^\infty(X, \mathbb{R}^+) \) by \(\eta \cdot \Lambda = \Lambda \circ \eta^{-1} \)

- \((\eta, \Lambda) \in \mathcal{G} \) sends \((\phi, h) \in Y_x \) to
 \[
 (\eta, \Lambda) \cdot (\phi, h) = \left(\phi, \Lambda^2(\eta(x))(\eta^{-1})^* h \right)
 \]
 in \(Y_{\eta(x)} \)

- \(\text{Diff}(X) \) — material relabelings

- \(C^\infty(X, \mathbb{R}^+) \) conformal rescalings
The Lie algebra is $g \approx \mathcal{X}(X) \ltimes C^\infty(X)$.
The Lie algebra is \(g \approx \mathfrak{X}(X) \ltimes C^\infty(X) \)

For \((\xi, \lambda) \in g\), the infinitesimal generator is

\[
(\xi, \lambda)_Y = 2\lambda h_{\sigma\rho} \frac{\partial}{\partial h_{\sigma\rho}} - \left(h_{\sigma\mu} \xi^\mu_{,\rho} + h_{\rho\mu} \xi^\mu_{,\sigma} \right) \frac{\partial}{\partial h_{\sigma\rho}} + \xi^\mu \frac{\partial}{\partial x^\mu}
\]

Note: there is no \(\frac{\partial}{\partial \phi^A} \) component here, as \(\phi \) is a scalar field.
The Lie algebra is $g \approx \mathfrak{X}(X) \ltimes C^\infty(X)$

For $(\xi, \lambda) \in g$, the infinitesimal generator is

$$(\xi, \lambda)_Y = 2\lambda h_{\sigma\rho} \frac{\partial}{\partial h_{\sigma\rho}} - \left(h_{\sigma\mu} \xi^\mu,_{\rho} + h_{\rho\mu} \xi^\mu,_{\sigma} \right) \frac{\partial}{\partial h_{\sigma\rho}} + \xi^\mu \frac{\partial}{\partial x^\mu}$$

Note: there is no $\frac{\partial}{\partial \phi^A}$ component here, as ϕ is a scalar field.

The multimomentum map is

$$J(\xi, \lambda) = \left[\rho^{\sigma\rho\mu} \left(2\lambda h_{\sigma\rho} - h_{\sigma\nu} \xi^\nu,_{\rho} - h_{\rho\nu} \xi^\nu,_{\sigma} \right) + p \xi^\mu \right] d^1 x^\mu$$

$$- \left(p_A^{\mu} \xi^\nu d\phi^A + \rho^{\sigma\rho\mu} \xi^\nu dh_{\sigma\rho} \right) \epsilon_{\mu\nu}$$

where $d^2 x_{\mu\nu} = \epsilon_{\mu\nu}$.
Let \mathcal{G} act on Y by bundle automorphisms.
Symmetries

Let G act on Y by bundle automorphisms.

- \mathcal{L} is **equivariant** (or G-covariant) if

$$\mathcal{L}(\eta_{J^1Y}(\gamma)) = (\eta_X)_* \mathcal{L}(\gamma)$$

for all $\gamma \in JY$.

This will be a fundamental assumption in all that follows.

Infinitesimally, this is $\delta_{\xi} \mathcal{L} = 0$, where

$$\delta_{\xi} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial x^\mu} \xi^\mu + \frac{\partial \mathcal{L}}{\partial y^A} \xi^A + \frac{\partial \mathcal{L}}{\partial v^A_{\mu}} (\xi^A_{,\mu} - v^B_{\nu} \xi^B_{,\mu} + v^B_{\mu} \partial \xi^A y^B) + \mathcal{L} \xi^\mu_{,\mu}$$

is the variation of \mathcal{L}.

MARK J. GOTAY (PIMS, UBC)
MOMENTUM MAPS & CLASSICAL FIELDS
Olomouc, August, 2009
24 / 29
Let G act on Y by bundle automorphisms.

- \mathcal{L} is **equivariant** (or G-covariant) if
 \[
 \mathcal{L}(\eta_{J^1_Y(\gamma)}) = (\eta_X)_* \mathcal{L}(\gamma)
 \]
 for all $\gamma \in JY$.

- This will be a fundamental assumption in all that follows.
Let G act on Y by bundle automorphisms.

- \mathcal{L} is equivariant (or G-covariant) if
 \[\mathcal{L}(\eta_J Y(\gamma)) = (\eta_X)_* \mathcal{L}(\gamma) \]
 for all $\gamma \in JY$.

