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66 Interlude I

II—CANONICAL ANALYSIS OF FIELD THEORIES

With the covariant formulation in hand from the first part of this book, we be-
gin in this second part to study the canonical (or “instantaneous”) formulation
of classical field theories. The canonical formulation works with fields defined
as time-evolving cross sections of bundles over a Cauchy surface, rather than as
sections of bundles over spacetime as in the covariant formulation. More pre-
cisely, for a given classical field theory, the (infinite-dimensional) instantaneous
configuration space consists of the set YΣ of all smooth sections of a specified
bundle YΣ over a Cauchy surface Σ, and a solution to the field equations is
represented by a trajectory in YΣ. As in classical mechanics, the Lagrangian
formulation of the field equations of a classical field theory is defined on the tan-
gent bundle TYΣ, and the Hamiltonian formulation is defined on the cotangent
bundle T ∗YΣ, which has a canonically defined symplectic structure ωΣ.

To relate the canonical and the covariant approaches to classical field theory,
we start in Chapter 5 by discussing embeddings Σ → X of Cauchy surfaces in
spacetime, and considering the corresponding pull-back bundles YΣ → Σ of
the covariant configuration bundle Y → X. We go on in the same chapter to
relate the covariant multisymplectic geometry of (Z,Ω) to the instantaneous
symplectic geometry of (T ∗YΣ, ωΣ) by showing that the multisymplectic form
Ω on Z naturally induces the symplectic form ωΣ on T ∗YΣ.

The discussion in Chapter 5 concerns primarily kinematical structures, such
as spaces of fields and their geometries, but does not involve the action principle
or the field equations for a given classical field theory. In Chapter 6, we pro-
ceed to consider field dynamics. A crucial feature of our discussion here is the
degeneracy of the Lagrangian functionals for the field theories of interest. As a
consequence of this degeneracy, we have constraints on the choice of initial data,
and gauge freedom in the evolution of the fields. Chapter 6 considers the role
of initial value constraints and gauge transformations in field dynamics. The
discussion is framed primarily in the Hamiltonian formulation of the dynamics.

One of the primary goals of this work is to show how momentum maps
are used in classical field theories which have both initial value constraints and
gauge freedom. In Chapter 7, we begin to do this by describing how the co-
variant momentum maps defined on the multiphase space Z in Part I induce a
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generalization of momentum maps—“energy-momentum maps”—on the instan-
taneous phase spaces T ∗YΣ. We show that for a group action which leaves the
Cauchy surface invariant, this energy-momentum map coincides with the usual
notion of a momentum map. We also show, when the gauge group “includes”
the spacetime diffeomorphism group, that one of the components of the energy-
momentum map corresponding to spacetime diffeomorphisms can be identified
(up to sign) with the Hamiltonian for the theory.

5 Symplectic Structures Associated with

Cauchy Surfaces

The transition from the covariant to the instantaneous formalism once a Cauchy
surface (or a foliation by Cauchy surfaces) has been chosen is a central ingredient
of this work. It will eventually be used to cast the field dynamics into adjoint
form and to determine when the first class constraint set (in the sense of Dirac)
is the zero set of an appropriate energy-momentum map.

5A Cauchy Surfaces and Spaces of Fields

In any particular field theory, we assume there is singled out a class of hyper-
surfaces which we call Cauchy surfaces. We will not give a precise definition
here, but our usage of the term is intended to correspond to its meaning in
general relativity (see, for instance, Hawking and Ellis [1973]).

Let Σ be a compact (oriented, connected) boundaryless n-manifold. We de-
note by Emb(Σ, X) the space of all smooth embeddings of Σ into X. (If the
(n+ 1)-dimensional “spacetime” X carries a nonvariational Lorentz metric, we
then understand Emb(Σ, X) to be the space of smooth spacelike embeddings
of Σ into X.) As usual, many of the formal aspects of the constructions also
work in the noncompact context with asymptotic conditions appropriate to the
allowance of the necessary integrations by parts. However, the analysis neces-
sary to cover the noncompact case need not be trivial; these considerations are
important when dealing with isolated systems or asymptotically flat spacetimes.
See Regge and Teitelboim [1974], Choquet-Bruhat et al. [1979], Śniatycki [1988],
and Ashtekar et al. [1991].

For τ ∈ Emb(Σ, X), let Στ = τ(Σ). The hypersurface Στ will eventually
be a Cauchy surface for the dynamics; we view Σ as a reference or model
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Cauchy surface . We will not need to topologize Emb(Σ, X) in this book;
however, we note that when completed in appropriate Ck or Sobolev topologies,
Emb(Σ, X) and other manifolds of maps introduced below are known to be
smooth manifolds (see, for example, Palais [1968] and Ebin and Marsden [1970]).

If πXK : K → X is a fiber bundle over X, then the space of smooth sections
of the bundle will be denoted by the corresponding script letter, in this case
K. Occasionally, when this notation might be confusing, we will resort to the
notation Γ(K) or Γ(X,K). We let Kτ denote the restriction of the bundle K to
Στ ⊂ X and let the corresponding script letter denote the space of its smooth
sections, in this case Kτ . The collection of all Kτ as τ ranges over Emb(Σ, X)
forms a bundle over Emb(Σ, X) which we will denote KΣ.

The tangent space to K at a point σ is given by

TσK =
{
W : X → VK

∣∣W covers σ
}
, (5A.1)

where VK denotes the vertical tangent bundle of K. See Figure 5.1.

X

σ

W

K

Figure 5.1: A tangent vector W ∈ TσK

Similarly, the smooth cotangent space to K at σ is

T ∗σK =
{
π : X → L(VK,Λn+1X)

∣∣ π covers σ
}
, (5A.2)

where L(VK,Λn+1X) is the vector bundle over K whose fiber at k ∈ Kx is the
set of linear maps from VkK to Λn+1

x X. The natural pairing of T ∗σK with TσK
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is given by integration:

〈π, V 〉 =
∫

X

π(V ). (5A.3)

One obtains similar formulas for Kτ from the above by replacing X with Στ and
K with Kτ throughout (and replacing n+ 1 by n in (5A.2)). See Figure 5.2.

X

K

  

Kτ

Στ

σ

W

Figure 5.2: A tangent vector W ∈ TσKτ

If ξK is any πXK-projectable vector field on K, we define the Lie derivative

of σ ∈ K along ξK to be the element of TσK given by

£ξK
σ = Tσ ◦ ξX − ξK ◦ σ. (5A.4)

Note that −£ξK
σ is exactly the vertical component of ξK ◦ σ. In coordinates

(xµ, kA) on K we have

(£ξK
σ)A = σA

,µξ
µ − ξA ◦ σ, (5A.5)

where ξK = (ξµ, ξA).

Finally, if f is a map K → F(X) we define the “formal” partial derivatives
Dµf : K → F(X) via

Dµf(σ) = f(σ),µ. (5A.6)

Intrinsically, this is the coordinate representation of the differential of the real
valued function f(σ).
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5B Canonical Forms on T ∗Yτ and Zτ

In the instantaneous formalism the configuration space at “time” τ ∈ Emb(Σ, X)
will be denoted Yτ , hereafter called the τ -configuration space . Likewise, the
τ -phase space is T ∗Yτ , the smooth cotangent bundle of Yτ with its canoni-
cal one-form θτ and canonical two-form ωτ . These forms are defined using the
same construction as for ordinary cotangent bundles (see Abraham and Marsden
[1978] or Chernoff and Marsden [1974]). Specifically, we define θτ by

θτ (ϕ, π)(V ) =
∫

Στ

π(TπYτ ,T∗Yτ
· V ) (5B.1)

where (ϕ, π) denotes a point in T ∗Yτ , V ∈ T(ϕ,π)T
∗Yτ and πYτ ,T∗Yτ : T ∗Yτ → Yτ

is the cotangent bundle projection. We define

ωτ = −dθτ . (5B.2)

We now develop coordinate expressions for these forms. To this end choose
a chart

(
x0, x1, . . . , xn

)
on X which is adapted to τ in the sense that Στ is

locally a level set of x0. Then an element π ∈ T ∗ϕYτ , regarded as a map
π : Στ → L(V Yτ ,ΛnΣτ ), is expressible as

π = πA dy
A ⊗ dnx0, (5B.3)

so for the canonical one- and two-forms on T ∗Yτ we get

θτ (ϕ, π) =
∫

Στ

πA dϕ
A ⊗ dnx0 (5B.4)

and
ωτ (ϕ, π) =

∫
Στ

(dϕA ∧ dπA)⊗ dnx0. (5B.5)

For example, if V ∈ T(ϕ,π)(T ∗Yτ ) is given in adapted coordinates by V =
(V A,WA), then we have

θτ (ϕ, π)(V ) =
∫

Στ

πAV
Adnx0.

To relate the symplectic manifold T ∗Yτ to the multisymplectic manifold
Z, we first use the multisymplectic structure on Z to induce a presymplectic
structure on Zτ and then identify T ∗Yτ with the quotient of Zτ by the kernel of
this presymplectic form. Specifically, define the canonical one-form Θτ on
Zτ by

Θτ (σ)(V ) =
∫

Στ

σ∗(iV Θ), (5B.6)
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where σ ∈ Zτ , V ∈ TσZτ , and Θ is the canonical (n + 1)-form on Z given by
(2B.9). The canonical two-form Ωτ on Zτ is

Ωτ = −dΘτ . (5B.7)

Lemma 5B.1. At σ ∈ Zτ and with Ω given by (2B.10), we have

Ωτ (σ)(V,W ) =
∫

Στ

σ∗(iW iV Ω). (5B.8)

Proof. Extend V,W to vector fields V,W on Zτ by fixing πXZ-vertical vector
fields v, w on Zτ such that V = v ◦ σ and W = w ◦ σ and letting V(ρ) = v ◦ ρ
and W(ρ) = w ◦ ρ for ρ ∈ Zτ . Note that if fλ is the flow of w, Fλ(ρ) = fλ ◦ ρ is
the flow of W. Then, from the definition of the bracket in terms of flows, one
finds that

[V,W](ρ) = [v, w] ◦ ρ.

The derivative of Θτ (V) along W at σ is

W [Θτ (V)] (σ) =
d

dλ
[Θτ (V) ◦ Fλ(σ)]

∣∣∣∣
λ=0

=
d

dλ

[∫
Στ

Fλ(σ)∗(ivΘ)
]∣∣∣∣

λ=0

=
d

dλ

[∫
Στ

σ∗f∗λ(ivΘ)
]∣∣∣∣

λ=0

=
∫

Στ

σ∗[£wivΘ].

Thus, at σ ∈ Zτ ,

dΘτ (V,W) = V [Θτ (W)]−W[Θτ (V)]−Θτ ([V,W])

=
∫

Στ

σ∗
[
£viwΘ−£wivΘ− i[v,w]Θ

]
=
∫

Στ

σ∗(−diwivΘ + iwivdΘ),

and the first term vanishes by the definitions of Z and Θ, as both v, w are
πXZ-vertical.11 �

The two-form Ωτ on Zτ is closed, but it has a nontrivial kernel, as the
following development will show.

11 This term also vanishes by Stokes’ theorem, but in fact (5B.8) holds regardless of whether

Στ is compact and boundaryless.
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5C Reduction of Zτ to T ∗Yτ

Our next goal is to prove that Zτ/ ker Ωτ is canonically isomorphic to T ∗Yτ and
that the inherited symplectic form on the former is isomorphic to the canonical
one on the latter. To do this, define a vector bundle map Rτ : Zτ → T ∗Yτ over
Yτ by

〈Rτ (σ), V 〉 =
∫

Στ

ϕ∗(iV σ), (5C.1)

where ϕ = πYZ ◦ σ and V ∈ TϕYτ ; the integrand in (5C.1) at a point x ∈ Στ

is the interior product of V (x) with σ(x), resulting in an n-form on Y , which is
then pulled back along ϕ to an n-form on Στ at x. Interpreted as a map of Στ

to L(V Yτ ,ΛnΣτ ) which covers ϕ, Rτ (σ) is given by

〈Rτ (σ)(x), v〉 = ϕ∗ivσ(x), (5C.2)

where v ∈ Vϕ(x)Yτ . In adapted coordinates, σ ∈ Zτ takes the form

(pA
µ ◦ σ) dyA ∧ dnxµ + (p ◦ σ) dn+1x, (5C.3)

and so we may write

Rτ (σ) = (pA
0 ◦ σ) dyA ⊗ dnx0. (5C.4)

Comparing (5C.4) with (5B.3), we see that the instantaneous momenta πA

correspond to the temporal components of the multimomenta pA
µ. Moreover,

Rτ is obviously a surjective submersion with

kerRτ =
{
σ ∈ Zτ | pA

0 ◦ σ = 0
}
.

Remark 5C.1. Although we have defined Rτ as a map on sections from Zτ to
T ∗Yτ , in actuality Rτ is a pointwise operation. We may in fact write (5C.2) as
Rτ (σ) = rτ ◦ σ, where

rτ : Zτ → V ∗Yτ ⊗ ΛnΣτ

is a bundle map over Yτ . From (5C.3) and (5C.4), we see that in coordinate
form rτ (p, pA

µ) = pA
0 with

ker rτ =
{
pA

idyA ⊗ dnxi + p dn+1x ∈ Zτ

}
. �

Proposition 5C.2. We have

R∗
τθτ = Θτ . (5C.5)
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Proof. Let V ∈ TσZτ . By the definitions of pull-back and the canonical
one-form,

〈(R∗
τθτ )(σ), V 〉 = 〈θτ (Rτ (σ)), TRτ · V 〉 = 〈Rτ (σ), TπYτ ,T∗Yτ

· TRτ · V 〉.

However, since Rτ covers the identity,

πYτ ,T∗Yτ ◦Rτ = πYτ ,Zτ

and so

TπYτ ,T∗Yτ
· TRτ · V = TπYτ ,Zτ

· V = TπYZ ◦ V.

Thus by (5C.1), with ϕ = πYZ ◦ σ,

〈R∗
τθτ (σ), V 〉 = 〈Rτ (σ), TπYZ ◦ V 〉 =

∫
Στ

ϕ∗((TπYZ ◦ V ) σ)

=
∫

Στ

σ∗π∗YZ((TπYZ ◦ V ) σ)

=
∫

Στ

σ∗(V π∗YZσ).

However, by (2B.7) and (2B.9), π∗YZσ = Θ ◦ σ. Thus by (5B.6),

〈R∗
τθτ (σ), V 〉 = 〈Θτ (σ), V 〉 . �

Corollary 5C.3.

(i) R∗
τωτ = Ωτ .

(ii) kerTσRτ = kerΩτ (σ).

(iii) The induced quotient map Zτ/ kerRτ = Zτ/ ker Ωτ → T ∗Yτ is a sym-
plectic diffeomorphism.

