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Abstract 

A generalized constraint algorithm is developed which provides necessary and 

sufficient conditions for the solvability of the canonical equations of motion asso- 

ciated to presymplectic classical systems. This constraint algorithm is combined 

with a presymplectic extension of Tulczjew's description of constrained dynamical 

systems in terms of special symplectic manifolds. The resultant theory provides a 

unified geometric description as well as a complete solution of the problems of con- 

strained and a priori presymplectic classical systems in both the finite and infinite 

dimensional cases. 

I. Introduction 

Recently, Tulczyjew has given a description of constrained classical systems in 

terms of special symplectic manifolds [i-5]. This elegant theory adequately 

describes the dynamics of first-class systems in which (in the sense of Dirac[6]) no 

secondary constraints appear. 

In a different approach [7-~ , we have developed a geometric constraint 

algorithm which completely solves the problem of defining, obtaining and solving 

"consistent" canonical equations of motion for presymplectic dynamical systems. This 

algorithm is phrased in the context of global infinite-dimensional presymplectic geo- 

metry, and generalizes as well as improves upon the local Dirac-Bergmann theory of 

constraints [6]. The algorithm is applicable to the degenerate Hamiltonian and 

Lagrangian formulations of constrained systems[10] as well as to a priori presym- 

plectic systems. 

In this paper, we consolidate Tulczyjew's theory and our presymplectic techni- 

ques obtaining a complete unified geometric treatment~of constrained and a priori 

presymplectic dynamical systems in terms of special R Tesymplectic manifolds. This 

combined approach has several advantages over either method taken individually. The 

notion of special symplectic manifold, as Tulczyjew has pointed out, allows a uniform 

treatment of classical physics including relativistic and nonrelativistic dynamics 

as well as provides a basis for generalization to field theories, encompassing in 

particular the Poincar~-Cartan (multisymplectic) formalism [5, II, 12]. Besides 

yielding geometrical insight into the mec~hanics of the presymplectic constraint 

algorithm, special symplectic techniques are indispensible in the consideration of 

singular dynamical systems, where, for instance, they may be used to "unfold" singu- 
lar constraint submanifolds (cf. §VIII). 
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On the other hand, our presymplectic methods are capable of treating completely 

zeneral constrained and a priori presymplectic dynamical systems. Specifically, 

given a physical system described by a presymplectic phase space (M, ~) and a 

Hamiltonian H on M, the algorithm finds whether or not there exists a submanifold N 

of M along which the canonical equations of motion 

i ( x ) ~  : - ds  ( 1 . 1 )  

hold; if such a submanifold exists, the algorithm provides a constructive method for 

finding it. Moreover, the "final constraint submanifold" N is maximal in the sense 

that it contains any other submanifold along which (I.i) is satisfied. 

In contrast, Tulczyjew's program is not constructive, that is, Tulczyjew does 

not consider the "Dirac constraint problem" per se, but rather only describes the 

finished product. Except under very special conditions (viz°, when no secondary con- 

straints appear in the theory), one must be $iven the final constraint submanifold N 

before Tulozyjew's techniques can be applied. The presymplectic constraint algorithm 

therefore can be used to extend Tulczyjew's theory of constrained dynamical systems 

to those in which secondary constraints are present. 

There is, however, one profound difference between the synthetic approach of 

this paper and that proposed by Menzio and Tulczyjew [4] , centering on the role of 

the integrability conditions in the theory. In the formulation of Menzio and 

Tulczyjew, certain integrability conditions are imposed which effectively demand that 

the final constraint submanifold N be first class. The integrability conditions 

associated with the presymplectic constraint algorithm, however, place no restriction 

on the class of N. 

It is our contention that the integrability conditions of Menzio and Tulczyjew 

are inappropriate for a Hescription of the dynamics of constrained classical systems. 

In fact, it turns out that these conditions are sufficient but not necessary for 

solutions of (i.i) to exist. Consequently, the imposition of such integrability 

conditions will artificially eliminate from consideration a great many systems of 

genuine physical interest (e.g., the Proca field). 

Menzio and Tulczyjew claim that discarding constrained classical systems which 

are not first class a priori is acceptable, since such systems can never be the 

classical limits of consistent quantum theories. While this latter remark is -- 

strictly speaking -- true, there seems to be no compelling reason to eliminate such 

systems from consideration on the classical level. Furthermore, a theorem of 

Sniatycki [13] shows that it is usually possible to reformulate the dynamics of con- 

strained systems in a manner such that the resulting dynamics is first class. 

Failing this, one may of course quantize the reduced phasespace [2' 

Therefore, we feel that Menzio and Tulezyjew's dictum that the dynamics of 

constrained classical systems be first class a priori is unnecessarily severe. It 
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is our opinion that there is much to be gained, and little to be lost, by developing 

techniques which are capable of treating constrained systems of arbitrary class. 

The language used throughout this paper is that of infinite-dimensional presym- 

plectic geometry. Notation and terminology are summarized in the Appendix. 

If. Presymplectic Geometry and Classical Mechanics 

Let M be a Banach manifold, and suppose that ~ is a closed 2-form on M. Then 

(M, ~) is said to be a strong symplectic manifold if the map ~ : TM ÷ T*M defined 

by ~(X) := i(X)~ is a toplinear isomorphism. However, it may happen that ¢ is 

injective but not surjective, in which case (M, ~) is called a weak symplectic mani- 

fold, ~ being weakly nondegenerate. Generically, ~ will be neither injective nor 

surjective and ~ is then degenerate. For brevity, weakly nondegenerate and degen- 

erate manifolds will often be referred to Simply as presymplectic. When M is 

finite-dimensional, there is of course no distinction between weak and strong sym- 

plectic forms. 

Physically, M represents the phasespace of a classical system, while m is a 

generalization of the Poisson (or Lagrange) bracket [14]. 

The standard example of a symplectic manifold is the cotangent bundle 

~Q: T*Q ÷ Q of any Banach manifold Q. Indeed, on T*Q there exists a canonical 

1-form OQ (the Liouville form) defined by the universal property 

a*(OQ) = % (2.1) 

where a is any 1-form on Q. Alternatively, since the diagram 

~T*Q 

TT*Q ~ T*Q 

rQ Q 

TQ 

commutes, OQ may be characterized as follows: 

<vleQ> = <T~Q~v)I~T~QCv)>, (2.2) 

where V e T(T*Q). The Liouville form determines the exact symplectic structure 
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~q = deQ. (2.3) 

It is not difficult to show that ~Q so defined is weakly nondegenermte, and moreover 

that (T'Q, ~Q) is strongly symplectic iff Q is reflexive [15]. 