- This will be a fundamental assumption in all that follows.

- Infinitesimally, this is $\delta_\xi L = 0$, where
 \[
 \delta_\xi L = \frac{\partial L}{\partial x^\mu} \xi^\mu + \frac{\partial L}{\partial y^A} \xi^A + \frac{\partial L}{\partial v^A_\mu} \left(\xi^A ,_\mu - v^A ,_\nu \xi^\nu ,_\mu + v^B_\mu \frac{\partial \xi^A}{\partial y^B} \right) + L \xi ,_\mu ,_\mu
 \]
 is the variation of L.
Thm

Let \mathcal{L} be G-equivariant. Then:

1. $F\mathcal{L}$ is also equivariant, i.e., $\eta_Z \circ F\mathcal{L} = F\mathcal{L} \circ \eta_{JY}$
Thm

Let \mathcal{L} be \mathcal{G}-equivariant. Then:

- $F \mathcal{L}$ is also equivariant, i.e., $\eta_Z \circ F \mathcal{L} = F \mathcal{L} \circ \eta_{J\mathcal{Y}}$
- The Cartan form $\Theta_{\mathcal{L}}$ is invariant, i.e., $\eta^*_{J\mathcal{Y}} \Theta_{\mathcal{L}} = \Theta_{\mathcal{L}}$
Let \mathcal{L} be G-equivariant. Then:

- $\mathcal{F}_{\mathcal{L}}$ is also equivariant, i.e., $\eta_Z \circ \mathcal{F}_{\mathcal{L}} = \mathcal{F}_{\mathcal{L}} \circ \eta_{JY}$

- The Cartan form $\Theta_{\mathcal{L}}$ is invariant, i.e., $\eta^*_{JY} \Theta_{\mathcal{L}} = \Theta_{\mathcal{L}}$

- The map $J^\mathcal{L}(\xi) := \mathcal{F}_{\mathcal{L}}^* J(\xi) : JY \to \Lambda^n(JY)$ is a momentum map for the prolonged action of G on JY relative to $\Omega_{\mathcal{L}} = -d\Theta_{\mathcal{L}}$. That is to say,

$$\xi_{JY} \downarrow \Omega_{\mathcal{L}} = dJ^\mathcal{L}(\xi).$$

Moreover,

$$J^\mathcal{L}(\xi) = \xi_{J^1Y} \downarrow \Theta_{\mathcal{L}}.$$
Divergence Form of Noether’s Thm

If L is G-covariant, then for each $\xi \in g$, $d\left[(j_\phi)^\ast J L(\xi) \right] = 0$ for any section ϕ of π_{XY} satisfying the Euler–Lagrange equations.

The quantity $(j_\phi)^\ast J L(\xi)$ is called the Noether current, and this theorem states that the current is conserved.

Proof
If ϕ is a solution of the Euler–Lagrange equations, then $(j_\phi)^\ast (W_{\Omega L}) = 0$ for any vector field W on JY. In particular, set $W = \xi_{JY}$ and simply apply $(j_\phi)^\ast$ to $\xi_{JY}_{\Omega L} = dJ L(\xi)$.

\blacksquare
Divergence Form of Noether’s Thm

If \mathcal{L} is \mathcal{G}-covariant, then for each $\xi \in \mathfrak{g}$,

$$d \left[(j\phi)^* J^\mathcal{L}(\xi) \right] = 0$$

for any section ϕ of π_{XY} satisfying the Euler–Lagrange equations.

The quantity $(j\phi)^* J^\mathcal{L}(\xi)$ is called the Noether current, and this theorem states that the current is conserved.

Proof

If ϕ is a solution of the Euler–Lagrange equations, then

$$(j\phi)^* (W \Omega^{\mathcal{L}}) = 0$$

for any vector field W on JY. In particular, set $W = \xi_{JY}$ and simply apply $(j\phi)^*$ to $\xi_{JY} \Omega^{\mathcal{L}} = dJ^\mathcal{L}(\xi)$.

\blacksquare
Divergence Form of Noether’s Thm

If \mathcal{L} is \mathcal{G}-covariant, then for each $\xi \in \mathfrak{g}$,

$$d \left[(j\phi)^* J^\mathcal{L}(\xi) \right] = 0$$

for any section ϕ of π_{XY} satisfying the Euler–Lagrange equations.