Proof. (i) follows by taking the exterior derivative of (5C.5). (ii) follows from
(i), the (weak) nondegeneracy of ωτ , the definition of pull-back and the fact that
Rτ is a submersion. Finally, (iii) follows from (i), (ii), and the fact that Rτ is
a surjective vector bundle map between vector bundles over Yτ . �
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Thus, for each Cauchy surface Στ , the multisymplectic structure Ω on Z

induces a presymplectic structure Ωτ on Zτ , and this in turn induces the canon-
ical symplectic structure ωτ on the instantaneous phase space T ∗Yτ . Alternative
constructions of Θτ and ωτ are given in Zuckerman [1987], Crnković and Witten
[1987], and Ashtekar et al. [1991].

Examples

a Particle Mechanics. For particle mechanics Σ is a point, and τ maps Σ
to some t ∈ R. We identify Yτ with Q and Zτ with R× T ∗Q, with coordinates
(qA, p, pA). The one-form θτ is θτ = pAdq

A and Rτ is given by (qA, p, pA) 7→
(qA, pA). Thus the τ -phase space is just T ∗Q, and the process of reducing the
multisymplectic formalism to the instantaneous formalism in particle mechanics
is simply reduction to the autonomous case.

b Electromagnetism. In the case of electromagnetism on a fixed background
spacetime, Σ is a 3-manifold and τ ∈ Emb(Σ, X) is a parametrized spacelike
hypersurface. The space Yτ consists of fields Aν over Στ , T ∗Yτ consists of fields
and their conjugate momenta (Aν ,E

ν) on Στ , while the space Zτ consists of
fields and multimomenta fields (Aν , p,F

νµ) on Στ . In adapted coordinates the
map Rτ is given by

(Aν , p,F
νµ) 7→ (Aν ,E

ν), (5C.6)

where Eν = Fν0. The canonical momentum Eν can thus be identified with the
negative of the electric field density. The symplectic structure on T ∗Yτ takes
the form

ωτ (A,E) =
∫

Στ

(dAν ∧ dEν)⊗ d3x0. (5C.7)

When electromagnetism is parametrized, we simply append the metric gσρ

and its corresponding multimomenta ρσρµ to the other field variables as param-
eters. Let S 3,1

2 (X,Στ ) denote the subspace of S 3,1
2 (X)τ consisting of Lorentz

metrics on X relative to which Στ is spacelike. Thus we replace Yτ by

Ỹτ = Yτ × S
3,1
2 (X,Στ ),

which consists of sections (A; g) of Ỹτ = Yτ ×Στ
S 3,1

2 (X,Στ ) over Στ . Similarly,
T ∗Ỹτ and Z̃τ consist of sections (Aν ,E

ν ; gσρ, π
σρ) and (Aν , p,F

νµ; gσρ, ρ
σρµ) over
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Στ , respectively. The coordinate expression for the reduction map R̃τ now
becomes

(Aν , p,F
νµ; gσρ, ρ

σρµ) 7→ (Aν ,E
ν ; gσρ, π

σρ) (5C.8)

where πσρ = ρσρ0. Finally, the symplectic structure on T ∗Ỹτ is

ω̃τ (A,E; g, π) =
∫

Στ

(dAν ∧ dEν + dgσρ ∧ dπσρ)⊗ d3x0. (5C.9)

c A Topological Field Theory. Since in a topological field theory there
is no metric on X, it does not make sense to speak of “spacelike hypersurfaces”
(although we shall continue to informally refer to Στ as a “Cauchy surface”).
Thus we may take τ to be any embedding of Σ into X.

Other than this, along with the fact that Σ is 2-dimensional, Chern–Simons
theory is much the same as electromagnetism. Specifically, Yτ consists of fields
Aν over Στ , T ∗Yτ consists of fields and their conjugate momenta (Aν , π

ν) over
Στ , and Zτ consists of fields and their multimomenta (Aν , p, p

νµ) over Στ . Then
Rτ and ωτ are given by

(Aν , p, p
νµ) 7→ (Aν , π

ν) (5C.10)

and
ωτ (A, π) =

∫
Στ

(dAν ∧ dπν)⊗ d2x0 (5C.11)

respectively, where πν = pν0.

d Bosonic Strings. Here Σ is a 1-manifold and τ ∈ Emb(Σ, X) is a param-
etrized curve in X. Now Yτ consists of sections (ϕA, hσρ) of

(X ×M)×Στ
S1,1

2 (X,Στ ),

T ∗Yτ consists of fields and their conjugate momenta (ϕA, hσρ, πA, $
σρ), and Zτ

consists of fields and their multimomenta (ϕA, hσρ, p, pA
µ, ρσρµ), all over Στ . In

adapted coordinates, the map Rτ is

(ϕA, hσρ, p, pA
µ, ρσρµ) 7→ (ϕA, hσρ, πA, $

σρ) (5C.12)

where πA = pA
0 and $σρ = ρσρ0. The symplectic form on T ∗Yτ is then

ωτ (ϕ, h, π,$) =
∫

Στ

(dϕA ∧ dπA + dhσρ ∧ d$σρ)⊗ d1x0. (5C.13)
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6 Initial Value Analysis of Field Theories

In the previous chapter we showed how to space + time decompose multisym-
plectic structures. Here we perform a similar decomposition of dynamics using
the notion of slicings. This material puts the standard initial value analysis into
our context, with a few clarifications concerning how to intrinsically split off
the time derivatives of fields in the passage from the covariant to the instanta-
neous pictures. A main result of this chapter is that the dynamics is compatible
with the space + time decomposition in the sense that Hamiltonian dynamics in
the instantaneous formalism corresponds directly to the covariant Lagrangian
dynamics of Chapter 3; see §6D. We also discuss a symplectic version of the
Dirac–Bergmann treatment of degenerate Hamiltonian systems, initial value
constraints, and gauge transformations in §6E.

6A Slicings

To discuss dynamics, that is, how fields evolve in time, we define a global notion
of “time.” This is accomplished by introducing “slicings” of spacetime and the
relevant bundles over it.

A slicing of an (n+1)-dimensional spacetimeX consists of an n-dimensional
manifold Σ (sometimes known as a reference Cauchy surface) and a diffeo-
morphism

sX : Σ× R → X.

For λ ∈ R, we write Σλ = sX(Σ×{λ}) and τλ : Σ → Σλ ⊂ X for the embedding
defined by τλ(x) = sX(x, λ). See Figure 6.1. The slicing parameter λ gives rise
to a global notion of “time” on X which need not coincide with locally defined
coordinate time, nor with proper time along the curves λ 7→ sX(x, λ). The
generator of sX is the vector field ζX on X defined by

∂

∂λ
sX(x, λ) = ζX(sX(x, λ)).

Alternatively, ζX is the push-forward by sX of the standard vector field ∂/∂λ

on Σ× R; that is,

ζX = T sX · ∂
∂λ
. (6A.1)

Given a bundle K → X and a slicing sX of X, a compatible slicing of K
is a bundle KΣ → Σ and a bundle diffeomorphism sK : KΣ ×R → K such that
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s
X

Σ Σ × R

Σ × {λ} 

  

Σλ

X

Figure 6.1: A slicing of spacetime

the diagram
KΣ × R sK−−−−→ Ky y
Σ× R sX−−−−→ X

(6A.2)

commutes, where the vertical arrows are bundle projections. We write Kλ =
sK(KΣ × {λ}) and sλ : KΣ → Kλ ⊂ K for the embedding defined by sλ(k) =
sK(k, λ), as in Figure 6.2. The generating vector field ζK of sK is defined by a
formula analogous to (6A.1). Note that ζK and ζX are complete and everywhere
transverse to the slices Kλ and Σλ, respectively.

Σ
Σ × R X

K
Σ

λ
Σ × {λ}

K
Σ 
× {λ}

K
Σ

 × R

s
K

s
λ

s
X

τ
λ

K
Σ

K
λ

Figure 6.2: A slicing of the bundle K

Every compatible slicing (sK , sX) of K → X defines a one-parameter group
of bundle automorphisms: the flow fλ of the generating vector field ζK , which
is given by

fλ(k) = sK(s−1
K (k) + λ),
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where “+ λ” means addition of λ to the second factor of KΣ × R. This flow is
fiber-preserving since ζK projects to ζX . Conversely, let fλ be a fiber-preserving
flow on K with generating vector field ζK . Then ζK along with a choice of
Cauchy surface Στ such that ζX t Στ determines (at least in a neighborhood of
Kτ in K) a slicing sK : Kτ ×R → K according to sK(k, λ) = fλ(k). Any other
slicing corresponding to the above data differs from this sK by a diffeomorphism.

Slicings of bundles give rise to trivializations of associated spaces of sections.
Given K → X, recall from §5A that we have the bundle

KΣ =
⋃

τ∈Emb(Σ,X)

Kτ

over Emb(Σ, X), where Kτ is the space of sections of Kτ = K
∣∣ Στ . Let Kτ

denote the portion of KΣ that lies over the curve of embeddings λ 7→ τλ, where
λ ∈ R. In other words,

Kτ =
⋃
λ∈R

Kλ.

The slicing sK : KΣ×R → K induces a trivialization sK : KΣ×R → Kτ defined
by

sK(σΣ, λ) = sλ ◦ σΣ ◦ τ−1
λ . (6A.3)

Let ζK be the pushforward of ∂/∂λ by means of this trivialization; then from
(6A.3),

ζK(σ) = ζK ◦ σ. (6A.4)

See Figure 6.3.

Remark 6A.1. A slicing sX of X gives rise to at least one compatible slicing
sK of any bundle K → X, since X ≈ Σ× R is then homotopic to Σ. �

Remark 6A.2. In many examples, Y is a tensor bundle over X, so sY can
naturally be induced by a slicing sX of X. Similarly, in Yang–Mills theory,
slicings of the connection bundle are naturally induced by slicings of the theory’s
principal bundle. �

Remark 6A.3. Slicings of the configuration bundle Y → X naturally induce
slicings of certain bundles over it. For example, a slicing sY of Y induces a
slicing sZ of Z by push-forward; if ζY generates sY , then sZ is generated by the
canonical lift ζZ of ζY to Z. (As a consequence, £ζZ

Θ = 0.) Likewise, a slicing
of J1Y is generated by the jet prolongation ζJ1Y = j1ζY of ζY to J1Y . �
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λR

τ

τ(λ)

Emb(Σ , X)

Kλ

ζ
K

K
τ

K
Σ

Figure 6.3: Bundles of spaces of sections

Remark 6A.4. When considering certain field theories, one may wish to mod-
ify these constructions slightly. In gravity, for example, one considers only those
pairs of metrics and slicings for which each Σλ is spacelike. This is an open
and invariant condition and so the nature of the construction is not materially
changed. �

Remark 6A.5. It may happen that X is sufficiently complicated topologically
that it cannot be globally split as Σ × R for any Σ. In such cases one can
only slice portions of spacetime and our constructions must be understood in
a restricted sense. However, for globally hyperbolic spacetimes, a well-known
result of Geroch (see Hawking and Ellis [1973]) states that X is homeomorphic
to Σ × R, and a recent result of Bernal and Sánchez [2005] shows that in fact
X is diffeomorphic to Σ× R. �

Remark 6A.6. Sometimes one wishes to allow curves of embeddings that are
not slicings. (For instance, one could allow two embedded hypersurfaces to
intersect.) It is known by direct calculation that the adjoint formalism (see
Chapter 13) is valid even for curves of embeddings that are associated with maps
s that need not be diffeomorphisms. See, for example, Fischer and Marsden
[1979a]. �

Remark 6A.7. In the instantaneous formalism, dynamics is usually studied
relative to a fixed slicing of spacetime and the bundles over it. It is important



80 §6 Initial Value Analysis of Field Theories

to know to what extent the dynamics is the “same” for all possible slicings. To
this end we introduce in Part IV fiducial models of all relevant objects which
are universal for all slicings in the sense that one can work abstractly on the
fixed model objects and then transfer the results to the spacetime context by
means of a slicing. This provides a natural mechanism for comparing the results
obtained by using different slicings. �

Remark 6A.8. In practice, the one-parameter group of automorphisms of
the configuration bundle Y associated to a slicing is often induced by a one-
parameter subgroup of the gauge group G of the theory; let us call such slic-
ings G-slicings. In fact, later we will focus on slicings which arise in this
way via the gauge group action. For G-slicings we have ζY = ξY for some
ξ ∈ g. This provides a crucial link between dynamics and the gauge group, and
will ultimately enable us in §7D to correlate the Hamiltonian with the energy-
momentum map for the gauge group action. For classical fields propagating on
a fixed background spacetime, it is necessary to treat the background metric
parametrically—so that G projects onto Diff(X)—to obtain such slicings. (See
Remark 8B.1.) �

Remark 6A.9. For some topological field theories, there is a subtle interplay
between the existence of a slicing of spacetime and that of a symplectic struc-
ture on the space of solutions of the field equations. See Horowitz [1989] for a
discussion. �

Remark 6A.10. Often slicings of X are arranged to implement certain “gauge
conditions” on the fields. For example, in Maxwell’s theory one may choose
a slicing relative to which the Coulomb gauge condition ∇·A = 0 holds. In
general relativity, one often chooses a slicing of a given spacetime so that each
hypersurface Σλ has constant mean curvature. This can be accomplished by
solving the adjoint equations (1.3) together with the gauge conditions, which
will simultaneously generate a slicing of spacetime and a solution of the field
equations, with the solution “hooked” to the slicing via the gauge condition.
Note that in this case the slicing is not predetermined (by specifying the atlas
fields αi(λ) in advance), but rather is determined implicitly (by fixing the αi(λ)
by means of the adjoint equations together with the gauge conditions.) �

Remark 6A.11. In principle slicings can be chosen arbitrarily, not necessarily
according to a given a priori rule. For example, in numerical relativity, to
achieve certain accuracy goals, one may wish to choose slicings that focus on
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those regions in which the fields that have been computed up to that point
have large gradients, thereby effectively using the slicing to produce an adaptive
numerical method. In this case, the slicing is determined “on the fly” as opposed
to being fixed ab initio. Of course, after a piece of spacetime is constructed, the
slicing produced is consistent with our definitions. �

For a given field theory, we say that a slicing sY of the configuration bundle
Y is Lagrangian if the Lagrangian density L is equivariant with respect to the
one-parameter groups of automorphisms associated to the induced slicings of
J1Y and Λn+1X. Let fλ be the flow of ζY so that j1fλ is the flow of ζJ1Y ; then
equivariance means

L
(
j1fλ(γ)

)
= (h−1

λ )∗L(γ) (6A.5)

for each λ ∈ R and γ ∈ J1Y , where hλ is the flow of ζX . Throughout the rest of
this book we will assume that “slicing” means “Lagrangian slicing”. In practice
there are usually many such slicings. For example, in tensor theories, slicings of
X induce slicings of Y by pull-back; these are automatically Lagrangian as long
as a metric g on spacetime is included as a field variable (either variationally
or parametrically). For theories on a fixed background spacetime, on the other
hand, a slicing of Y typically will be Lagrangian only if the flow generated by
ζX consists of isometries of (X, g). Since (X, g) need not have any continuous
isometries, it may be necessary to treat g parametrically to obtain Lagrangian
slicings. Note that by virtue of the covariance assumption A1, G-slicings are
automatically Lagrangian. (See, however, Example c following.) This require-
ment will play a key role in establishing the correspondence between dynamics
in the covariant and (n+ 1)-formalisms.