The mechanics of the cotangent bundle case can be better ~nderstood by examining 

the local representatives of the above formulas. Let U C F be a chart, where F is 

the model space for Q. The local representative of m e T*Q is (x, o) ~ U × F*, and 

for V ¢ Tm(T*Q), one has v = (x, o) ~9 (a, ~) in (U × F*) 69 (F × F*). It follows that 

and 

TT,Q(V) = (x, a) E U × F* 

T~Q(v) = (x, a) ~ U × F. 

Therefore, (2.2) becomes, employing the shorthand notation a ~9 ~:= (x, a) ~ (a, ~), 

OQ(X, a).(a6D ~) = <alo>. (2.4a) 

Similarly, one calculates that 

~Q(X, o).(a e ~, b e T) = <bl~> - <alr> . (2.4b) 

In the finite-dimensional case, these formulas are no£ neamiy so mysterious. 

If (T*U;q z, pi ) is a natural bundle chart for ~T*Q, (2.4a) and (2,4b) become 

e QtT*U = Pidq i (2.5a) 

and 

~QIT*U = dPi A dq i. (2.5b) 

Physically, the weak and strong symple_etic manifolds me ~]~nat always 

encounters are cotangent bundles, lndeed, physics in t~ H~e~i~tonian formulation 

is none other than mechanics on cotangent bundlee. The manifold Q is the configura- 

tion space of the physical system, its cotangent bundle T*Q is momentum phasespace 

and the canonical i-form @Q is the integrand in the Principle of Least Action. 

There de, howe~r, exist physically i~t~restln~ sy~e~ ~hose phasezpac~s are 

not cotangent bundles and whose symplectlc farms ar~ not exact. An example of such 

a system was given by Souriau [16] , who investigated the dyn~mlics of a freely 

sp~nning massive particle in Mi~kowski specetime from a sympl~=tia viewpoint (here, 
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M = ~6 × $2). Systems of this type do not possess configuration manifolds and con- 

sequently do not admit Hamiltonian or Lagrangian formulations (at least in the usual 

sense). 

Furthermore, the geometry of classical systems need not be strongly symplectic. 

This phenomenon is characteristic of systems with an infinite number of degrees of 

freedom, where w may be presymplectic even when there are no constraints (e.g., the 

Klein-Gordon field [9, 15]). An example of an ! priori presymplectic dynamical 

system has been provided by Kunzle ~7], who obtained genuinely presymplectic phase 

spaces for spinning particles in curved spacetimes. 

The most important application of presymplectic geometry is to the theory of 

constrained classical systems. Typically, (e.g., electromagnetism, gravity), the 

constraints take the form of internal consistency conditions on the dynamics of the 

system. 

Such constraints appear when one transforms from the Lagrangian to the Hamil- 

tonian formalism. A physical system, described by a configuration space Q and a 

Lagrangian L, is cast into canonical form by "changing variables" from (qZ, ~) to 

(qi Pi ) and replacing L by the Hamiltonian H through H(q, p) = pi ~i - L(q, q). 

Mathematically, this transition is accomplished via the Legendre transformation 

FL: TQ ÷ T*Q defined by 

<wlFL(z)> : = dL( z + sW) Is= 0 , (2.6) 

where Z,w ~ TQ. 

Presymplectic manifolds arise when FL is not a diffeomorphism [14], in which 

case the Legendre transformation defines a submanifold FL(TQ) of T*Q. This is the 

starting point of the Dirac-Bergmann constraint theory [6], in which FL(TQ) is 

called the primary constraint submanifold. FL(TQ) will inherit a presymplectic 

structure from T*Q by pulling ~Q back to M via the inclusion j: FL(TQ) -~ T'Q). The 

degree of degeneracy of W = J ~Q depends entirely upon the behavior of FL. On 

FL(TQ) Hamilton's equations take the form (i.i). 

Another example of an a priori presymplectic system is provided by Lagrangian 

dynamics, where the fundamental dynamical arena is not momentum phase~hase 

T~Q, but rather velocity phasespace TQ. Whereas T*Q carries a canonical exact 

symplectic structure, TQ does not. Nonetheless, it is always possible to transfer 

the exact symplectic structure ~Q on T*Q to TQ by pull back via FL. Generically, 

however, this induced structure will not be sympleceic, but merely presymplectic, 

depending upon the regularity properties of FL. 

III. Canonical Systems an_d the! r ,Classification 

It is useful to have a classification scheme for generalized submanifolds of 

presymplectic manifolds which is both mathematically convenient and physically 

meaningful. Dirac first developed a local classification of submanifolds of 

strongly symplectic manifolds by describing them in terms of certain types of 
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constraint functions (see refs. [4], ~], [9] and ~8] for details concerning this 

approach). Tulczyjew and Sniatycki~3] have found an intrinsic generalization of 

Dirac's classification scheme, which is extended here to the presymplectic case. 

This classification is of the utmost significance insofar as the physical interpre- 

tation of the constraint algorithm is concerned, and has important applications to 

both the gauge theory and the quantization of presymplectic dynamical systems [8, 

9] 
Let N be a g-submanifold of the presymplectic manifold (M, w) with inclusion 

j. The manifold N is called a constraint g-submanifold, and the triple (M, w, N) 

a canonical system. Define the symplectic complement TN I of TN in TM to be 

TN I = {Z e T~ such that ~(X, Z) = 0 for all f s 2N_. }. 

The annihilator TN ~ of TN in T*M is 

TN ~= {~ c T~ such that <XIa> = 0 for all X E TN}, 

The constraint g-submanifold N is said to be 

(i) ~sotroptc if TN C TN i, 

(ii) coisotropic or first class if TN I C TN_, 

(iii) weakly symplectic or second class if T NA TNI = {0}, and 

(iv) Lagr~gian if TN = TN ± [19]. 

If N does not happen to fall into any of these categories, then N is said to be 

mixed constraint g-submanifold. 

From the point of view of the g-submanifold N, this classification reduces to 

a characterization of the naturally induced presymplectie structure 05 N on N. In- 

deed, TN 1A TN = ker ~N" where ~N:= j*~. In particular, N is isotropic iff 

j*~ = O. 

