ZMATH



0737.58022

Gotay, M.J.; Tuynman, G.M.
A symplectic analogue of the Mostow-Palais theorem. (English)
[CA] Symplectic geometry, groupoids, and integrable systems, Sémin. Sud- Rhodan. Geom. VI, Berkeley/CA (USA) 1989, Math. Sci. Res. Inst. Publ. 20, 173-182 (1991).

The paper proves the following theorem: Let a Lie group $G$ act on a compact connected symplectic manifold $(M,\omega)$ of finite type by symplectomorphisms. If the action has a momentum map then $(M,G,\omega)$ can be obtained as an equivariant reduction of some $\bbfR\sp n$ with the standard symplectic structure. Moreover, the action of $G$ on $\bbfR\sp n$ may be the cotangent lift of an orthogonal action on $\bbfR\sp n$.
[ C.Günther (Libby) ]

MSC 2000:
*37J99 Finite-dimensional Hamiltonian etc. systems
37K99 Infinite-dimensional Hamiltonian systems
53D99 Symplectic geometry, contact geometry

Keywords: symplectic actions; Hamiltonian $G$-space; symplectic manifold