The quantity $(j\phi)^* J^\mathcal{L}(\xi)$ is called the Noether current, and this theorem states that the current is conserved.
Divergence Form of Noether’s Thm

If \mathcal{L} is \mathcal{G}-covariant, then for each $\xi \in \mathfrak{g}$,

$$d[(j\phi)^* J^\mathcal{L}(\xi)] = 0$$

for any section ϕ of π_{XY} satisfying the Euler–Lagrange equations.

The quantity $(j\phi)^* J^\mathcal{L}(\xi)$ is called the Noether current, and this theorem states that the current is conserved.

Proof

If ϕ is a solution of the Euler–Lagrange equations, then

$$(j\phi)^* (W \hookrightarrow \Omega_\mathcal{L}) = 0$$

for any vector field W on JY. In particular, set $W = \xi_{JY}$ and simply apply $(j\phi)^*$ to

$$\xi_{JY} \hookrightarrow \Omega_\mathcal{L} = dJ^\mathcal{L}(\xi).$$

■
Local Expressions

the "Lagrangian multimomentum map"

\[J_L(\xi) = \left(\frac{\partial L}{\partial v_A^\mu} \xi_A^\mu + \left[L - \frac{\partial L}{\partial v_A^\nu} v_A^\nu \right] \xi^\mu \right) d^n x^\mu - \frac{\partial L}{\partial v_A^\mu} \xi^\nu dy_A \wedge d^n x^{\mu-1} \]

the Noether current is

\[(j^1_\phi)^* J_L(\xi) = \left[-\frac{\partial L}{\partial v_A^\mu} (j^1_\phi)(L_{\xi \phi}) A^\mu + L(j^1_\phi) \xi^\mu \right] d^n x^\mu \]

where the "Lie derivative of \(\phi \) along \(\xi \) is

\[L_{\xi \phi} = T_{\phi} \circ \xi - \xi \circ \phi \]; i.e.,

\[(L_{\xi \phi})^A_{\mu, \nu} = \phi^A_{, \nu} \xi^\mu - \xi^A_{, \phi} \circ \phi \]
the “Lagrangian multimomentum map” is

\[J^L(\xi) = \left(\frac{\partial L}{\partial v_A^\mu} \xi^A + \left[L - \frac{\partial L}{\partial v_A^\nu} v^A_{\nu} \right] \xi^\mu \right) d^n x{\mu} - \frac{\partial L}{\partial v_A^\mu} \xi^\nu dy^A \wedge d^{n-1} x{\mu\nu} \]
the “Lagrangian multimomentum map” is

\[
J^L(\xi) = \left(\frac{\partial L}{\partial V^A_\mu} \xi^A + \left[L - \frac{\partial L}{\partial V^A_\nu} \nu^A_\nu \right] \xi^\mu \right) d^nx_\mu - \frac{\partial L}{\partial V^A_\mu} \xi^\nu dy^A \wedge d^{n-1}x_{\mu\nu}
\]

the Noether current is

\[
(j^1 \phi)^* J^L (\xi) = \left[- \frac{\partial L}{\partial V^A_\mu} (j^1 \phi)(\mathcal{L}_\xi \phi)^A + L(j^1 \phi)\xi^\mu \right] d^nx_\mu
\]

where the “Lie derivative of \(\phi \) along \(\xi \) is

\[
\mathcal{L}_\xi \phi = T_\phi \circ \xi_X - \xi_Y \circ \phi; \quad \text{i.e.,} \quad (\mathcal{L}_\xi \phi)^A = \phi^A,\nu \xi^\nu - \xi^A \circ \phi
\]
A computation gives the useful expression for the Noether divergence:

\[d \left[(j_\phi)^* J^L(\xi) \right] = \left\{ \frac{\delta L}{\delta \phi^A} (\mathbb{L}_\xi \phi)^A + \delta_\xi L \right\} (j^1_\phi) d^{n+1}x \]

from which again Noether’s theorem is immediate.
Bosonic String

The Noether current is:

\[j(\phi, h)^* J^L(\xi, \lambda) = \sqrt{-h} g_{AB} \left(h^{\mu\nu} \phi^A_{,\rho} \phi^B_{,\nu} \xi^\rho - \frac{1}{2} h^{\sigma\rho} \phi^A_{,\sigma} \phi^B_{,\rho} \xi^\mu \right) d^1 x_\mu. \] \hspace{1cm} (3)

Note again that \(\lambda \) does not appear on the RHS.