As an illustration, let C C Q. Then T*C is a second class submanifold of 

(T'Q, ~Q). Furthermore, the constraint submanifold ~Q-I(c) C T*Q is first class. 

Let ~: Q + T*Q be a closed l-form. By virtue of the definition (2.1) of @Q, 

it follows that the image a(Q) of Q under ~ is an isotropic submanifold of 

(T'Q, ~Q): 

~*~Q = da*@Q = d ~  = O. 

In fact, a ( Q )  is maximally isotropic and hence Lagrangiano If a were only densely 

defined, however, then the image of a would be merely isotropic. 

Thus the zero-section Q of T*Q provides a natural example of a Lagrangian con- 

straint submanifold. Also, for each m e Q, the fiber ~Q-l(m) is a Lagrangian sub- 

manifold. A Lagrangian submanifold, as these examples indicate, generalizes the 

classical coordinate and momentum representations. 
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IV. Canonical Dynamics o~ Presymplectic Systems 

The presymplectic form ~ and the phasespace M have only kinematical signifi- 

cance -- the dynam/cs of the physical system (M, ~) is determined by specifying on 

M a closed 1-form a, the Hamiltonian form. One then solves the generalized Hamilton 

equations 

i(x)w = ~ (4.1) 

for the evolution vectorfield X. Once X has been determined, one appeals to the 

standard results of differential equation theory in order to integrate X, thereby 

obtaining the dynamical trajectories of the system in phasespace. 

When (M, m) is strongly symplectic, the induced map ~ : TM ÷ T*M is an isomor- 

phism. Consequently, in this case (4.1) possesses a unique solution X = ¢-I(~)• 

Since X is every where defined and smooth, it gives rise to a unique local flow 

[20] 
We now calculate the local representative of X in the strongly symplectic case. 

Let V be a (contractible) chart on M, and suppose for simplicity that M is Hilbert- 

able. Then, Darboux's Theorem [2~ asserts the existence of a reflexive Banach 

space F and a chart UC F such that 

Furthermore, since V is contractible, alV =-dH, where H is the ordinary Hamiltonian. 

If m = (x, o) E T'U, and Y = b e • c F x F* is a vector at (x, o), then 

iy~(m) = - DH(x, o)'(b (9 T) 

= - ~s(x, o)'b - bS(x, o)'T. 

Similarly, writing X(x, ~) = a 69 ~ ~ F x F*, (2.4b) yields 

iyi~(m) = ~u(X, o)" (a 69 ~, b (9 T) 

= <biT> - <afT>. 

Comparing this expression with the previous one, equation (4.1) implies that the 

local representative of X is 

X(x, ~)= DH(x, ~) 69-DH(x, o). 

In the finite-dimensional case, this reduces to 
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~H ~ 8H 

~Pi ~qz ~q~" ~Pi " 

the integral curves of which are found by solving Hamilton's equations: 

dq i ~H ~ ~H 

dt ~ • ~ - ° 

Turning now to the presymplectic case, there are four major difficulties one 

encounterS when trying to solve the generalized Hamilton equations associated with 

a presymplectic dynamical system (M, ~, a): 

(i) These equations are typically inconsistent and consequently will not 

possess globally defined solutions; if an evolution vectorfield X exists 

at all, then in general it will be defined only on some g-submanifold N 

of M [223; 

(ii) X does not necessarily define a differential equation on N, that is, 

X ~ T~_ in general; 

(iii) The solution X, if it exists, need not be unique; and 

(iv) X will usually be discontinuous so that it may not possess even a 

locally defined flow. 

Difficulty (i), the existence problem, is encountered even in well-behaved 

systems, e.g., the Klein-Gordon field, for which M = H I Q L 2. and N = H 2 ~ H I* . 

Physically, N is to be regarded as a constraint g-submanifold, that is, N-~ M con- 

sists of those states of the system which are physically realizable. The implica- 

tion is that states in M not contained in ~ are ~namically inaccessible to the 

system, since the equations of motion cannot be integrated at such points. 

The constraint problem (ii) is of fundamental significance, and in the degen- 

erate case presents the major obstacle to solving the equations (4.1). The 

generalized Hamilton equations are to be considered as evolution equations for the 

system, and hence must be differential equations. However, in order for the vector- 

field X to be interpretable as a differential equation, it is necessary that X be 

"tangent" to N in the sense that X ~ T_~_--. In other words, if X is to describe the 

evolution of the system in phasespace, then it must generate a (local) flow. Since 

X is defined only along the g-submanifold N, it can (at best) give rise to a flow on 

N -- only if X is tangent to ~. Physically this has the interpretation that the 

motion of the system is constrained to lie in N. 

The existence and constraint problems will be the subjects of the next section, 

while (iii), the uniqueness problem -- which signals the presence of gauge degrees 

of freedom in the theory -- has been discussed elsewhere [8, 9]. 

The integration problem (iv) can be very severe for presymplectic systems as 

well. As discussed above, the interpretation of equations (4.1) as evolution 
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equations requires that X be integrable, i.e., X must give rise to a well-defined 

(possibly local) flow. The demand that X be tangent to N gives a necessary, but 

certainly not sufficient, condition for X to be integrable. The difficulty is that 

X is not necessarily continuous (as it may not be defined globally; e.g., the Klein- 

Gordon field) so that the standard theorems on the existence and uniqueness of flows 

of vector fields are not applicable. Unlike difficulties (i) - (iii), the integra- 

tion problem lies mainly outside the province of symplectic geometry and is better 

considered from the viewpoint of global analysis and the theory of partial differ- 

ential equations [15]. Consequently, this problem will not be considered further 

here. 

In this paper, techniques will be developed which will (eventually) enable one 

to "solve" problems (i) - (iii). In view of the first difficulty, however, the 

initial step in the "solution" must be to answer the question: "What does one 

mean by 'consistent equations of motion,' and how does one obtain and solve such 

equations?" 

V. The Presym~leatic Constraint Algorithm 

In this section we present an improved version of our presymplectic constraint 

algorithm [7-9] which correctly handles the infinite dimensional case where the 

evolution may be defined only on a dense subset rather than globally. Given a 

presympleetic dynamical system (MI, ~I, al), our procedure will be used to 

select a certain g-submanifold N of M 1 upon which one can define and solve "consis- 

tent equations of motion." More precisely, this technique will provide necessary 

and sufficient conditions for the existence of a g-submanifold N of M 1 such that 

the equations 

i(X)~1 = ~i (5.1) 

hold when restricted to N, i.e., 

[i(X)~l - aI ]IN = O, 

with X tangent to N. 