For certain constructions we require only the notion of an infinitesimal

slicing of a spacetime X. This consists of a Cauchy surface Στ along with
a spacetime vector field ζX defined over Στ which is everywhere transverse to
Στ . We think of ζX as defining a “time direction” along Στ . In the same vein,
an infinitesimal slicing of a bundle K → X consists of Kτ along with a
vector field ζK on K defined over Kτ which is everywhere transverse to Kτ .
The infinitesimal slicings (Στ , ζX) and (Kτ , ζK) are called compatible if ζK
projects to ζX ; we shall always assume this is the case. See Figure 6.4.

An important special case arises when the spacetime X is endowed with a
Lorentzian metric g. Fix a spacelike hypersurface Στ ⊂ X and let e⊥ denote
the future-pointing timelike unit normal vector field on Στ ; then (Στ , e⊥) is an
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Στ

X

Kτ
ζK

ζX

K

Figure 6.4: Infinitesimal slicings

infinitesimal slicing of X. In coordinates adapted to Στ we expand

∂

∂x0
= Ne⊥ +M i ∂

∂xi
, (6A.6)

where N is a function on Στ (the lapse) and M = M i∂/∂xi is a vector field
tangent to Στ (the shift). It is often useful to refer an arbitrary infinitesimal
slicing ζX = ζµ∂/∂xµ to the frame {e⊥, ∂i}, relative to which we have

ζX = ζ0Ne⊥ + (ζ0M i + ζi)
∂

∂xi
. (6A.7)

We remark that, in general, neither ∂/∂x0 nor ζX need be timelike.
In both our and ADM’s (Arnowitt et al. [1962]) formalisms, these lapse and

shift functions play a key role. For instance, in the construction of spacetimes
from initial data (say, using a computer), they are used to control the choice
of slicing. This can be seen most clearly by imposing the ADM coordinate
condition that ∂/∂x0 coincide with ζX , in which case (6A.7) reduces simply to

ζX = Ne⊥ + M . (6A.8)
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Examples

a Particle Mechanics. Both X = R and Y = R×Q for particle mechanics
are “already sliced” with ζX = d/dt and ζY = ∂/∂t respectively. From the in-
finitesimal equivariance equation (4D.2), it follows that this slicing is Lagrangian
relative to L = L(t, qA, vA)dt iff ∂L/∂t = 0, that is, L is time-independent.

One can consider more general slicings of X, interpreted as diffeomorphisms
sX : R → R. The induced slicing sY : Q× R → Y given by sY (q1, . . . , qN , t) =
(q1, . . . , qN , sX(t)) will be Lagrangian if L is time reparametrization-covariant.

We can be substantially more explicit for the relativistic free particle. Con-
sider an arbitrary slicing Q× R → Y with generating vector field

ζY = χ
∂

∂t
+ ζA ∂

∂qA
. (6A.9)

From (4D.2) we see that the slicing is Lagrangian relative to (3B.8) iff

gBC,Av
BvCζA + gACv

C

(
∂ζA

∂t
+ vB ∂ζ

A

∂qB

)
= 0. (6A.10)

(The terms involving χ drop out as L is time reparametrization-covariant.) But
(6A.10) holds for all v iff ∂ζA/∂t = 0 and

0 = gBC,Av
BvCζA + gACv

CvB ∂ζ
A

∂qB
= vAvBζ(A;B).

Thus ζA∂/∂qA must be a Killing vector field. It follows that the most general
Lagrangian slicing consists of time reparametrizations horizontally and isome-
tries vertically.

b Electromagnetism. Any slicing of the spacetime X naturally induces a
slicing of the bundle Ỹ = Λ1X × S 3,1

2 (X) by push-forward. If ζX = ζµ∂/∂xµ,
the generating vector field of this induced slicing is

ζỸ = ζµ ∂

∂xµ
−Aνζ

ν
,α

∂

∂Aα
− (gσµζ

µ
,ρ + gρµζ

µ
,σ)

∂

∂gσρ
.

The restriction to G-slicings, with G = Diff(X) n F(X) as in Example b

of §4C, is not very severe for the parametrized version of Maxwell’s theory.
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Any complete vector field ζX = ζµ∂/∂xµ may be used as the generator of the
spacetime slicing; then for the slicing of Ỹ we have the generator

ζỸ = ζµ ∂

∂xµ
+ (χ,α −Aνζ

ν
,α)

∂

∂Aα
− (gσµζ

µ
,ρ + gρµζ

µ
,σ)

∂

∂gσρ
, (6A.11)

where χ is an arbitrary function on X (generating a Maxwell gauge transfor-
mation). A more general Lagrangian slicing (which, however, is not a G-slicing)
is obtained from this upon replacing χ,α by the components of a closed 1-form
on X.

On the other hand, if we work with electromagnetism on a fixed spacetime
background, the ζX must be a Killing vector field of the background metric g,
and ζY is of the form (6A.11) with this restriction on ζµ (and without the term
in the direction ∂/∂gσρ.) If the background spacetime is Minkowskian, then ζX
must be a generator of the Poincaré group. For a generic background spacetime,
there are no Killing vectors, and hence no Lagrangian slicings. (This leads one
to favor the parametrized theory.)

c A Topological Field Theory. With reference to Example b above, we
see that with G = Diff(X) n F(X), a G-slicing of Y = Λ1X is generated by

ζY = ζµ ∂

∂xµ
+ (χ,α −Aνζ

ν
,α)

∂

∂Aα
. (6A.12)

Note that (6A.12) does not generate a Lagrangian slicing unless χ = 0, since the
replacement A 7→ A+ dχ does not leave the Chern–Simons Lagrangian density
invariant (cf. §4D).

d Bosonic Strings. In this case the configuration bundle

Y = (X ×M)×X S1,1
2 (X)

is already sliced with ζX = ∂/∂x0 and ζY = ∂/∂x0. More generally, one can
consider slicings with generators of the form

ζµ ∂

∂xµ
+ ζA ∂

∂φA
+ ζσp

∂

∂hσρ
. (6A.13)

Such a slicing will be Lagrangian relative to the Lagrangian density (3B.24) iff
ζA∂/∂φA is a Killing vector field of (M, g) (this works much the same way as
Example a) and

ζσρ = −(hσαζ
α

,ρ + hραζ
α

,σ) + 2λhσρ (6A.14)
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for some function λ on X. The first two terms in this expression represent that
“part” of the slicing which is induced by the slicing ζX of X by push-forward,
and the last term reflects the freedom to conformally rescale h while leaving the
harmonic map Lagrangian invariant. The slicing represented by (6A.13) will be
a G-slicing, with G = Diff(X) n F(X,R+), iff ζA = 0.

6B Space + Time Decomposition of the Jet Bundle

In Chapter 5 we have space + time decomposed the multisymplectic formalism
relative to a fixed Cauchy surface Στ ∈ X to obtain the associated τ -phase space
T ∗Yτ with its symplectic structure ωτ = −dθτ . Now we show how to perform a
similar decomposition of the jet bundle J1Y using the notion of an infinitesimal
slicing. Effectively, this enables us to invariantly separate the temporal from
the spatial derivatives of the fields.

Fix an infinitesimal slicing (Yτ , ζ := ζY ) of Y and set

ϕ := φ
∣∣Στ and ϕ̇ := £ζφ

∣∣Στ ,

so that in coordinates

ϕA = φA
∣∣Στ and ϕ̇A = (ζµφA

,µ − ζA ◦ φ)
∣∣Στ . (6B.1)

Define an affine bundle map βζ : (J1Y )τ → J1(Yτ )× V Yτ over Yτ by

βζ(j1φ(x)) = (j1ϕ(x), ϕ̇(x)) (6B.2)

for x ∈ Στ . In coordinates adapted to Στ , (6B.2) reads

βζ(xi, yA, vA
µ) = (xi, yA, vA

j , ẏ
A). (6B.3)

Furthermore, if the coordinates on Y are arranged so that

ζ
∣∣Yτ =

∂

∂x0
, then ẏA = vA

0.

This last observation establishes:

Proposition 6B.1. If ζX is transverse to Στ , then βζ is an isomorphism.

The bundle isomorphism βζ is the jet decomposition map and its in-
verse the jet reconstruction map. Clearly, both can be extended to maps on
sections; from (6B.2) we have

βζ(j1φ ◦ iτ ) = (j1ϕ, ϕ̇) (6B.4)

where iτ : Στ → X is the inclusion. In fact:
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Corollary 6B.2. βζ induces an isomorphism of (j1Y)τ with TYτ , where (j1Y)τ

is the collection of restrictions of holonomic sections of J1Y → X to Στ .12

Proof. Since ϕ̇ is a section of V Yτ covering ϕ, by (5A.1) it defines an element
of TϕYτ . The result now follows from the previous proposition and the comment
afterwards. �

One may wish to decompose Y , as well as J1Y , relative to a slicing. This
is done so that one works with fields that are spatially covariant rather than
spacetime covariant. For example, in electromagnetism, sections of Y = Λ1X

are one-forms A = Aµdx
µ over spacetime and sections of Yτ = Λ1X

∣∣ Στ are
spacetime one-forms restricted to Στ . One may split

Yτ = Λ1Στ ×Στ
Λ0Στ , (6B.5)

so that the instantaneous configuration space consists of spatial one-forms A =
Amdx

m together with spatial scalars a. The map Λ1X
∣∣Στ → Λ1Στ ×Στ Λ0Στ

which effects this split takes the form

A 7→ (A, a) (6B.6)

where a = i∗τ (ζX A) and A = i∗τA.
One particular case of interest is that of a metric tensor g on X. Recall

that Sn,1
2 (X,Στ ) denotes the subbundle of Sn,1

2 (X)τ consisting of those Lorentz
metrics on X with respect to which Στ is spacelike. We may space + time split

Sn,1
2 (X,Στ )

∣∣Στ = Sn
2 (Στ )×Στ

TΣτ ×Στ
Λ0Στ (6B.7)

as follows (cf. §21.4 of Misner et al. [1973]). Let e⊥ the the forward-pointing unit
timelike normal to Στ , and let N,M be the lapse and shift functions defined
via (6A.6). Set γ = i∗τg, so that γ is a Riemannian metric on Στ . Then the
decomposition g 7→ (γ,M, N) with respect to the infinitesimal slicing (Στ , e⊥)
is given by

g = γjk(dxj +M jdt)(dxk +Mkdt)−N2dt2

or, in terms of matrices, g00 g0i

gi0 gjk

 =

 MkM
k −N2 Mi

Mi γjk

 , (6B.8)

12 (j1Y)τ should not be confused with the collection of holonomic sections of J1(Yτ ) → Στ ,

since the former contains information about temporal derivatives that is not included in the

latter.
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where Mi = γijM
j . This decomposition has the corresponding contravariant

form
g−1 = γjk∂j∂k −

1
N2

(∂t −M j∂j)(∂t −Mk∂k)

or, in terms of matrices, g00 g0i

gi0 gjk

 =

 −1/N2 M i/N2

M i/N2 γjk −M jMk/N2

 . (6B.9)

Furthermore, the metric volume
√
−g decomposes as

√
−g = N

√
γ. (6B.10)

The dynamical analysis can by carried out whether or not these splits of the
configuration space are done; it is largely a matter of taste. Later, in Chapters
12 and 13 when we discuss dynamic fields and atlas fields, these types of splits
will play a key role.

6C The Instantaneous Legendre Transform

Using the jet reconstruction map we may space + time split the Lagrangian as
follows. Define

Lτ,ζ : J1(Yτ )× V Yτ → ΛnΣτ

by
Lτ,ζ(j1ϕ(x), ϕ̇(x)) = i∗τ iζX

L(j1φ(x)), (6C.1)

where j1φ ◦ iτ is the reconstruction of (j1ϕ, ϕ̇). The instantaneous La-

grangian Lτ,ζ : TYτ → R is defined by

Lτ,ζ(ϕ, ϕ̇) =
∫

Στ

Lτ,ζ(j1ϕ, ϕ̇) (6C.2)

for (ϕ, ϕ̇) ∈ TYτ (cf. Corollary 6B.2). In coordinates adapted to Στ this
becomes, with the aid of (6C.1) and (3A.1),

Lτ,ζ(ϕ, ϕ̇) =
∫

Στ

L(j1ϕ, ϕ̇)ζ0dnx0. (6C.3)

The instantaneous Lagrangian Lτ,ζ defines an instantaneous Legendre

transform

FLτ,ζ : TYτ → T ∗Yτ ; (ϕ, ϕ̇) 7→ (ϕ, π) (6C.4)
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in the usual way (cf. Abraham and Marsden [1978]). In adapted coordinates

π = πA dy
A ⊗ dnx0

and (6C.4) reads

πA =
∂Lτ,ζ

∂ẏA
. (6C.5)

We call
Pτ,ζ = im FLτ,ζ ⊂ T ∗Yτ

the instantaneous or τ -primary constraint set .

A2 Almost Regularity. Assume that Pτ,ζ is a smooth, closed, submanifold
of T ∗Yτ and that FLτ,ζ is a submersion onto its image with connected fibers.

Remark 6C.1. Assumption A2 is satisfied in cases of interest. �

Remark 6C.2. We shall see momentarily that Pτ,ζ is independent of ζ. �

Remark 6C.3. In obtaining (6C.5) we use the fact that L is first order. Gotay
[1991b] treats the higher order case. �

We now investigate the relation between the covariant and instantaneous
Legendre transformations. Recall that over Yτ we have the symplectic bundle
map Rτ : (Zτ ,Ωτ ) → (T ∗Yτ , ωτ ) given by

〈Rτ (σ), V 〉 =
∫

Στ

ϕ∗(iV σ)

where ϕ = πYZ ◦ σ and V ∈ TϕYτ .

Proposition 6C.4. Assume ζX is transverse to Στ . Then the following dia-
gram commutes:

(j1Y)τ
FL−−−−→ Zτ

βζ

y yRτ

TYτ −−−−→
FLτ,ζ

T ∗Yτ

(6C.6)

Proof. Choose adapted coordinates in which ∂0

∣∣ Yτ = ζ. Since Rτ is given
by πA = pA

0 ◦ σ, going clockwise around the diagram we obtain

Rτ

(
FL(j1φ ◦ iτ )

)
=

∂L

∂vA
0
(φB , φB

,µ)dyA ⊗ dnx0.