Begin by noting that if ~I is everywhere contained in the range of ~I, then 

the required solution (not necessarily unique) of the equations (5.1) is simply any 

smooth element of ~I{~i}. In the generic case, however, this will not be so. But 

there may exist points of M I (such points being assumed to form a g-submanifold M 2 

of MI) , for which ~IIM2 is in the range of ~IIM2. One is thus led to try and solve 

equation (5.1) restricted to M2, i.e., 

[iCx)~1 - ~I]IM2 = 0. (5.~) 
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Equation (5.2) evidently possesses solutions, but only in an algebraic sense. 

In accord with the discussion of the constraint problem in §IV, one must demand 

that X solve (5.2) in a differential sense, viz., that X c ~.T--M2M--2 , or else the 

equations of motion will try to evolve the system "off M2" into an unphysical 

domain. 

This requirement will not necessarily be satisfied, forcing a further restric- 

tion of (5.1) to the g-submanifold M 3 of M 2 defined by 

M3: = {m c M 2 such that ~(m) ~ TM2~}, 

with the shorthand notation T~ =: TP. It must now be ensured that the solution to 

(5.1) restricted to M 3 is in fact tangent to M3; this will in general necessitate 

yet more restrictions. 

It is now clear how the algorithm must proceed. A string of constraint 

g-submani fold~ [22] 

J3 J2 
•..÷ M 3 -~ M 2 ÷ M I 

is generated, defined as follows: 

Ml+l: = {m ~ M l such that al(m# ~ -TM£~}. 

Once the constraint algorithm so defined is set into motion, only one of four 

distinct possibilities may occur. They are: 

Case 1: There exists a K such that M K = ~; 

Case 2: Eventually, the algorithm produces a g-submanifold M K # ~ such that 

dim M K = O; 

Case 3: There exists a K such that M K = MK+ 1 with dim M K # O; and 

Case 4: The algorithm does not terminate. 

In the first case, M K = ~ means that the generalized Hamilton equations (5.1) 

have no solutions at all in any sense. In principle, this means that (M I, ~I, a]) 

does not accurately describe the dynamics of any system. 

The second possibility results in a constraint g-submanifold which consists of 

isolated points. The equations (5.1) are consistent, but the only possible solution 

is X = 0 and there is no dynamics. 

For case three, one has a constraint g-suhmanifold M K and completely consistent 

equations of motion on M K of the form 

[ia) 1 x = o, (s• s) 

with X tangent to MK" It is this g-submanifold M K (the final constraint 
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g-submanifold) which corresponds to the g-submanifold N discussed in §III. 

The situation described in case four is only possible for systems with an 

infinite number of degrees of freedom. In this circumstance, the final constraint 

g-submanifold can be taken to be the intersection M of all the g-submanifolds M I. 

One then recovers cases (i) - (3) depending upon whether M = 4, dim M = 0, or 

O < dim M ~ ~. 

If the algorithm terminates with some final constraint g-submanifold 

M X (I J K ~ ~), then by construction one is assured that at least one solution X 

to the canonical equations exists and furthermore that this solution is tangent to 

MK" Note that X need not be unique, for one can add to it any element of 

ker ~i A T M]IM. In addition, it is obvious, again by construction, that the final 

constraint @-submanifold is maximal in the following sense: if N is any other sub- 

manifold along which the equations (5.1) are satisfied, then N C M K. 

We have shown [7] that this constraint algorithm generalizes the local Dirac- 

Bergmann theory of constraints [6]. Indeed, it is possible to characterize the 

closures of the constraint g-submanifolds M£~as follows: 

M~ = {m g M~-I such that <Zlal>(m) : 0 for all Z s TM2_ l }. 

The constraint functions <TM~_ I l al > = 0 which define Ml in Ml-/ are none other 

than Dirac's £-ary constraints. 

This presymplectic constraint algorithm provides a geometrically intuitive and 

conceptt~aily simple method for defining and solving consistent equations of motion 

on a presymplectic manifold. It provides a constructive solution to the existence 

and constraint problems of §IV, and is of very general applicability, requiring 

only that the phasespaees involved be Banach manifolds. 

P~-. Special Presympl~ctic Manifolds 

Here, we broaden Tulczjew's notion of "special symplectic manifold" [I, 23] 

so as to encompass the presymplectic formalism necessary for the description of 

completely general dynamical systems. 

A special sy~lectic manifold is a quintuple (P, p, M, %, ~), where p: P -~ M 

is a fiber bundle, ~ is a l-form on P, and v is a fiber-preserving diffeomorphism 

P + T*M such that ~*@M = ~" 

Essentially, one is transferring the symplectia structure on T*M to P via ~. 

The 2-form dh on P is weakly nondegenerate, and strongly nondegenerate iff M is 

reflexive. 

A special presymplectic manifold is obtained by relaxing the requirement that 

be a diffeomorphism. A special presymplectic manifold is therefore a degenerate 

"copy" of a cotangent bundle. 
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Example i: If Q is the configuration space of a physical system, then momentum 

phasespace (T'Q, ~Q, Q, @Q, idQ) is a special symplectic manifold. 

Example 2: The Lagrangian system (TQ, TQ, Q, FL*@Q, FL) is a special presym- 

plectic manifold, where L: TQ ÷ R is the Lagrangian. In a bundle chart U x F for TQ, 

one has 

FS*eq(u, e) = DL(u, e) @ O. 

~L. ~i] 
[In finite-dimensions, FL*gQ = ~ql aq j. The 2-form dFL*@Q is strongly (weakly) sym- 

plectic iff the velocity Hessian DDL(u, e), viewed as a linear map F + F*, is 

strongly (weakly) nondegenerate ~4]. 

Example 3: Let (M, ~) be a presymplectic manifold. Then (TM, TM, M, ~M*@M, ~M) 

is a special presymplectic manifold, where ~M is the map of TM to T*M induced by ~. 

The presymplectic structure d~q*g M on TM is denoted ~. 

~M 

TM ~ T*M 

M 

Consider the special case M = T*Q. The local representative 

~T*U: U x F* x F x F* -~ U x F* x F* × F** 

of ~T*Q: T(T*Q) ÷ T*(T*Q) is 

~T~ U (x, o, e, ~) = (x, o, ~, -e). 

Consequently, one has 

h(x, ~, e, ~) = (% -e) e (0, 0). 

In a finite-dimensional natural bundle chart (T(T*U); qi .i Pi" q " Pi )" this expres- 

sion becomes 

"id . 
= Pi d~ - q Pi 

Example 4: If U C F is a chart for Q, then 

T(T*U) = U x F* x F x F*, 
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while 

T*(TU) = U x F x F* x F*. 

The map t: U x F* x F x F* ÷ U x F x F* x F* given in charts by 

t(x, % e, ~) = (x, e, ~, ~) 

extends to a well-defined diffeomorphism t: T(T*Q) ÷ T*(TQ) (for an intrinsic 

definition of t, see ref [2]). Since the diagram 

T(T*Q) ~ T*(TQ) 

~Q 

commutes, it follows that (T(T*Q), T~Q, TQ, t*@TQ, 

fold. Here, 

t) is a special symplectic mani- 

~(x, o, e, ~) = (~, O) ~ (% O) 

or, in finite-dimensions, 

• i d~i. 
h = Pidq + Pi 

Combining examples (3) and (4), one sees that T(T*Q) can be realized as a 

special presymplectic manifold in two completely different ways. This fact is of 

fundamental significance for mechanics, since it provides the geometric link 

between the Hamiltonian and Lagrangian formalisms in terms of which the Legendre 

transformation is defined (cf §VIII). Note, however, that both special presym- 

plectic structures on T(T*Q) give rise to the same symplectic structure, since 

d~T,Q*OT, Q = ~ = dt*OTQ. 

Of particular importance for dynamics are the isotropic g-~ubmanifolds of 

special presymplectic manifolds. Generalizing the construction at the end of §III, 

one has the following interpretation of such g-submanifolds in terms of generating 

forms. 

Theorem [~niatycki and Tulczyjew]: Let (P, p, M, ~, ~) be a special presym- 

plectic manifold, JN: N ÷ M a g-submanifold of M, and ~ a closed l-form on N. 

Define V(a) = {y s p-I(jN(N))I<ZI%> = <ula> for all Z c TuP and u s TN with 

Tp(Z) = u}. Then N(a) is an isotropic g-submanifold of (P, d%) with inclusion J0' 
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the map PD defined by the commutative diagram 

JD 
D(~) + P 

N + M 

J~ 

is a submersion, the fibers of PD are connected, and jD*k = pD*e. 

Conversely, suppose that D is an isotropic g-submanifold of (P, dk) with inclu- 

sion j~ such that N := pojD(D) is a g-submanifold of M and the induced projection 

p~ defined by the commutative diagram 

JD 
D ............. , P 

N .... ~ M 

JN 

is a submersion with connected fibers. Then there exists a unique closed l-form 

a on M such that jD*h = pD*~. Furthermore, ~ ~ D(a). 

The 1-form ~ is the generating fo~ of D(a), and D(~) is said to be generated 

by a. Symbolically, we write 

D(a) = V-I{a(N) + TN ~}. 

If N happens to be a Banach submanifold of M, then ~(~) is actually Lagrangian. 

The proof of the above result, given in [23] for submanifolds of special 

symplectic manifolds, in fact holds for generalized submanifolds of special p__re- 

symplectic manifolds. 

Example 5: Let L: TQ + ~ be a Lagrangian. According to the above theorem, 

the Lagrangian submanifold ~(dLJ of (T(T*Q), T~Qj TQ, t*OTQ , t) generated by dL is 

defined by t~@TQ = T~Q*(dL). In a natural bundle chart (T(T*U); qi, Pi" q'i" ~i), 

this becomes 

• i .i 
Pidq + Pid~ = dL, 

or, more suggestively , 

~L 3L 
Pi = ~qi • Pi = ~q" " 
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Example 6: Let N be a Banach submanifold of T'Q, and H: N ÷ ~ a Hamiltonian. 

The exact l-form -cSf generates an isotropic submanifold Df-c~f) of (T(T*Q), TT,Q, 

T'Q, ~T,Q*@T,Q, ~T,Q). In the natural bundle chart of Example[5], N may be 

described by the vanishing of certain functions Sa(q, p), a = 1, ..., codim N. 

~(-~) is then locally given by ~T,Q~@T,Q = -rT,Q*~ subject to the constraints 

~a = 0. Using Lagrange multipliers, one has the local expressions 

ki ~ ~_~ + ~ ~ ~_~ 
~P i ~P i 

= - ~qi - k~ aqi " 

where ~ is any extension of H to T*Q. Physically, N = FL(TQ) is Dirac's primary 

constraint submanifold, the Sa are primary constraints, and the above two equations 

are the Dirac-Hamilton equations of motion (cf. [6], [9] and §VIII). 

VII. Generalized Constraint Algorithm 

Let (MI, ~I, ~i ) be a presymplectic dynamical system, and consider the 

generalized Hamilton equations 

i(X)~i = ai. (7.1) 

We now restate the presymplectic constraint algorithm of §V, which provides the 

necessary and sufficient conditions for the solvability of (7.1), in terms of 

special presymplectic manifolds. 

Construct the special presymplectic manifold (TM1, TI, MI, ~l*@Ij ~1 ) ,  where 

~I: TMI ÷ TMI ~ is the map induced by ml. The closed l-forma I on M 1 generates, 

according to the theorem in the last section, an isotropic g-submanifold 

D i = ~i-i{ai(Ml)} 

of (TMI, ~l). The secondary constraint g-submanifold 

g2 = TI(N1) 

consists of those points of M I along which there exist algebraic solutions Y of 

(7.1), viewed as smooth sections of 91 . 

The g-submanifold 91 will be a diffe~ntial equation with respect to M 2 -- 

that is, vector fields X: M 2 ÷ 91 will solve (7.1) in a differential sense -- iff 

the integrability conditions 

h c 
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are satisfied. If this is not the case, then one must restrict attention to the 

subset 

9z = ~ N TM~ 

of TM I . 

The motion of the system is thereby constrained to lie in the closure of the 

tertiary constraint g-submanifold. 

M 3 = T1(9 2) 

of M 1 . Demanding that ~2 be tangent to M3 (i.e., ~2 ~TM3) may necessitate a 

further restriction to 93 = 92 O TM 3 etc. 