This is the same as one gets going counterclockwise, taking into account (6B.3),
(6C.5) and the fact that FLτ,ζ is evaluated at ϕ̇A = φA

,0. �
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We define the covariant primary constraint set to be

N = FL(J1Y ) ⊂ Z

and with a slight abuse of notation, set

Nτ = FL
(
(j1Y)τ

)
⊂ Zτ .

Corollary 6C.5. If ζX is transverse to Στ , then

Rτ (Nτ ) = Pτ,ζ . (6C.7)

In particular, Pτ,ζ is independent of ζ, and so can be denoted simply Pτ .

Proof. By Corollary 6B.2, βζ is onto TYτ . The result now follows from the
commutative diagram (6C.6). �

Denote by the same symbol ωτ the pullback of the symplectic form on T ∗Yτ

to the submanifold Pτ . When there is any danger of confusion we will write
ωT∗Yτ

and ωPτ
. In general (Pτ , ωτ ) will be merely presymplectic. However, the

fact that FLτ,ζ is fiber-preserving together with the almost regularity assump-
tion A2 imply that kerωτ is a regular distribution on Pτ (in the sense that it
defines a subbundle of TPτ ).

As always, the instantaneous Hamiltonian is given by

Hτ,ζ(ϕ, π) = 〈π, ϕ̇〉 − Lτ,ζ(ϕ, ϕ̇) (6C.8)

and is defined only on Pτ . The density for Hτ,ζ is denoted by Hτ,ζ . We remark
that to determine a Hamiltonian, it is essential to specify a time direction ζ

on Y . This is sensible, since the system cannot evolve without knowing what
“time” is. For ζY = ξY , where ξ ∈ g, the Hamiltonian will turn out to be the
negative of the energy-momentum map induced on Pτ (cf. §7D). A crucial step
in establishing this relationship is the following result:

Proposition 6C.6. Let (ϕ, π) ∈ Pτ . Then for any holonomic lift σ of (ϕ, π),

Hτ,ζ(ϕ, π) = −
∫

Στ

σ∗(iζZ
Θ). (6C.9)

Here ζZ is the canonical lift of ζ to Z (cf. §4B). By a holonomic lift of
(ϕ, π) we mean any element σ ∈ R−1

τ {(ϕ, π)} ∩Nτ . Holonomic lifts of elements
of Pτ always exist by virtue of Proposition 6C.4.
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Proof. We will show that (6C.9) holds on the level of densities; that is,

Hτ,ζ(ϕ, π) = −σ∗(iζZ
Θ). (6C.10)

Using adapted coordinates, (2B.11) yields

σ∗(iζZ
Θ) ={

(pA
0 ◦ σ)

(
ζA ◦ σ − ζµσA

,µ

)
+
(
p ◦ σ + (pA

µ ◦ σ)σA
,µ

)
ζ0
}
dnx0

for any σ ∈ Zτ . Now suppose that (ϕ, π) ∈ Pτ , and let σ be any lift of (ϕ, π) to
Nτ . Thus, there is a φ ∈ Y with FL ◦ j1φ ◦ iτ = σ. Then, using (3A.2), (6B.1),
(5C.4) and (6C.1), the above becomes

σ∗(iζZ
Θ) = −π(ϕ̇) + L(j1φ)ζ0 dnx0 = −π(ϕ̇) + Lτ,ζ(ϕ, ϕ̇). �

Notice that (6C.9) and (6C.10) are manifestly linear in ζZ . This linearity
foreshadows the linearity of the Hamiltonian (1.2) in the “atlas fields” to which
we alluded in the Introduction.

Examples

a Particle Mechanics. First consider a nonrelativistic particle Lagrangian
of the form

L(q, v) =
1
2
gAB(q)vAvB + V (q).

Taking ζ = ∂/∂t, the Legendre transformation gives πA = gAB(q)vB . If gAB(q)
is invertible for all q, then FLt is onto for each t and there are no primary
constraints.

For the relativistic free particle, the covariant primary constraint set N ⊂ Z

is determined by the constraints

gABpApB = −m2 and p = 0, (6C.11)

which follow from (3B.10).

Now fix any infinitesimal slicing(
Yt, ζ = χ

∂

∂t
+ ζA ∂

∂qA

)
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of Y . Then we may identify (J1Y )t with TQ according to (6B.2); that is,

(qA, vA) 7→ (qA, q̇A)

where q̇A = χvA − ζA. The instantaneous Lagrangian (6C.2) is then

Lt,ζ(q, q̇) = −m‖q̇ + ζ‖ (6C.12)

(provided we take χ > 0). The instantaneous Legendre transform (6C.4) gives

πA =
mgAB(q̇B + ζB)

‖q̇ + ζ‖
. (6C.13)

The t-primary constraint set is then defined by the “mass constraint”

gABπAπB = −m2. (6C.14)

Comparing (6C.14) with (6C.11) we verify that Pt = Rt(Nt) as predicted by
(6C.7). Using (6C.14) and (6C.8) we compute

Ht,ζ(q, π) = −ζAπA. (6C.15)

Looking ahead to Part III (cf. also the Introduction and Remark 6E.18, it may
seem curious that Ht,ζ does not vanish identically, since after all the relativistic
free particle is a parametrized system. This is because the slicing generated
by (6A.9) is not a G-slicing unless ζA = 0, in which case the Hamiltonian does
vanish.

b Electromagnetism. First we consider the background case. Let Στ be a
spacelike hypersurface locally given by x0 = constant, and consider the infinites-
imal Lagrangian G-slicing (Yτ , ζ) with ζ given by

ζY = ζµ ∂

∂xµ
+ (χ,α −Aνζ

ν
,α)

∂

∂Aα
,

where we assume that ζX is a Killing vector field for g.
We construct the instantaneous Lagrangian Lτ,ζ . From (6B.1) we have

Ȧµ = ζ0D0Aµ + ζiDiAµ − (Dµχ−AνDµζ
ν), (6C.16)

and so (3B.13) gives in particular

F0i =
1
ζ0

(
Ȧi − ζkDkAi +Diχ−AνDiζ

ν − ζ0DiA0

)
. (6C.17)
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Substituting this into 3B.12, (6C.3) yields

Lτ,ζ(A, Ȧ) =
∫

Στ

[
1

2ζ0
(gi0gj0 − gijg00)

× (Ȧi − ζkAi,k + χ,i −Aνζ
ν

,i − ζ0A0,i)

× (Ȧj − ζmAj,m + χ,j −Aρζ
ρ

,j − ζ0A0,j)

+ gikg0m(Ȧi − ζkAi,k + χ,i −Aνζ
ν

,i − ζ0A0,i)Fkm

− 1
4
gikgjmFijFkmζ

0

]√
−g d3x0. (6C.18)

The corresponding instantaneous Legendre transformation FLτ,ζ is defined
by

Ei =
(

1
ζ0

(
gi0gj0 − gijg00

)(
Ȧj − ζmDmAj +Djχ−AρDjζ

ρ − ζ0DjA0

)
+ gikg0mFkm

)√
−g (6C.19)

and

E0 = 0. (6C.20)

This last relation is the sole primary constraint in the Maxwell theory.

Thus the τ -primary constraint set is

Pτ =
{
(A,E) ∈ T ∗Yτ

∣∣E0 = 0
}
. (6C.21)

It is clear that the almost regularity assumption A2 is satisfied in this case, and
that Pτ is indeed independent of the choice of ζ as required by Corollary 6C.5.
Using (3B.14) and (5C.6), one can also verify that (6C.19) and (6C.20) are con-
sistent with the covariant Legendre transformation. In particular, the primary
constraint E0 = 0 is a consequence of the relation Eν = Fν0 together with the
fact that Fνµ is antisymmetric on N .

Taking (6C.20) into account, (5C.7) yields the presymplectic form

ωτ (A,E) =
∫

Στ

(dAi ∧ dEi)⊗ d3x0 (6C.22)

on Pτ . The Hamiltonian on Pτ is obtained by solving (6C.19) for Ȧi and
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substituting into (6C.8). After some effort, we obtain

Hτ,ζ(A,E) =∫
Στ

[
ζ0N
√
γ

(1
2
γijE

iEj +
1

4N2
γikγjmFijFkm

)

+
1

N
√
γ

(ζ0M i + ζi)EjFij + (ζµAµ − χ),iE
i

]
d3x0 (6C.23)

where we have made use of the splitting (6B.8)–(6B.10) of the metric g. Note the
appearance of the combination ζµAµ−χ in (6C.23). Later we will recognize this
as the “atlas field” for the parametrized version of Maxwell’s theory. Note also
the presence of the characteristic combinations ζ0N and (ζ0M i +ζi) originating
from (6A.7).

For definiteness, take (X, g) to be Minkowski spacetime (R4, η) with ζX =
∂/∂x0. Thus the slicing generator ζY is replaced by

ζY =
∂

∂x0
+ χ,α

∂

∂Aα
(6C.24)

and the Hamiltonian reduces to the familiar expression

Hτ,(1,0)(A,E) =
∫

Στ

[
1
2
EiE

i +
1
4
FijF

ij + (A0 − χ),iE
i

]
d3x0. (6C.25)

Now suppose that the metric g is treated parametrically. Then we no longer
need to require that ζX be a Killing vector field, so that ζỸ is given by (6A.11).
The computations above remain unaltered, except that we obtain additional
primary constraints

πσρ = 0 (6C.26)

which arise because the Lagrangian Lτ,ζ(A,E; g, ġ) given by (6C.18) does not
depend upon the metric velocities ġ.

c A Topological Field Theory. Let Στ be any compact surface in X, and
fix the Lagrangian slicing

ζ = ζµ ∂

∂xµ
−Aνζ

ν
,α

∂

∂Aα
(6C.27)

as in Example c of §6A. The computations are similar those in Example b above.
In particular, (6C.16) and (6C.17) remain valid (with χ = 0). Together with
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(3B.19), these yield

Lτ,ζ(A, Ȧ) =∫
Στ

ε0ij

(
(Ȧi − ζkAi,k −Aνζ

ν
,i − ζ0A0,i)Aj +

1
2
FijA0ζ

0

)
d2x0. (6C.28)

The instantaneous Legendre transformation is

πi = ε0ijAj and π0 = 0; (6C.29)

compare (3B.20). In contrast to electromagnetism, all of these relations are
primary constraints. Thus the instantaneous primary constraint set is

Pτ =
{
(A, π) ∈ T ∗Yτ | π0 = 0, πi = ε0ijAj

}
. (6C.30)

Again we see that the regularity assumption A2 is satisfied. From (6C.29) and
(5C.11) we obtain the presymplectic form on Pτ ,

ωτ (A, π) =
∫

Στ

(
ε0ijdAi ∧ dAj

)
⊗ d2x0. (6C.31)

The Chern-Simons Hamiltonian is

Hτ,ζ(A, π) =
∫

Στ

ε0ij

(
ζkFkiAj −

1
2
ζ0FijA0 + (ζµAµ),iAj

)
d2x0, (6C.32)

which is consistent with (6C.9).

d Bosonic Strings. Consider an infinitesimal slicing (Στ , ζ) as in (6A.13),
with ζA = 0. (Here we also suppose that the pull-back of h to Στ is positive-
definite.) Using (6B.1) and (3B.24) the instantaneous Lagrangian turns out to
be

Lτ,ζ(ϕ, h, ϕ̇, ḣ) = −1
2

∫
Στ

√
−h gAB

(
1
ζ0
h00(ϕ̇A − ζ1DϕA)(ϕ̇B − ζ1DϕB)

+ 2h01(ϕ̇A − ζ1DϕA)DϕB

+ ζ0h11DϕADϕB

)
d1x0, (6C.33)

where we have set DϕA := ϕA
,1. From this it follows that the instantaneous

momenta are

πA = −
√
−h gAB

(
1
ζ0
h00(ϕ̇B − ζ1DϕB) + h01DϕB

)
(6C.34)

$σρ = 0. (6C.35)
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Thus

Pτ =
{
(ϕ, h, π,$) ∈ T ∗Yτ

∣∣ $σρ = 0
}
. (6C.36)

This is consistent with (3B.25) and (3B.26) via (5C.12).

A short computation then gives

Hτ,ζ(ϕ, h, π,$) =

−
∫

Στ

(
1

2h00
√
−h

ζ0(π2 +Dϕ2) +
(
h01

h00
ζ0 − ζ1

)
(π ·Dϕ)

)
d1x0

for the instantaneous Hamiltonian on Pτ , where we have used the abbreviations
π2 := gABπAπB and π ·Dϕ := πADϕ

A, etc.

If we space + time split the metric h as in (6B.8)–(6B.10), then the Hamil-
tonian becomes simply13

Hτ,ζ(ϕ, h, π,$) =∫
Στ

(
1

2
√
γ
ζ0N(π2 +Dϕ2) + (ζ0M + ζ1)(π ·Dϕ)

)
d1x0. (6C.37)

This expression should be compared with its counterparts in ADM gravity in
Interlude IV and §14E, and Palatini gravity in §14B. In §12C we will identify
ζ0N and ζ0M + ζ1 as the “atlas fields” for the bosonic string.

Finally, using (6C.34) and (6C.35) in (5C.13), the presymplectic structure
on Pτ is

ωτ (ϕ, h, π,$) =
∫

Στ

(dϕA ∧ dπA)⊗ d2x0. (6C.38)

13 Since the Lagrangian and the momenta are metric densities of weight 1 (with respect to

either h or γ), the Hamiltonian must be as well. This is evidently the case for the π2/
√

γ

and π ·Dϕ terms, while the Dϕ2/
√

γ term looks anomalous. But all actually is as it should

be. To see this, go up one dimension and consider the bosonic membrane. The corresponding

term in the Hamiltonian would be
√

γ γjkgABϕA
,jϕB

,k which is a density of the appropriate

weight. Dropping a dimension back down to the bosonic string, this expression reduces to

√
γ γ11gABϕA

,1ϕB
,1 = Dϕ2/

√
γ.
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6D Hamiltonian Dynamics

We have now gathered together the basic ingredients of Hamiltonian dynamics:
for each Cauchy surface Στ , we have the τ -primary constraint set Pτ , a presym-
plectic structure ωτ on Pτ , and a Hamiltonian Hτ,ζ on Pτ relative to a choice
of evolution direction ζ. If we think of some fixed Στ as the “initial time,” then
fields (ϕ, π) ∈ Pτ are candidate initial data for the (n + 1)-decomposed field
equations; that is, Hamilton’s equations. To evolve this initial data, we slice
spacetime and the bundles over it into global moments of time λ.

To this end, we regard Emb(Σ, X) as the space of all (parametrized) Cauchy
surfaces in the (n+ 1)-dimensional “spacetime” X. The arena for Hamiltonian
dynamics in the instantaneous or (n + 1)-formalism is the “instantaneous pri-
mary constraint bundle” PΣ over Emb(Σ, X) whose fiber above τ ∈ Emb(Σ, X)
is Pτ .