Thus, the algorithm leads to a sequence of isotropic constraint g-submanifolds 

M£ given by 

M£ = ~i(~£_i) , (7.2) 

where 

and 

91 = ~il{~1(M1)}. 

If the algorithm terminates with some non-empty final constraint g-submanifold 

M K (1 ~ K ~ ~), then 9 K = ~+1 ~ ~MK" Consequently, there exists at least one solu- 

tion X e ~M K such that 

[ - a131M  = o (7.4) 

The fact that ~K is not usually transverse to the fibers of ~ is indicative 

of the generic non-uniqueness of the evolution vectorfield X. Specifically, X is 

unique iff the fiber dimension of D K N~MKM is everywhere unity, in which case the 

canonical system (MI, ~I, M K) is second class. 

There are two regularity conditions that must be satisfied for the successful 

application of the algorithm: (i) Each set TI(D£_ I) must be a g-submanifold of M I, 

and (ii) The fibers of 9£_ 7 over TI(V£_ 7) must be isomorphic [24]. If, at the £th 

step of the algorithm, either of these two conditions fails to hold, then one must 

judiciously choose a g-submanifold M£' of TI(~£_ 7) such that the fibers of ~_71M£' 
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are isomorphic and then proceed with the algorithm applied to M£'. A proper treat- 

ment of such singularities, which is necessary for the correct physical interpreta- 

tion of certain systems, will be given elsewhere [25] (see also [13]). 

The above technique should be compared with that proposed by Menzio and 

Tulczyjew [4]. From the presymplectic standpoint, the integrability conditions 

peg Y ~ c s g ) ] .  

a r e  a p p l i e d  d u r i n g  t h e  c o u r s e  of  t h e  a l g o r i t h m  and c o n s e q u e n t l y  a r e  a u t o m a t i c a l l  Z 

s a t i s f i e d  on t h e  f i n a l  c o n s t r a i n t  g - s u b m a n i f o l d  M K, i . e . ,  i f  M K e x i s t s ,  t h e n  by c o n -  

s t r u c t i o n  

v~ a ~[~ ~ ~vx) ] . 

Therefore, integrability has no relation to the class of the canonical system 

We note that this generalized constraint algorithm is applicable to any dynami- 

cal system determined by the specification of a submanifold 91 of "admissible" vec- 

tor fields. Eqns. (7.2, 7.3) contain the essence of the Dirae constraint problem and 

are quite independent of the origin of ~l" 

VIII. Applications 

(I) The L~rangian Formulation of Mechanics 

Let Q be the configuration space of a physical system, and f~ its velocity 

phase space. We want to include the case of field dynamics, where the Lagrangian 

may be only densely defined. Typically, one takes the domain of L to be the 

restriction TcQ , where C is a manifold domain in Q. 

For w s T~, we define the energy E: TcQ + ~ of L by 

E(W) : <wlFL(W)> - L(w), 

where the Legendre transformation FL: TcQ ÷ T*Q is given by (2.6). 

back to T~, one obtains a generically pres}nnplectic form gL = FL*~Q. 

to define and solve consistent Lagrange equations of the form 

Pulling f~Q 

Our task is 

i a)~ L = _dE. 18. J) 

Consider the special presymplectic manifold (T(TcQ) , TT~, T~, ~L*OT~, ~L ), 

where ~L: T(TcQ) + T*(TCQ) is induced by ~L" The 1-form -dE on T~ generates an 

isotropic g-submanifold 91 = ~I{-dE(T6~)} of (T(T6~), ~L ). The constraint algo- 

rithm, applied to 91, then proceeds as in §VII, eventually (if the problem is 

solvable) producing a differential equation ~K~ 91 and a final constraint 
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g-submanifold ~Tj(DK) of TJ~. 
X: ~TcQ(~K) ~+ DK such that 

One is then assured of the existence of a section 

[i(x)a L + dE]ITToQ~V / = o. (s.2J 

(2) The Second-Order Equation Problem 

The consistent Lagrange equations that follow from the constraint algorithm are 

typically a set of coupled first-order differential equations -- a feature of 

theories which are described mathematically by presymplectic geometries. Variational 

as well as physical considerations demand, however, that the Lagrange equations be a 

set of coupled second-order differential equations. Specifically, the equations of 

motion (8.1) will follow from a variational principle iff the second-order equation 
condition 

Tr¢ ~(X) = r{~QImoQ) (x) (s. s) 

holds at every point in the domain of X [26]. 

It is therefore necessary to find the conditions under which the Lagrange 

equations (8.2) admit solutions which are in fact second-order equations. Formally, 

special presymplectic techniques combined with the constraint algorithm allow us to 

easily solve this problem. Indeed, define 

T~Q = {X ~ T(TcQ) I(8.3) holds}. 

The isotropic g-submanifold 

consists of those vectors which satisfy both (8.1) and (8.3) along TTcQ(D{). 
Applying the constraint algorithm to D~, one obtains a second-order differential 

equation V F whose sections are solutions of the Lagrange equations along ~). 

Typically, however, 

where D K is as in example (i) above. Furthermore, it may happen that ~F = $ ~ ~K; 
and in the case V~# $, there may not exist globally smooth sections ~T~V~) ~ ~F 
even though s~ch seetlons of ~T~/ ÷ ~X e~ist. Elsewhere [2J we have, subject 

to certain regularity conditions, proved the existence of, as well as classified, 
r 

certain g-submanifolds of TTcQ(~ F) along whic~ smooth sections exist. 
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(3) The Hamiltonian Formulation of Mechanics [27] 

Given a Lagrangian L on the restricted velocity phasespace TcQ, one may 

Legendre transform to the Hamiltonian description as follows: the 1-form dL on T~ 

generates an isotropic g-submanifold A = t-]{dL(TcQ)} of the special symplectic mani- 

fold (T(T*Q), T~Q, TQ, t*@TQ, t). However, TfT*Q) may be viewed as a special pre- 

symplectic manifold (TfT*Q), TT,Q, T'Q, ~T~Q*OT,Q, ~T,Q). The g-submanifold TT,Q(A) 
of T*Q is the primar~ constraint g-submanifold M 1 of the Dirac-Bergmann theory. 