Fix compatible slicings sY and sX of Y and X with generating vector fields
ζ and ζX , respectively. As in §6A, let τ : R → Emb(Σ, X) be the curve of
embeddings defined by τ(λ)(x) = sX(x, λ).

Let Pτ denote the portion of PΣ lying over the image of τ in Emb(Σ, X).
Dynamics relative to the chosen slicing takes place in Pτ ; we view the (n+ 1)-
evolution of the fields as being given by a curve

c(λ) = (ϕ(λ), π(λ))

in Pτ covering τ(λ). All this is illustrated in Figure 6.5.

Our immediate task is to obtain the (n+ 1)-decomposed field equations on
Pτ , which determine the curve c(λ). This requires setting up a certain amount
of notation.

Recall from §6A that the slicing sY of Y gives rise to a trivialization sY of
Yτ , and hence induces trivializations sj1Y of (j1Y)τ by jet prolongation and sZ

of Zτ and sT∗Y of T ∗Yτ by pull-back. These latter trivializations are therefore
presymplectic and symplectic; that is, the associated flows restrict to presym-
plectic and symplectic isomorphisms on fibers respectively. Furthermore, the
reduction maps Rτ(λ) : Zτ(λ) → T ∗Yτ(λ) intertwine the trivializations sZ and
sT∗Y in the obvious sense.

Assume that the slicing sY of Y is Lagrangian. From Proposition 4D.1(i)
FL : (j1Y)τ → Zτ , regarded as a map on sections, is equivariant with respect
to the (flows corresponding to the) induced trivializations of these spaces. (In-
finitesimally, this is equivalent to the statement TFL · ζj1Y = ζZ where ζj1Y
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Figure 6.5: Instantaneous Dynamics

and ζZ are the generating vector fields of the trivializations.) This observation,
combined with the above remarks on reduction, Proposition 6C.4, and assump-
tion A2, show that Pτ really is a subbundle of T ∗Yτ , and that the symplectic
trivialization sT∗Y on T ∗Yτ restricts to a presymplectic trivialization sP of Pτ .
We use this trivialization to coordinatize Pτ by (ϕ, π, λ). The vector field ζP

which generates this trivialization is transverse to the fibers of Pτ and satisfies
ζP dλ = 1. To avoid a plethora of indices (and in keeping with the notation
of §6A), we will henceforth denote the fiber Pτ(λ) of Pτ over τ(λ) ∈ Emb(Σ, X)
simply by Pλ, the presymplectic form ωτ(λ) by ωλ, etc.

Using ζP, we may extend the forms ωλ along the fibers Pλ to a (degenerate)
2-form ω on Pτ as follows. At any point (ϕ, π) ∈ Pλ, set

ω(V,W) = ωλ(V,W), (6D.1)

ω(ζP, ·) = 0, (6D.2)

where V,W are vertical vectors on Pτ (i.e., tangent to Pλ) at (ϕ, π). Since Pλ

has codimension one in Pτ , (6D.1) and (6D.2) uniquely determine ω. It is closed
since ωλ is and since the trivialization generated by ζP is presymplectic (in other
words, £ζP

ω = 0; cf. Gotay et al. [1983]).
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Similarly, we define the function Hζ on Pτ by

Hζ(ϕ, π, λ) = Hλ,ζ(ϕ, π). (6D.3)

Tracing back through the definitions (6C.1) and (6C.2) of the instantaneous
Lagrangian Lλ,ζ , we find the condition that the slicing be Lagrangian guarantees
that the function Lζ : TYτ → R defined by

Lζ(ϕ, ϕ̇, λ) = Lλ,ζ(ϕ, ϕ̇)

is independent of λ. In this case (6C.8) implies that ζP[Hζ ] = 0.
Consider the 2-form ω + dHζ ∧ dλ on Pτ . By construction,

£ζP
(ω + dHζ ∧ dλ) = 0. (6D.4)

We say that a curve c : R → Pτ is a dynamical trajectory provided c(λ)
covers τ(λ) and its λ-derivative ċ satisfies

ċ (ω + dHζ ∧ dλ) = 0. (6D.5)

The terminology is justified by the following result, which shows that (6D.5) is
equivalent to Hamilton’s equations. First note that the tangent ċ to any curve
c in Pτ covering τ can be uniquely split as

ċ = X + ζP (6D.6)

where X is vertical in Pτ . Set Xλ = X
∣∣Pλ.

Proposition 6D.1. A curve c in Pτ is a dynamical trajectory iff Hamilton’s

equations

Xλ ωλ = dHλ,ζ (6D.7)

hold at c(λ) for every λ ∈ R.

Proof. With ċ as in (6D.6), we compute

ċ (ω + dHζ ∧ dλ) = (X ω − dHζ) + (X[Hζ ] + ζP[Hζ ]) dλ. (6D.8)

A one-form α on Pτ is zero iff the pull-back of α to each Pλ vanishes and
α(ζP) = 0. Applying this to (6D.8) gives

Xλ ωλ = dHλ,ζ

which is (6D.7), and

− ζP[Hζ ] +X[Hζ ] + ζP[Hζ ] = X[Hζ ] = 0. (6D.9)

But (6D.7) implies (6D.9), because ωλ is skew-symmetric. �
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Suppose V is a vector field on Pτ whose integral curves are dynamical tra-
jectories, so that £V(ω + dHζ ∧ dλ) = 0. Let Fλ1,λ2 : Pλ1 → Pλ2 be its flow.
From the considerations above, we immediately obtain

Corollary 6D.2. Fλ1,λ2 is symplectic, i.e.,

F∗
λ1,λ2

ωλ2 = ωλ1 .

Thus, Hamiltonian evolution in our context is by canonical transformations.
A Lagrangian version of this result is given in Marsden et al. [1998].

Remark 6D.3. The difference between the two formulations (6D.5) and (6D.7)
of the dynamical equations is mainly one of outlook. Equation (6D.5) corre-
sponds to the approach usually taken in time-dependent mechanics (à la Car-
tan), while (6D.7) is usually seen in the context of conservative mechanics (à
la Hamilton), cf. Chapters 3 and 5 of Abraham and Marsden [1978]. We use
both formulations here, since (6D.5) is most easily correlated with the covari-
ant Euler–Lagrange equations (see below), but (6D.7) is more appropriate for
a study of the initial value problem (see §6E). �

We now relate the Euler–Lagrange equations with Hamilton’s equations in
the form (6D.5). This will be done by relating the 2-form ω + dHζ ∧ dλ on Pτ

with the 2-form ΩL on J1Y .
Given φ ∈ Y, set σ = FL(j1φ). Using the slicing, we map σ to a curve cφ in

Pτ by applying the reduction map Rλ to σ at each instant λ; that is,

cφ(λ) = Rλ(σλ) (6D.10)

where σλ = σ ◦ iλ and iλ : Σλ → X is the inclusion. (That cφ(λ) ∈ Pλ for each
λ follows from the commutativity of diagram (6C.6).) The curve cφ is called the
canonical decomposition of the spacetime field φ with respect to the given
slicing.

The main result of this section is the following, which asserts the equivalence
of the Euler–Lagrange equations with Hamilton’s equations.

Theorem 6D.4. Assume A2.

(i) Let the spacetime field φ be a solution of the Euler–Lagrange equations.
Then its canonical decomposition cφ with respect to any Lagrangian slic-
ing satisfies Hamilton’s equations.



100 §6 Initial Value Analysis of Field Theories

(ii) Conversely, every solution of Hamilton’s equations is the canonical de-
composition (with respect to some slicing) of a solution of the Euler–
Lagrange equations.

We observe that if φ is defined only locally (i.e., in a neighborhood of a
Cauchy surface) and cφ is defined in a corresponding interval (a, b) ∈ R, then
the theorem remains true.

Recall from Theorem 3B.1 that φ is a solution of the Euler–Lagrange equa-
tions iff

(j1φ)∗(iV ΩL) = 0 (6D.11)

for all vector fields V on J1Y . Recall also that this statement remains valid if
we require V to be πX,J1Y -vertical. Let V be any such vector field defined along
j1φ and set W = TFL · V . For each λ ∈ R, define the vector Wλ ∈ Tc(λ)Pλ by

Wλ = TRλ · (W ◦ σλ). (6D.12)

As λ varies, this defines a vertical vector field W on Pτ along cφ.

Lemma 6D.5. Let V be a πX,J1Y -vertical vector field on J1Y and φ ∈ Y. With
notation as above, we have∫

cφ

iW(ω + dHζ ∧ dλ) =
∫

X

(j1φ)∗(iV ΩL). (6D.13)

Proof. The left hand side of (6D.13) is∫
R

{
iċφ

iW(ω + dHζ ∧ dλ)
}
dλ,

while the right hand side is∫
Σ×R

s∗X(j1φ)∗(iV ΩL) =
∫

R

{∫
Σ

i∂/∂λs∗X(j1φ)∗(iV ΩL)
}
dλ.

Thus, to prove (6D.13), it suffices to show that

(ω + dHζ ∧ dλ) (W, ċφ) =
∫

Σ

i∂/∂λs∗X(j1φ)∗(iV ΩL). (6D.14)

Using (3B.2), the right hand side of (6D.14) becomes∫
Σ

i∂/∂λs∗X(j1φ)∗(iV FL∗Ω) =
∫

Σ

i∂/∂λs∗Xσ
∗(iW Ω) =

∫
Σ

τ∗λ [iζX
σ∗(iW Ω)]

=
∫

Σλ

i∗λ [iζX
σ∗(iW Ω)] =

∫
Σλ

i∗λσ
∗ (iTσ·ζX

iW Ω)

=
∫

Σλ

σ∗λ (iTσ·ζX
iW Ω) .
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By adding and subtracting the same term, rewrite this as∫
Σλ

σ∗λ (iTσ·ζX−ζZ
iW Ω) +

∫
Σλ

σ∗λ (iζZ
iW Ω) , (6D.15)

where ζZ is the generating vector field of the induced slicing of Z.
We claim that the first term in (6D.15) is equal to ω(W, ċφ). Indeed, since

Tσ · ζX − ζZ is πXZ-vertical, (5B.8) and the fact that Rλ is canonical give∫
Σλ

σ∗λ (iTσ·ζX−ζZ
iW Ω)

= Ωλ(σλ)(W ◦ σλ, (Tσ · ζX − ζZ) ◦ σλ)

= ωλ(cφ(λ))(TRλ · [W ◦ σλ], TRλ · [(Tσ · ζX − ζZ) ◦ σλ]).

Think of σ as a curve R → Nτ ⊂ Zτ according to λ 7→ σλ. The tangent
to this curve at time λ is (Tσ · ζX) ◦ σλ and, from (6A.4), which states that
ζZ(σ) = ζZ ◦σ, its vertical component is thus (Tσ ·ζX−ζZ)◦σλ. Since the curve
σ is mapped onto the curve cφ by Rλ, it follows that TRλ · [(Tσ · ζX − ζZ) ◦ σλ]
is the vertical component Xλ of ċφ(λ). Thus in view of (6D.12), (6D.6), (6D.1),
and (6D.2), the above becomes

ωλ(cφ(λ))(Wλ, Xλ) = ω(cφ(λ))(W, ċφ),

as claimed.
Finally, we show that the second term in (6D.15) is just dHζ ∧ dλ(W, ċφ).

We compute at cφ(λ) = Rλ(σλ):

dHζ ∧ dλ(W, ċφ) = W[Hζ ] = Wλ[Hλ,ζ ]

= −Wλ

[∫
Σλ

σ∗λ(iζZ
Θ)
]

= −
∫

Σλ

σ∗λ(£W iζZ
Θ)

where we have used (6D.3), (6C.9) and (6D.12). By Stokes’ theorem, this equals

−
∫

Σλ

σ∗λ(iW diζZ
Θ) = −

∫
Σλ

σ∗λ(iW £ζZ
Θ)−

∫
Σλ

σ∗λ(iW iζZ
Ω)

and the first term here vanishes since ζZ is a canonical lift (cf. Remark 6A.3).
�

Proof of Theorem 6D.4. (i) First, suppose that φ is a solution of the Euler-
Lagrange equations. From Theorem 3B.1 the right hand side of (6D.14) van-
ishes. Thus

(ω + dHζ ∧ dλ)(W, ċφ) = 0 (6D.16)
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for all W given by (6D.12). By A2 and Proposition 6C.4, every vector on Pτ

has the form W + f ċφ for some W and some function f on Pτ . Since the form
ω+dHζ∧dλ vanishes on (ċφ, ċφ), it follows from (6D.16) that ċφ is in the kernel
of ω + dHζ ∧ dλ. The result now follows from Proposition 6D.1.

(ii) Let c be a curve in Pτ . By Corollary 6C.5 there exists a lift σ of c to
Nτ ; we think of σ as a section of πXN . It follows from (6C.6) that σ = FL(j1φ)
for some φ ∈ Y. Thus every such curve c is the canonical decomposition of some
spacetime section φ.

If c is a dynamical trajectory, then the right hand side of (6D.13) vanishes
for every πX,J1Y -vertical vector field V on J1Y . Arguing as in the proof of
Theorem 3B.1 it follows that φ is a solution of the Euler–Lagrange equations. �

6E Constraint Theory

We have just established an important equivalence between solutions of Hamil-
ton’s equations as trajectories in Pτ on the one hand, and solutions of the
Euler–Lagrange equations as spacetime sections of Y on the other. This does
not imply, however, that there is a dynamical trajectory through every point in
Pτ . Nor does it imply that if such a trajectory exists it will be unique. Indeed,
two of the novel features of classical field dynamics, usually absent in particle
dynamics, are the presence of both constraints on the choice of Cauchy data
and unphysical (“gauge”) ambiguities in the resulting evolution. In fact, es-
sentially every classical field theory of serious interest—with the exception of
pure Klein–Gordon type systems—is both over- and underdetermined in these
senses. Later in Part III, we shall use the energy-momentum map (defined in
§7D) as a tool for understanding the constraints and gauge freedom of classical
field theories. In this section we give a rapid introduction to the more tradi-
tional theory of initial value constraints and gauge transformations following
Dirac [1964] as symplectically reinterpreted by Gotay et al. [1978]. An excellent
general reference is the book by Sundermeyer [1982] ; see also Gotay [1979],
Gotay and Nester [1979], and Isenberg and Nester [1977].

We begin by abstracting the setup for dynamics in the instantaneous formal-
ism as presented in §§6A–6D. Let P be a manifold (possibly infinite-dimensional)
and let ω be a presymplectic form on P. We consider differential equations of
the form

ṗ = X(p) (6E.1)



§6E Constraint Theory 103

where the vector field X satisfies

iXω = dH (6E.2)

for some given function H on P. Finding vector field solutions X of (6E.2) is
an algebraic problem at each point. When ω is symplectic, (6E.2) has a unique
solution X. But when ω is presymplectic, neither existence nor uniqueness of
solutions X to (6E.2) is guaranteed. In fact, X exists at a point p ∈ P iff dH(p)
is contained in the image of the map TpP → T ∗p P determined by X 7→ iXω.

Thus one cannot expect to find globally defined solutions X of (6E.2); in
general, if X exists at all, it does so only along a submanifold Q of P.14 But
there is another consideration which is central to the physical interpretation of
these constructions: we want solutions X of (6E.2) to generate (finite) temporal
evolution of the “fields” p from the given “Hamiltonian” H via (6E.1). But this
can occur on Q only if X is tangent to Q. Modulo considerations of well-
posedness (see below), this ensures that X will generate a flow on Q or, in
other words, that (6E.1) can be integrated. This additional requirement further
reduces the set on which (6E.2) can be solved.

In Gotay et al. [1978]—hereafter abbreviated by GNH—a geometric charac-
terization of the sets on which (6E.2) has tangential solutions is presented. The
characterization relies on the notion of “symplectic polar.” Let Q be a subman-
ifold of P. At each p ∈ Q, we define the symplectic polar TpQ

⊥ of TpQ in TpP

to be
TpQ

⊥ = {V ∈ TpP | ω(V,W ) = 0 for all W ∈ TpQ} .

Set
TQ⊥ =

⋃
p∈Q

TpQ
⊥.

Then GNH proves the following result, which provides the necessary and suffi-
cient conditions for the existence of tangential solutions to (6E.2).

Proposition 6E.1. The equation

(iXω − dH)
∣∣Q = 0 (6E.3)

possesses solutions X tangent to Q iff the directional derivative of H along any
vector in TQ⊥ vanishes:

TQ⊥[H ] = 0. (6E.4)
14 We suppose that all such “constraint sets” Q are smooth; this issue is addressed in Remark

6E.4 following.
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Moreover, GNH develop a symplectic version of Dirac’s “constraint algo-
rithm” which computes the unique maximal submanifold C of P along which
(6E.2) possesses solutions tangent to C. This final constraint submanifold

is the limit C = ∩
l

Pl of a string of sequentially constructed constraint sub-

manifolds

Pl+1 =
{
p ∈ Pl | (TpP

l)⊥[H ] = 0
}

(6E.5)

which follow from applying the consistency conditions (6E.4) to (6E.2) beginning
with P1 = P. The basic facts are as follows.

Theorem 6E.2. Suppose C 6= ∅. Then

(i) Equation (6E.2) is consistent, that is, there are vector fields X ∈ X(C)
such that

(iXω − dH)
∣∣C = 0. (6E.6)

(ii) If Q ⊂ P is a submanifold along which (6E.3) holds with X tangent to
Q, then Q ⊂ C.

The following useful characterization of the maximality of C follows from
(ii) above and Proposition 6E.1.

Corollary 6E.3. C is the largest submanifold of P with the property that

TC⊥[H ] = 0. (6E.7)

These results can be thought of as providing formal integrability criteria for
equation (6E.1), since they characterize the existence of the vector field X, but
do not imply that it can actually be integrated to a flow. The latter problem is
a difficult analytic one, since in classical field theory (6E.1) is usually a system
of hyperbolic PDEs and great care is required (in the choice of function spaces,
etc.) to guarantee that there exist solutions which propagate for finite times. We
shall not consider this aspect of the theory in any depth and will simply assume,
when necessary, that (6E.1) is well-posed in a suitable sense. See Hawking and
Ellis [1973] and Hughes et al. [1977] for some discussion of this issue. Of course,
in finite dimensions (6E.1) is a system of ODEs and so integrability is automatic.

Remark 6E.4. We assume here that each of the Pl as well as C are smooth
submanifolds of P. In practice, this need not be the case; the Pl for l > 1
and C typically have quadratic singularities (see item 7 in the Introduction
and Interlude IV). This does not usually present problems, at least insofar as
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the computation of the constraint sets and the adjoint form are concerned.
(However, Cendra and Etchechoury [2005] have recently developed a means of
extending the constraint algorithm to singular cases.) In such circumstances
our constructions and results must be understood to hold at smooth points.
We observe, in this regard, that the singular sets of the Pl and C usually have
nonzero codimension therein, and that constraint sets are “varieties” in the sense
that they are the closures of their smooth points. For an introduction to some
of the relevant “singular symplectic geometry”, see Arms et al. [1990], Sjamaar
and Lerman [1991], and Ortega and Ratiu [2004]. Of course, singularities remain
important for questions of linearization stability and quantization, etc. �

Remark 6E.5. In infinite dimensions, Proposition 6E.1 and the construction
(6E.5) of the Pl are not valid without additional technical qualifications which
we will not enumerate here. See Gotay [1979] and Gotay and Nester [1980] for
the details in the general case. �

Remark 6E.6. The above results pertain to the existence of solutions to (6E.2).
It is crucial to realize that solutions, when they exist, generally are not unique:
if X solves (6E.6), then so does X + V for any vector field V ∈ kerω ∩ X(C).
Thus, besides being overdetermined (signaled by a strict inclusion C ⊂ P),
equation (6E.2) is also in general underdetermined , signaling the presence of
gauge freedom in the theory. We will have more to say about this later. �

We discuss one more issue in this abstract setting: the notions of first and
second class constraints. We begin by recalling the classification scheme for
submanifolds of presymplectic manifolds (P, ω). Let C ⊂ P; then C is

(i) isotropic if TC ⊂ TC⊥

(ii) coisotropic or first class if TC⊥ 6= {0} and TC⊥ ⊂ TC

(iii) second class if TC + TC⊥ = TCP.

(iv) symplectic if TC ∩ TC⊥ = {0}.

These conditions are understood to hold at every point of C. If C does not
happen to fall into any of these categories, then C is said to be mixed . Note
as well that the classes are not disjoint: a submanifold can be simultaneously
isotropic and coisotropic, in which case TC = TC⊥ and C is called Lagrangian .
The difference between “second class” and “symplectic” is that TC∩ TC⊥ may
be nonzero in the former case; this distinction only appears when P is genuinely



106 §6 Initial Value Analysis of Field Theories

presymplectic. An example of a second class, yet not symplectic constraint set
is the Dirac manifold for Palatini gravity, cf. §14B.

From the point of view of the submanifold C, this classification reduces to
a characterization of the closed 2-form ωC obtained by pulling ω back to C.
Indeed,

kerωC = TC ∩ TC⊥. (6E.8)

In particular, C is isotropic iff ωC = 0 and symplectic iff kerωC = {0}. Our
main interest will be in the coisotropic case.

Before proceeding, we need to establish a technical fact which will be useful
later. When the ambient space P is symplectic, it is well-known that (TC⊥)⊥ =
TC. When P is merely presymplectic, this is no longer true in general. Instead
we have:

Lemma 6E.7. Let C ⊂ P. Then

(TC⊥)⊥ = TC + TCP⊥.

In particular, if C is coisotropic then (TC⊥)⊥ = TC.

Proof. Symplectically imbed (P, ω) into a symplectic manifold (M, $). (For
instance, (T ∗P,−dθ+π∗ω) will do, where θ is the Liouville 1-form on T ∗P and
π : T ∗P → P is the projection.) Let ` denote the symplectic polar with respect
to $. It is straightforward to show that TC⊥ = TC` ∩ TCP. Now

(TC⊥)⊥ = (TC` ∩ TCP)⊥

= (TC` ∩ TCP)` ∩ TCP

=
(
(TC`)` + TCP`) ∩ TCP

= (TC + TCP`) ∩ TCP

= TC + TCP⊥

where the third equality follows from Proposition 5.3.2 in Abraham and Marsden
[1978]. This establishes the main result.

Always it is the case that TCP⊥ ⊂ TC⊥, and if C is coisotropic we conclude
that TCP⊥ ⊂ TC. The desired result now follows from the above. �

A constraint is a function f ∈ F(P) which vanishes on (the final constraint
set) C. The classification of constraints depends on how they relate to TC⊥. A
function f which satisfies

TC⊥[f ] = 0 (6E.9)
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everywhere on C is said to be first class relative to C; otherwise it is second

class. (These definitions are due to Dirac [1964].)

Proposition 6E.8. (i) Let f be a constraint. Then the Hamiltonian vector
field Xf of f , defined by iXf

ω = df , exists along C iff TP⊥[f ]
∣∣C = 0.

If it exists, then Xf ∈ X(C)⊥.

(ii) Conversely, suppose (P, ω) is symplectic. Then at every point of C, TC⊥

is pointwise spanned by the Hamiltonian vector fields of constraints.

(iii) Let f be a first class constraint. Then the Hamiltonian vector field Xf

of f exists along C and Xf ∈ X(C) ∩ X(C)⊥.

(iv) Conversely, suppose (P, ω) is symplectic. Then at every point of C,

TC ∩ TC⊥ is pointwise spanned by the Hamiltonian vector fields of first
class constraints.

(v) C is first class iff every constraint is first class.

(vi) C is second class iff every effective15 constraint is second class.

Proof. We follow Patrick [1985] for parts (i)–(iv).
(i) We study the equation

iXf
ω = df (6E.10)

at p ∈ C. The first assertion follows immediately from Proposition 6E.1 upon
taking Q = P. Then, if Xf exists, ω(Xf , TpC) = TpC[f ] = 0 as f is a constraint,
whence Xf (p) ∈ TpC

⊥.

(ii) Let V ∈ TpC
⊥ and set α = iV ω. Fix a neighborhood U of p in P and a

Darboux chart ψ : (U, ω
∣∣U) → (TpP, ωp) such that

(a) ψ(p) = 0,

(b) Tpψ = idTpP and

(c) ψ flattens U ∩ C onto TpC.

Set f = α ◦ ψ so that, by (b), df(p) = iV ω. Then (c) yields

f(U ∩ C) = α(ψ(U ∩ C)) ⊂ α(TpC) = ωp(V, TpC)

15 A constraint f is effective provided df |C 6≡ 0. The reason for this requirement is that

if f is any constraint, then f2 is first class.
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which vanishes as V ∈ TpC
⊥. Thus f is a constraint in U and the desired

globally defined constraint is then gf , where g is a suitable bump function.

(iii) Applying Proposition 6E.1 to (6E.10) along C and taking (6E.9) into
account, we see that Xf exists and is tangent to C. The result now follows from
(i).

(iv) Let V ∈ TpC ∩ TpC
⊥. We proceed as in (ii); it remains to show that f

is first class. For any q ∈ U ∩ C and W ∈ TqC
⊥,

df(q) ·W = (α ◦ Tqψ) ·W = ωp(V, Tqψ ·W ).

But ψ is a symplectic map, and consequently Tqψ ·W ∈ TpC
⊥ in TpP. Therefore,

ωp(V, Tqψ ·W ) = 0 as V ∈ TpC. Then gf is the desired globally defined first
class constraint, where g is a suitable bump function.

(v) If C is first class, then TC⊥ ⊂ TC. Applying this to a constraint f , we
see that f must be first class.

For the converse, suppose there exists v ∈ TpC
⊥ which is not tangent to C.

Extend v to a vector field V on some open set U containing p; let Ft be its
flow. By the “straightening out theorem” (Abraham and Marsden [1978], Thm.
2.1.9), we may suppose that U has the form W×(−1, 1), where (w, t) = Ft(w, 0)
and W is chosen so as to contain C ∩ U. Then f : U 7→ R given by f(w, t) = t

is a constraint, and obviously V (p)[f ] = v[f ] 6= 0, whence f is not first class, a
contradiction. (One may convert f into a globally defined second class constraint
by “bumping” it, as in (ii) above.)

(vi) Suppose that f is nonsingular at p ∈ C; in other words, TpP[f ] 6= 0. Since
C is second class, this means that

(
TpC + TpC

⊥)[f ] 6= 0. As f is a constraint,
this implies that TpC

⊥[f ] 6= 0 so that f is itself second class.

Going the other way, we argue by contradiction as in the proof of the converse
of (v). So assume there is v ∈ TpP which does not belong to TpC + TpC

⊥.
Extend v to a vector field V on some open set U containing p; again applying
the straightening out theorem, we choose W so as to contain C ∩ U and so that(
TC + TC⊥

)
|U ⊂ TCW. Then f : U 7→ R given by f(w, t) = t is an effective

constraint, but since W = f−1(0) and TpC + TpC
⊥ ⊂ TpW we have clearly

V (p)[f ] = v[f ] = 0, whence f is not second class.

�



§6E Constraint Theory 109

Remark 6E.9. Strictly speaking, Xf is defined only up to elements of kerω =
X(P)⊥, but we abuse the language and continue to speak of “the” Hamiltonian
vector field Xf of the constraint f . �

From the preceding proposition, it follows that a second class submanifold
can be locally described by the vanishing of second class constraints. Similarly,
if C is coisotropic, then all constraints are first class. In general, a mixed or
isotropic submanifold will require both classes of constraints for its local de-
scription.

We now apply the abstract theory of constraints, as just described, to the
study of classical field theories. To place these results into the context of dy-
namics in the instantaneous formalism, we fix an infinitesimal slicing (Yτ , ζ).
Then (P, ω) is identified with the primary constraint submanifold (Pτ , ωτ ) of
§6C, H with the Hamiltonian Hτ,ζ and (6E.2) with Hamilton’s equations

iXωτ = dHτ,ζ , (6E.11)

cf. §6D. We have the sequence of constraint submanifolds

Cτ,ζ ⊂ · · · ⊂ Pl
τ,ζ ⊂ · · · ⊂ Pτ ⊂ T ∗Yτ . (6E.12)

A priori , for l ≥ 2 the Pl
τ,ζ depend upon the evolution direction ζ through the

consistency conditions (6E.5), as Hτ,ζ does. We will soon see, however, that the
final constraint set is independent of ζ.16 As indicated in Remark 6E.4 above,
for simplicity we always suppose that

A3 Regularity. Cτ,ζ is a smooth manifold and kerωCτ,ζ
= TCτ,ζ ∩ TC⊥

τ,ζ

is a subbundle of TPτ |Cτ,ζ .

To ensure that the first of these assumptions is satisfied in appropriate
Sobolev spaces, one supposes that the constraints are elliptic. This issue is
discussed further in Interlude IV.

The functions whose vanishing defines Pτ in T ∗Yτ are called primary con-

straints; they arise because of the degeneracy of the Legendre transform. Sim-
ilarly, the functions whose vanishing defines Pl

τ,ζ in Pl−1
τ,ζ are called l-ary con-

straints (secondary, tertiary, . . . ). These constraints are generated by the

16In fact, none of the Pl
τ,ζ depend upon ζ, but we shall not prove this here. We have already

shown in Corollary 6C.5 that the primary constraint set is independent of ζ.
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constraint algorithm. Sometimes, for brevity, we shall refer to all l-ary con-
straints for l ≥ 2 as “secondary.” When we refer to the “class” of a constraint,
we will adhere to the following conventions, unless otherwise noted. The class
of a constraint will always be computed relative to the final constraint set Cτ,ζ .
A secondary constraint f is then first class provided TC⊥

τ,ζ [f ] = 0, and second
class otherwise, where the polar “⊥” is taken with respect to (Pτ , ωτ ). However,
a primary constraint f is first class iff TC`

τ,ζ [f ] = 0, where now the polar “`”
is taken with respect to T ∗Yτ with its canonical symplectic form. Similarly, if
Qτ ⊂ Pτ , the polar TQ⊥

τ will be taken with respect to (Pτ , ωτ ); in particular,
Qτ is coisotropic, etc., if it is so relative to the primary constraint submanifold.