Indeed, 

~T*Q (A) = ~T*Q o t-lo dL(TcQ ) 

= Ff,(F~) 

as may be verified in charts. These constructions are summarized in the following 

diagram: 

t CT*Q 
T*(TQ) T(T*Q) -: T*(T*Q) 

X,, //// 
dL \~ TQ T Q / a I 

\,, / /  
, ,  T T / 

" i l :  
Tc~ , rT~ ~ (A) 

If the projection A ÷ ~T,Q(A) is a submersion whose fibers are connected [28], 

then A is generated by a unique closed 1-form al on M 1 = TT,QfA) [29], The form ~I 

is the Hamiltonian l-form for the presymplectic Hamiltonian system (M I, ~I), where 

Jl: M1 ÷ T*Q is the inclusion and ~I = jI*~Q. 

There are two equivalent ways to proceed with a Hamiltonian analysis of the 

system. For example, one may apply the algorithm directly to A, effectively 

generating solutions of 

i(X)~Q = ~I, 

where ~i is any extension of ~I on M I to T*Q. One thus obtains a symplectic version 

of the Dirac-Bergmann technique [6, 7]. Note, however, that this method only relies 

upon the existence of A, not the Hamiltonian 1-form ~I" Consequently, one has here 

a way to do Hamiltonian dynamics without ever mentioning Hamiltonians. 

On the other hand, one may proceed more in the spirit of §VII by directly 

solving the Hamilton equations 



i(X)~1 = al  

associated to (M1, u l ,  ~1) .  

9? 

In this case, the constraint algorithm is directly 

applied to the isotropic g-submanifeld ~'~I{aI(MI)} of the special presymplectic 

manifold (TMI, TI, MI, ~i*@ ~). 
M I" 

The Proca Field 

As a concrete example of the generalized constraint algorithm applied to an 

infinite-dimensional second class system, we now work out the details for the Proca 

field in the Hamiltonian formulation. 

The 3 + 1 decomposed Proca Lagrangian is 

L(A.A) = ½ f~3 (~Ai)2 - 2(VAi)'A + A -(VxA) 2 + m2A 2 - m2~2}d~, 

where the vector field A is decomposed A : (Ai, ~), ~3 denotes a constant-time 

Cauchy surface in Minkowski spacetime and ~ is some measure on ~3. 

One must first decide on a choice for velocity phasespace. The configuration 

space should be some Hilbert space of all four-vectors (AI~ ~). As L contains at 

most first spatial derivatives of A, an appropriate choice for configuration space 

is the manifold domain 

c = × ; t  

of 

Q = L~ × ~2, 

with the obvious notational shorthand, where H I is the first Sobolev space on ~3 

Velocity phasespace, that is, the manifold of all (A,A) is then the restriction of 

TQ to C: 

as no spatial derivatives of A appear in L. The measure ~ can then be taken to be 

the ordinary L 2 measure on ~3 

To Legendre transform to the Hamiltonian description a la example (3), we must 

calculate dL. For (A,A) ¢ ToQ and o(gb ~ T(TcQ), 
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- >  
-->- 

+ (74 V A ± ) . ~  ÷ ÷ ÷ - - (vxa) (VxA) " 

+ m2Aia I - m2~.~}dv 

Appealing to the theorem of §VI, one finds that the isotropic g-submanifold 

dL(T6~) Ci T*(TQ) consists of those points 

(A,A) ~D (o, "r~) E (CxQ) @ (Q*xQ*) 

such that 

<a l o> = i~3{(VAA-A)'Val + m2A±al 

- (VxA). (Vxa) - m2~.~}dv 

<b'l~> = f~3 :-~ -~Ai)'g dv 

for arbitrary a s C and b ~ Q. Here, the natural pairing < I >: 

defined by 

<(A,A)[(A,~)> = f~3{J'7 + Al~z}dv. 

According to (8.5), (8.4b) implies that 

~I = 0 .  

A p p l y i n g  t - 1 ,  we have  t h a t  

A = t- I{dL(TcQ) }a T(T*Q) 

consists of those points 

(A,~) (9 (A,o) e (Cx~ 2.) (D (QxQ*) 

for which (8.4a, b) hold with ~ = (0,~). 

Viewing A as an isotropic g-submanifold of the special symplectie manifold 

(T(T*Q), TT,Q, T'Q, ~T,Q*OT,Q, ~T,Q), one finds that the primary constraint 

g-submanifold M I = TT,Q(A) of T*Q is 

(8.4a) 

(8.4b) 

T@ x T*@ + #¢ is 

(8..5) 

(8. S) 
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-> 

M I = C × L 2.. 

The condition (8.6) is therefore a primary constraint. 

The induced projection A ÷ M 1 is clearly a submersion whose fibers are con- 

nected. Thus, A is generated by a closed 1-form al on M I. In fact, el = -dHl, 

where the Hamiltonian H 1 on M 1 is 

}{3{7[2 -~ ÷ + + HI(A,~) = 9/ -> + 2(VAI)'~ + (V×A) 2 - m2A 2 + m212}d v 

for (A,~) ¢ M I (cf. [29]). 

We now apply the constraint algorithm to solve the f~eld equations 

i(x)~ 1 = -d~ 1 (8.7) 

of the presymplectic dynamical system (MI, ~I, dHl)', where Jl: MI + T*Q is the 

inclusion and ~i = JI*~Q . 

The first step is to calculate the isotropic g-submanifold ~I = ~II{-dHI(MI )} 

of (TMI, TI, MI, ~I~@M~ ~i). If (A,~) e M I and b e T e TMI, 

+ (~A,).7 + (~×~). (~×~) 

- m2Alb i + m2~'~}dv. (8.8) 

Writing X(A,~) = a 69 o ¢ TMI, (8.7) becomes 

~1(ae~, ~) I (A, ~) = -dHI (A, ~)" (~9~) . (8.9) 

From the definition of ~I, (2.4b) and (8.5), 

~(a+o, b+~)l(A,~) =/~3{~'~ ~ ~ - a.T}dv • 

Substituting this expression into (8.9), and then comparing with (8.8), one calcu- 

lates 

X(A,~) = (al, ~+ ~A I) ~9 (0, A~ - ~(~.7) - m2~) (8.10) 

iff 
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~.~ + m2A± = 0 • 

+ 4 1  
Note that these formal expressions are well-defined iff ~f E ~2 and ~ ~ H *. 