These constraints are all initial value constraints. Indeed, thinking of
Στ as the “initial time,” elements (ϕ, π) ∈ Cτ,ζ represent admissible initial data
for the (n+1)-decomposed field equations (6E.11). Pairs (ϕ, π) which do not lie
in Cτ,ζ cannot be propagated, even formally, a finite time into the future. The
next series of results will serve to make these observations precise.

Let Sol denote the set of all spacetime solutions of the Euler–Lagrange equa-
tions. (Without loss of generality, we will suppose in the rest of this section that
such solutions are globally defined.) Fix a Lagrangian slicing with parameter
λ. Referring back to §6D, we define a map can : Sol → Γ(Pτ ) by assigning to
each φ ∈ Sol its canonical decomposition cφ with respect to the slicing. Observe
that, for each fixed λ ∈ R, canλ(φ) = cφ(λ) ∈ Pλ depends only upon φ and the
Cauchy surface Σλ, but not on the slicing.

Proposition 6E.10. Assume A2. Then, for each λ ∈ R,

canλ(Sol) ⊂ Cλ,ζ .

Proof. Let φ ∈ Sol and set λ = 0 for simplicity. We will show that can0(φ) =
cφ(0) ∈ C0,ζ . Define a curve γ : R → P0 by

γ(s) = f−s(cφ(s)) (6E.13)

where fs is the flow of ζP. We may think of cφ in Pτ as “collapsing” onto γ in
P0 as in Figure 6.6.

Define a one-parameter family of curves cs : R → Pτ by

cs(t) = f−s(cφ(s+ t)).

By Theorem 6D.4(i), cφ is a dynamical trajectory. Using (6D.4) we see from
(6D.5) that each curve cs is also a dynamical trajectory “starting” at cs(0) =
γ(s).
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Figure 6.6: Collapsing dynamical trajectories

The tangent to each curve cs(t) at t = 0 takes the form

d

dt
cs(t)

∣∣∣∣
t=0

= X0(γ(s)) + ζP(γ(s)),

where X0 is a vertical vector field on P0 along γ. From (6E.13) it follows that
X0(γ(s)) is the tangent to γ at s.

Proposition 6D.1 applied to each dynamical trajectory cs at t = 0 implies
that X0(γ(s)) satisfies Hamilton’s equations (6E.11) at each point γ(s). Since
X0 is tangent to γ, Theorem 6E.2(ii) shows that the image of γ lies in C0,ζ . In
particular, γ(0) = cφ(0) ∈ C0,ζ . �

This proposition shows that only initial data (ϕ, π) ∈ Cλ,ζ can be extended
to solutions of the Euler–Lagrange equations. The converse is true if we assume
well-posedness. We say that the Euler–Lagrange equations are well-posed rel-
ative to a slicing sY if every (ϕ, π) ∈ Cλ,ζ can be extended to a dynamical
trajectory c : ]λ− ε, λ+ ε[ ⊂ R → Pτ with c(λ) = (ϕ, π) and that this solution
trajectory depends continuously (in a chosen function space topology) on (ϕ, π).

This will be a standing assumption in what follows.
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A4 Well-Posedness The Euler–Lagrange equations are well-posed.

In this notion of well-posedness, one has to keep in mind that we are assuming
that there is a given slicing of the configuration bundle Y . However, we will
later prove (in Chapter 13 that well-posedness relative to one slicing with a
given Cauchy surface Σ as a slice will imply well-posedness relative to any other
(appropriately smooth) slicing also containing Σ as a slice.

Well-posedness for theories without gauge freedom reduces, in specific exam-
ples, to the well-posedness of a system of PDE’s describing that theory in a given
slicing. These will be the Hamilton equations that we have developed, written
out in coordinates. In the case of metric field theories, one typically would
then use theorems on strictly hyperbolic (or symmetric hyperbolic) systems to
establish well-posedness (relative to a slicing by spacelike hypersurfaces); see,
for example, Chernoff and Marsden [1974], John [1982], McOwen [2003], and
Grundlach and Mart́ın-Garćıa [2004].

The situation for theories with gauge freedom is a bit more subtle, be-
cause switching gauges can mix evolution and constraint equations. However, it
has been established that well-posedness holds for “standard” theories such as
Maxwell, Einstein, Yang-Mills and their couplings. Here, very briefly, is how the
argument goes for the case of the Einstein equations (in the ADM formulation).
To follow this argument, the reader will need to be familiar with works on the
initial value formulation of Einstein’s theory, such as Choquet-Bruhat [1962],
Fischer and Marsden [1979b], Fritelli and Reula [1996], Klainerman and Nicoló
[1999], Andersson and Moncrief [2002], and Choquet-Bruhat [2004].

If one has a slicing sY specified, and one gives initial data (ϕ, π) ∈ C0,ζ

over a Cauchy surface Σ0, then one first takes this data and evolves it using a
particular gauge or coordinate choice in which the evolution equations form a
strictly hyperbolic (or symmetric hyperbolic) system.17 This then generates a
piece of spacetime on a tubular neighborhood U of the initial hypersurface and
the solution φ so constructed (in this case the metric) on this piece of spacetime
varies continuously with the choice of initial data. The solution then satisfies
the Euler–Lagrange equation. Since Σ0 is compact, there exists an ε > 0 such
that sX(] − ε, ε[×Σ) ⊂ U . Thus φ induces the required dynamical trajectory
cφ : ]−ε, ε[ → Pτ with cφ(0) = (ϕ, π) relative to the given slicing. The argument
for other field theories follows a similar pattern.

17 We caution that hyperbolicity is a gauge-dependent notion.
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As was indicated in the Introduction, the above notion of well-posedness is
not the same as the question of generating solutions of the initial value problem
for a given choice of lapse and shift (or their generalization, called atlas fields,
to other field theories) on a Cauchy surface. This is a more subtle question
that we shall address later in Chapter 13. The essential difference is that with
a given initial choice of lapse and shift, one still needs to construct the slicing,
whereas in the present context we are assuming that a slicing has been given.

There is evidence that well-posedness fails in both of the above senses for
many R + R2 theories of gravity, as well as for most couplings of higher-spin
fields to Einstein’s theory (with supergravity being a notable exception; see Bao,
Choquet-Bruhat, Isenberg, and Yasskin [1985]).

This assumption together with Proposition 6E.10 yield:

Corollary 6E.11. If A2–A3 hold, then can λ(Sol) = Cλ,ζ .

Since, as noted previously, canλ depends only upon the Cauchy surface Σλ,
we have:

Corollary 6E.12. Cλ,ζ is independent of ζ.

Henceforth we denote the final constraint set simply by Cλ. In particular,
this implies that the constraint algorithm computes the same final constraint
set regardless of which Hamiltonian Hλ,ζ is employed, as the generator ζ ranges
over all compatible slicings (with Σλ as a slice).

Proposition 6E.10 shows that every dynamical trajectory c : R → Pτ “col-
lapses” to an integral curve of Hamilton’s equations in Cλ for each λ. We now
prove the converse; that is, every integral curve of Hamilton’s equations on Cλ

“suspends” to a dynamical trajectory in Pτ .

Proposition 6E.13. Let γ be an integral curve of a tangential solution Xλ of
Hamilton’s equations on Cλ. Then c : R → Pτ defined by

c(s) = fs(γ(s)) (6E.14)

is a dynamical trajectory.

Proof. Again setting λ = 0, (6E.14) yields

ċ(s) = Xs(c(s)) + ζP(c(s)) (6E.15)

where Xs = Tfs · X0. Since X0(γ(s)) satisfies (6D.7) with λ = 0 for every s,
(6D.4) implies that Xs(c(s)) satisfies (6D.7) for every s. The desired result now
follows from (6E.15) and Proposition 6D.1. �
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Combining the proof of Proposition 6E.10 with Proposition 6E.13, we have:

Corollary 6E.14. The Euler–Lagrange equations are well-posed iff every tan-
gential solution Xλ of Hamilton’s equations on Cλ integrates to a (local in time)
flow for every λ ∈ R.

It remains to discuss the role of gauge transformations in constraint theory.
Just as initial value constraints reflect the overdetermined nature of the field
equations, gauge transformations arise when these equations are underdeter-
mined.

Classical field theories typically exhibit gauge freedom in the sense that
a given set of initial data (ϕ, π) ∈ Cλ does not suffice to uniquely determine a
dynamical trajectory. Indeed, as noted in Remark 6E.6, if Xλ is a tangential
solution of Hamilton’s equations

(Xλ ωλ − dHλ,ζ)
∣∣Cλ = 0, (6E.16)

then so is Xλ + V for any vector field V ∈ kerωλ ∩ X(Cλ). For this reason we
call vectors in kerωλ ∩ TCλ kinematic directions.

This is not the entire story, however; the indeterminacy in the solutions to
the field equations is more subtle than (6E.16) would suggest. It turns out that
solutions of (6E.16) are fixed only up to vector fields in X(Cλ)∩X(Cλ)⊥ which,
in general, is larger than kerωλ ∩ X(Cλ):

kerωλ ∩ X(Cλ) = X(Pλ)⊥ ∩ X(Cλ) ⊂ X(Cλ)⊥ ∩ X(Cλ).

To see this, consider a Hamiltonian vector field V ∈ X(Cλ) ∩ X(Cλ)⊥; ac-
cording to the proof of Proposition 6E.8(iv), iV ωλ = df where f is a first class
constraint. Setting X ′

λ = Xλ + V , (6E.16) yields

(X ′
λ ωλ − d(Hλ,ζ + f))

∣∣Cλ = 0. (6E.17)

Thus if Xλ is a tangential solution of Hamilton’s equations along Cλ with Hamil-
tonian Hλ,ζ , then X ′

λ is a tangential solution of Hamilton’s equations along Cλ

with Hamiltonian H ′
λ,ζ = Hλ,ζ + f .

Physically, equations (6E.16) and (6E.17) are indistinguishable. Put another
way, dynamics is insensitive to a modification of the Hamiltonian by the addition
of a first class constraint. The reason is that H ′

λ,ζ = Hλ,ζ along Cλ and it is
only what happens along Cλ that matters for the physics; distinctions that are
only manifested “off” Cλ—that is, in a dynamically inaccessible region—have
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no significance whatsoever. Thus the ambiguity in the solutions of Hamilton’s
equations is parametrized by X(Cλ) ∩ X(Cλ)⊥. For further discussion of these
points see GNH, Gotay and Nester [1979], and Gotay [1979, 1983].

Remark 6E.15. We may rephrase the content of the last paragraph by say-
ing that what is really of central importance for dynamics is not Hamilton’s
equations per se, but rather their pullback to Cλ; the pullbacks of (6E.16) and
(6E.17) to Cλ coincide. Furthermore, X(Cλ) ∩ X(Cλ)⊥ is just the kernel of the
pullback of ωλ to Cλ, cf. (6E.8). �

Remark 6E.16. Notice also that since f is first class, (6E.7) and (6E.9) guar-
antee that the constraint algorithm computes the same final constraint subman-
ifold using either Hamiltonian Hλ,ζ or H ′

λ,ζ . �

Remark 6E.17. The addition of first class constraints to the Hamiltonian (with
Lagrange multipliers) is a familiar feature of the Dirac–Bergmann constraint
theory. �

The (regular) distribution X(Cλ) ∩ X(Cλ)⊥ on Cλ is involutive and so de-
fines a foliation of Cλ. Initial data (ϕ, π) and (ϕ′, π′) lying on the same leaf
of this foliation are said to be gauge-equivalent ; solutions obtained by in-
tegrating gauge-equivalent initial data cannot be distinguished physically. We
call X(Cλ) ∩ X(Cλ)⊥ the gauge algebra and elements thereof gauge vector

fields. The flows of such vector fields preserve this foliation and hence map
initial data to gauge-equivalent initial data; they are therefore referred to as
gauge transformations.

Proposition 6E.8 establishes the fundamental relation between gauge trans-
formations and initial value constraints: first class constraints generate gauge
transformations. This encapsulates a curious feature of classical field theory:
the field equations being simultaneously overdetermined and underdetermined.
These phenomena—a priori quite different and distinct—are intimately cor-
related via the symplectic structure. Only in special cases (i.e., when Cλ is
symplectic) can the field equations be overdetermined without being underde-
termined (see §8A). Conversely, it is not possible to have gauge freedom without
initial value constraints.

Remark 6E.18. In Part III we will prove that the Hamiltonian (relative to
a G-slicing) of a parametrized field theory in which all fields are variational
vanishes on the final constraint set. Pulling (6E.16) back to Cλ (cf. Remark
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6E.15), it follows that Xλ ∈ ker ωCλ
—that is, the evolution is totally gauge! We

will explicitly verify this in Examples a, c and d forthwith. �

A more detailed analysis using Proposition 6E.8 (see also Chapters 10 and
12) shows that the first class primary constraints correspond to gauge vector
fields in kerωλ∩X(Cλ), while first class secondary constraints correspond to the
remaining gauge vector fields in X(Cλ)∩X(Cλ)⊥, cf. GNH. In this context, it is
worthwhile to mention that second class constraints bear no relation to gauge
transformations at all. For if f is second class, then by Proposition 6E.8, if it
exists its Hamiltonian vector field Xf ∈ TC⊥

λ everywhere along C, but Xf /∈ TCλ

at least at one point. Thus Xf tends to flow initial data off Cλ, and hence does
not generate a transformation of Cλ. An extensive discussion of second class
constraints is given by Lusanna [1991].

The field variables conjugate to the first class primary constraints have a
special property which will be important later. We sketch the basic facts here
and refer the reader to Part IV for further discussion.

Consider a nonsingular first class primary constraint f . Let g be canonically
conjugate to f in the sense that

ωT∗Yλ
(Xf , Xg) = 1.