Pl = {(A,~) G (a,q) ~ [(H~x~2)x~ I*] G [(Hll×~l)x~2~] 

such that 

+ + 
a = (a±, ~ + VAi) , 

0 = ( 0 ,  ~ + + + 2 ~  V(V.A) - m A), 

and 

+ + 
V.~ + m2A± = 0}. 

(s. IJ) 

Thus 9 we 

Proceeding with the algorithm, the secondary constraint g-submanifold 

M 2 = TI(~ I) along which algebraic solutions X to (8.7) exist is 

M 2 = {(A,~) ~ (H I x ~2) × ~I* I (8.11) holds}. 

We now check the integrability conditions: is 91 C_ T__M2M ? 

= {(A,~) e (a,a) e TMII (8.11) holds and ~.~ + m2a i = 0}. 

From the definition of 91, however, 

~''~ + meal = ~'{A~ - ~(~.~) - m2~} + m2a± 

= m 2 {a± -~oA  "} ~ O, 

so that 91 ~ T M_2 M . Thus, we consider 

P2 = I)I nT__~2 N 

= {(A,~) @ Ca, o) E Pll az ~ 0}. 
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Calculating the tertiary constraint g-submanifold M3, we have 

M3 = TI(D2) = M2, 

and M 2 is the final constraint g-submanifold. 

Thus, the constraint algorithm terminates, and we are assured that at least one 

solution X to (8.7) restricted to M 2 exists. From (8.10) and the expression for 02, 

one finds for (A,~) ~ ?4 2 

÷ - V(V.A) - 

These are just the Proca equations: 

-+ ÷ 

dAi/dt =- a± = V.A 

d~/dt - ~ = ~ + ~A I 

d~±/d~ ~ b i = 0 

d~/dt ~ ~ ~A + ÷ ~) m2~. = - V ( V .  - 

Clearly, X is unique. That the Proca equations give rise to a well-defined flow on 

M-~ follows from the hyperbolic version of the Hille-Yoshida Theorem [15]. 

The Proca canonical system is thus (MI, ~I, M2) and is second class. Indeed, 

let (A, ~) e M 2 and b ~9 • ~ TM I. Then b e T e TM~ iff 

= .o - a'T}d~. 

for arbitrary a~o ~ T__~M. Taking aO~ = (0,~) ~) 0, the above expression will vanish 
-+ -> -~ 

iff ~ = 0. On the other hand, if aes = (-m-2V.a, -~) ~ (0,¢7), then this expression 

is zero iff ~ = 0. Consequently, ~ ~ TMI2 iff b O r = (b, -0) + O. But such a 

b ~9 T is an element of ~ iff b I = 0. Thus, ~ N TM I = {0} and the Proca canoni- 

cal system is weakly symplectic. 

Appendix 

Lisp of S~mbo~s 
a*@ pullback of @ by a 

d exterior derivative 

D Frechet derivative 

D/D partial Freehet derivative along the base/fiber of a fiber bundle 
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FL Legendre transformation TQ ÷ T*Q induced by L 

H n nth Sobolev space on ~3 

@Q canonical 1-form on T~Q 

i interior product 

topological closure of N 

~Q cotangent bundle projection T*Q ÷ Q 

t canonical diffeomorphism T(T*Q) ÷ T*(TQ) 

T tangent funct or 

Tf pushforward, prolongation of f 

T~ restriction of TQ to C C_ Q, TQ[ C 

TM tangent bundle of M; set of all smooth vectorfields on M 

TN image Tj(TN) of TN in TM, where j: N + M is an inclusion 

TN ~ image of TN in T*M under 

TN i symplectic complement of TN in TM 

TN ~- annihilator of TN in T*M 

T2Q the diagonal  in T(2Q) 

T*Q cotangent bundle of Q; set of all smooth l-forms on Q 

TQ tangent bundle projection TQ + Q 

~,¢01 presymplectic forms 

"special" presymplectic form on the tangent bundle of a presymplectie 

mani foid 

~Q canonical symplectic form on T*Q 

~L symplectic form on TQ; FL*~Q 

~M map TM -+ T*M induced by the presymplectic form ~ on M 

< I > dualization TM x T*M-~ 

dualization E x E* ~+ ~ for Banach spaces 

I restriction (not pullback) 

Terminology and Conventions 

All manifolds and maps appearing in this paper are assumed to be C =. 

The symbol TM (T'M) denotes both the tangent (cotangent) bundle of M and the 

space of all smooth vectorfields (1-forms) on M. Usually, lower-case italic letters 

will refer to tangent vectors, while upper-case italics will denote vectorfields. 

Let Q be a manifold, T : TQ -~ Q its tangent bundle, and (U;q z) a chart on Q. 
Qi . i 

For W s TmQ , the chart (TU;q ,q ) on TQ defined by 

qi (w) = q io~Q(w) 

~i (w) = ~w ] dqi> 
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is said to be a natural bundle chart. One can similarly define natural bundle 

charts on cotangent bundles and higher-order bundles. 

Let j: N ÷ M be a map of a Banaeh manifold N into a Banach manifold M. The 

pair (N,j) is said to be a 

(i) Banach 8ubmanifold of M if j is an injective immersion (i.e., both j and Tj 

are injective and Tj(TN) splits in Tf4), 

(ii) manifold domain of M if both j and Tj are injective and have dense range, 

(iii) submanifold domain of M if (N, j) is a manifold domain of the injectively 

immersed submanifold N of M, and 

(iv) submersion of N onto M if j and Tj are surjective and ker Tj splits in TN. 

Throughout this paper, the term generalized s~bmanifold ("g-submanifold") refers to 

any pair (N, j) which is a Banach submanifold, a manifold domain or a submanifold 

domain. 

We now briefly explain how one calculates locally, following Refs. [15] and 

[20]. If U CE is a chart on a manifold Q, then T*U = U x E* is a chart on T'Q, 

and a point m £ T*Q has the local representation m = (xjo) where x ~ U, a g E *. A 

chart on T(T*Q) is T(T*U) = (U × E*) 69 (E × E*). Thus a tangent vector X to T*Q 

has the local representation x(m) = (x~o) ~ (a, w) where a £ E and w ~ E*. We will 

often suppress the base point (x,o) and simply write this as X =: a ~ W. Thus, for 

example, if e is a l-form on T'Q, the interior product i(X)~(m) is written locally 

as a(x,c)'(a ~ ~). 

In general, we try to keep our notation and terminology consistent with that of 

references ~4], [15] and [20]. 
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