As in the proof of the Darboux theorem, after a canonical change of coordinates,
if necessary, we may write

ωT∗Yλ
=
∫

Σλ

[dg ∧ df + · · · ]⊗ dnx0. (6E.18)

Expressing the evolution vector field Xλ in the form

Xλ =
dg

dλ

δ

δg
+ · · ·

and substituting into Hamilton’s equations (6E.16), we see that since the first
term in (6E.18) vanishes when pulled back to Pλ Hamilton’s equations place no
restriction on dg/dλ. Thus, the evolution of g is completely arbitrary; i.e., g is
purely “kinematic.” Notice also from (6E.18) that

δ

δg
= Xf ∈ kerωλ ∩ X(Cλ),

which shows that δ/δg is a kinematic direction as defined above.
This concludes our introduction to constraint theory. In Part III we will

see how both the initial value constraints and the gauge transformations can be
obtained “all at once” from the energy-momentum map for the gauge group.
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Examples

In the above discussion, we have treated secondary constraints (for example)
as functions f : Pλ → R. But in field theory, it is often more convenient (and
economical) to think of them as maps Φ : Pλ → F(Σλ) according to:

fh(σ) =
∫

Σλ

h(Φ ◦ σ) dnx0

for each test function h ∈ F(Σλ). Thus the vanishing of each such Φ is equiv-
alent to the vanishing of the “1 ×∞n ” constraints fh. We will often blur the
distinction between these two interpretations.

a Particle Mechanics. We work out the details of the constraint algo-
rithm for the relativistic free particle. Now Pλ ⊂ T ∗Yλ is defined by the mass
constraint (6C.14):

H = gABπAπB +m2 = 0.

Then X(Pλ)⊥ = kerωλ is spanned by the ωT∗Yλ
-Hamiltonian vector field

XH = 2gABπA
∂

∂qB
− gAB

,CπAπB
∂

∂πC
(6E.19)

of the “superhamiltonian” H. For the Hamiltonian (6C.15), the consistency
conditions (6E.4) (cf. (6E.5) with l = 1) reduce to requiring that XH[Hλ,ζ ] = 0.
A computation gives

XH[Hλ,ζ ] = (gAB
,Cζ

C − 2gACζB
,C)πAπB = −2ζ(A;B)πAπB

which vanishes by virtue of the fact that the slicing is Lagrangian, so that
ζA∂/∂qA is a Killing vector field, cf. Example a of §6A. Thus there are no
secondary constraints and so Cλ = Pλ. The mass constraint is first class.

The most general evolution vector field satisfying Hamilton’s equations
(6E.16) along Pλ is Xλ = X + kXH, where X is any particular solution and
k ∈ F(Cλ) is arbitrary. Explicitly, writing

Xλ =
(
dqA

dλ

)
∂

∂qA
+
(
dπA

dλ

)
∂

∂πA
,

the space + time decomposed equations of motion take the form

dqA

dλ
= −ζA + 2kgABπB

dπA

dλ
= ζB

,AπB − kgBC
,AπBπC .

(6E.20)
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These equations appear complicated because we have written them relative to
an arbitrary (but Lagrangian) slicing. If we were to choose the standard slicing
Y = Q×R, then ζA = 0 and (6E.20) are then clearly identifiable as the geodesic
equations on (Q, g) with an arbitrary parametrization.

Since the equations of motion (6E.20) for the relativistic free particle are
ordinary differential equations, this example is well-posed.

The gauge distribution X(Pλ) ∩ X(Pλ)⊥ is globally generated by XH. The
gauge freedom of the relativistic free particle is reflected in (6E.20) by the pres-
ence of the arbitrary multiplier k, and obviously corresponds to time repara-
metrizations. When ζA = 0 the evolution is purely gauge, as predicted by
Remark 6E.18.

b Electromagnetism. Since E0 = 0 is the only primary constraint in Max-
well’s theory on a fixed background spacetime, the polar X(Pλ)⊥ is spanned
by δ/δA0. From expression (6C.23) for the electromagnetic Hamiltonian, we
compute that δHλ,ζ/δA0 = 0 iff

DiE
i = 0, (6E.21)

where we have performed an integration by parts. This is Gauss’ Law, and
defines P2

λ,ζ ⊂ Pλ. Continuing with the constraint algorithm, observe that along
with δ/δA0, X(P2

λ,ζ)
⊥ is generated by vector fields of the form V = (Dia)δ/δAi,

where a : P2
λ,ζ → F(Σλ) is arbitrary (cf. (5A.6)). But then a computation gives

V [Hλ,ζ ] =
∫

Σλ

(ζja,j),iE
i d3x0 = −

∫
Σλ

ζja,jE
i
,i d

3x0

which vanishes by virtue of (6E.21). Thus the algorithm terminates with Cλ =
P2

λ,ζ . Note that Cλ is indeed independent of the choice of slicing generator
ζ, as promised by Corollary 6E.12. Moreover, it is obvious from (6E.21) that
X(Cλ)⊥ ⊂ X(Cλ) so Cλ is coisotropic and, in fact, all constraints are first class.

Maxwell’s equations in the canonical form (6E.16) are satisfied by the vector
field

Xλ =
(
dA0

dλ

)
δ

δA0
+
(
dAi

dλ

)
δ

δAi
+
(
dEi

dλ

)
δ

δEi

provided

dAi

dλ
= ζ0Nγ−1/2γijE

j +
1

N
√
γ

(ζ0M j + ζj)Fji +Di(ζµAµ − χ) (6E.22)
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and

dEi

dλ
= Dj

(
ζ0γikγjmFkm +

[
(ζ0M i + ζi)Ej − (ζ0M j + ζj)Ei

] )
. (6E.23)

Equation (6E.22) reproduces the definition (6C.19) of the electric field density,
while (6E.23) captures the dynamical content of Maxwell’s theory. Note that
dA0/dλ is left undetermined, in accord with the fact that δ/δA0 is a kinematic
direction.

It is well-known that the canonical form (6E.22)–(6E.23) of Maxwell equa-
tions form a symmetric hyperbolic system when reduced to first order (McOwen
[2003], Grundlach and Mart́ın-Garćıa [2004]) and hence is well-posed provided
Σλ is spacelike. (The computation is similar to that for bosonic strings, which
we will explicitly carry out in Example d following.) One can also verify hy-
perbolicity on the covariant level as follows. Since the 4-dimensional form of
the Maxwell equations in the Lorentz gauge Aµ

;µ = 0 reduce to wave equations
for the Aν (and hence are hyperbolic), and the gauge itself satisfies the wave
equation, this theory is again seen to be well-posed provided Σλ is spacelike.18

See Misner et al. [1973] and Wald [1984] for details here.

On a Minkowskian background relative to the slicing (6C.24), (6E.22) and
(6E.23) take their more familiar forms

dAi

dλ
= Ei +Di(A0 − χ) (6E.24)

and

dEi

dλ
= DjF

ij . (6E.25)

Of course, Xλ given by (6E.22) and (6E.23) is not uniquely fixed; one can
add to it any vector field V ∈ X(Cλ)⊥. Such a V has the form

V = a0
δ

δA0
+Dia

δ

δAi

for arbitrary maps a0, a : Cλ → F(Σλ). The first term in V simply reiterates
the fact that the evolution of A0 is arbitrary. To understand the significance

18 In fact, to check well-posedness of a theory with gauge freedom in a spacetime with closed

Cauchy surfaces, it is enough to verify this property in a particular gauge (Choquet-Bruhat

[2004], Klainerman and Nicoló [1999]).
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of the second term in V , it is convenient to perform a transverse-longitudinal
decomposition of the spatial 1-form A = i∗λA. (For simplicity, we return to
the case of a Minkowskian background with the slicing (6C.24).) So split A =
AT + AL, where AT is divergence-free and AL is exact. Then (6E.24) splits
into two equations:

dAT

dλ
= E and

dAL

dλ
= ∇A0 −∇χ.

(Note that the electric field is transverse by virtue of (6E.21).) The effect of
the second term in V is to thus make the evolution of the longitudinal piece
AL completely arbitrary. In summary, both the temporal and longitudinal
components A0 and AL of the potential A are gauge degrees of freedom whose
conjugate momenta are constrained to vanish, leaving the transverse part AT

of A and its conjugate momentum E as the true dynamical variables of the
electromagnetic field.

As a corollary of this analysis, we observe that electromagnetism on a (1+1)-
dimensional background is purely gauge.

The parametrized theory works much the same way. The main difference
is that Hamilton’s equations (6E.3) and the constraint conditions (6E.4) must
now be understood as holding when evaluated in “variational directions” only
(cf. Example b in §3B). By virtue of the metric primary constraints (6C.26),
from (5C.9) we compute that X(P̃λ)⊥ is spanned by the δ/δgσρ in addition
to δ/δA0. But, being nonvariational directions, the δ/δgσρ cannot be used to
generate secondary constraints,19 so the constraint algorithm proceeds just as
before. Similarly, Hamilton’s equations now take the form

V (iXλ
ω̃λ − dHλ,ζ) | P̃2

λ,ζ = 0

whereXλ and V are purely variational vector fields, i.e., can have no components
in the δ/δgσρ directions. Consequently, these equations are exactly equivalent
to (6E.22) and (6E.23); in particular, there are no equations of motion for the
parameters gσρ. Note also that Hλ,ζ | P̃2

λ,ζ 6= 0 even though the theory is
parametrized; the reason is that the metric g is not variational.

19 If one attempted to use these directions in the constraint algorithm, one would be led to

insist that
δHλ,ζ

δgσρ
= −

1

2
ζ0Tσρ = 0,

where Tσρ is the stress-energy-momentum tensor of the electromagnetic field—a clearly inap-

propriate requirement.
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c A Topological Field Theory. From (6C.30) we have the instantaneous
primary constraint set

Pλ =
{
(A, π) ∈ T ∗Yλ | π0 = 0 and πi = ε0ijAj

}
.

It follows that X(Pλ)⊥ is spanned by the vector field δ/δA0. With the Hamilto-
nian Hλ,ζ given by (6C.32), insisting that δHλ,ζ/δA0 = 0 produces the spatial
flatness condition (recall that n = 2)

F12 = 0. (6E.26)

This equation defines P2
λ,ζ ⊂ Pλ. Proceeding, we note that along with δ/δA0,

X(P2
λ,ζ)

⊥ is generated by vector fields of the form

V = Dia

(
ε0ij δ

δπj
− δ

δAi

)
,

where a : P2
λ,ζ → F(Σλ) is arbitrary. But then a computation gives

V [Hλ,ζ ] =
1
2

∫
Σλ

ε0ijζma,mFij d
3x0

which vanishes in view of (6E.26). Thus the constraint algorithm terminates
with Cλ = P2

λ,ζ .
Since X(Cλ)⊥ ⊂ X(Cλ), Cλ is coisotropic in Pλ, whence the secondary con-

straint (6E.26) is first class. The primary constraint π0 = 0 is also first class,
while the remaining two primaries πi − ε0ijAj = 0 are second class.

Next, suppose the vector field

Xλ =
(
dA0

dλ

)
δ

δA0
+
(
dAi

dλ

)
δ

δAi
+
(
dπi

dλ

)
δ

δπi

satisfies the Chern–Simons equations in the Hamiltonian form (6E.16). Then
by (6C.31) we must have

dAi

dλ
= Di(ζµAµ), (6E.27)

and from (6C.29) we then derive

dπi

dλ
= ε0ijDj(ζµAµ). (6E.28)

As in electromagnetism, δ/δA0 is a kinematic direction with the consequence
that dA0/dλ is left undetermined. By subtracting dAi/dλ given by (6E.27) from

Ȧi = ζµDµAi +Aµζ
µ
,i
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obtained from (6B.1) while taking (6C.27) into account, we get

ζµ(DiAµ −DµAi) = 0

which, when combined with (6E.26), yields the remaining flatness conditions
Fi0 = 0 in (3B.23). Equation (6E.28) yields nothing new.

Finally, note that (i) when restricted to Cλ the Chern–Simons Hamiltonian
(6C.32) vanishes by (6E.26), and (ii) we may rearrange

Xλ =
(
dA0

dλ

)
δ

δA0
−Di(ζµAµ)

(
ε0ij δ

δπj
− δ

δAi

)
∈ X(Cλ)⊥,

so that the Chern–Simons evolution is completely gauge, as must be the case
for a parametrized field theory in which all fields are variational.

One way to see that the Chern–Simons equations Fµν = 0 make up a well-
posed system is to observe that if we make the gauge choices A0 = 0 and ζX =
(1,0), then the field equations imply that ∂0Aν = 0, which clearly determines
a unique solution given initial data consisting of Ai satisfying A[1,2] = 0.

d Bosonic Strings. From (6C.36) and (6C.38) we see that X(Pλ)⊥ is
spanned by the vector fields δ/δhσρ or, equivalently, δ/δhσρ. Now demand that
δHλ,ζ/δh

σρ = 0, where Hλ,ζ is given by (6C.37). For (σ, ρ) = (1, 1), this yields

H =
1

2
√
γ

(
π2 +Dϕ2

)
= 0. (6E.29)

Substituting this back into the Hamiltonian and setting (σ, ρ) = (0, 1), we get

J = π ·Dϕ = 0. (6E.30)

Setting (σ, ρ) = (0, 0) produces nothing new, so that (6E.29) and (6E.30) are the
only secondary constraints. Note that together they implyHλ,ζ

∣∣P2
λ,ζ = 0, which

of course reflects the fact that the bosonic string is a parametrized theory (and
also that the slicing is a gauge slicing). As the notation suggests, H and J are the
analogues, for bosonic strings, of the superhamiltonian and supermomentum,
respectively, in ADM gravity.

For N,M ∈ F(Σλ), consider the Hamiltonian vector fields

XNH =
N
√
γ
gABπB

δ

δϕA
+

1
√
γ
gABD(NDϕB)

δ

δπA

XMJ = MDϕA δ

δϕA
+D(MπA)

δ

δπA

(6E.31)
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of NH and MJ, respectively. One verifies that XNH and XMJ, together with the
δ/δhσρ, generate X(P2

λ,ζ)
⊥ = X(P2

λ,ζ)
⊥ ∩ X(P2

λ,ζ) ⊂ X(P2
λ,ζ). Since in addition

the Hamiltonian vanishes on P2
λ,ζ , it follows that the constraint algorithm stops

with P2
λ,ζ = Cλ and also that all constraints are first class.

Writing the evolution vector field as

Xλ =
(
dϕA

dλ

)
δ

δϕA
+
(
dπA

dλ

)
δ

δπA
+
(
dhσρ

dλ

)
δ

δhσρ
,

Hamilton’s equations (6E.16) for the bosonic string are

dϕA

dλ
= −ζ

0N
√
γ
gABπB − (ζ0M + ζ1)DϕA (6E.32)

dπA

dλ
= −gABD

(
ζ0N
√
γ
DϕB

)
−D

(
(ζ0M + ζ1)πA

)
. (6E.33)

Here the dhσρ/dλ are undetermined, which is a consequence of the fact that the
hσρ are canonically conjugate to the first class primary constraints $σρ = 0,
and hence are kinematic fields.

To establish well-posedness, we introduce ϑA = DϕA and reduce (6E.32)
and (6E.32) to first order, obtaining

dϑA

dλ
= −(ζ0M + ζ1)DϑA − ζ0N

√
γ
gABDπB + · · ·

dϕA

dλ
= 0 + · · ·

dπA

dλ
= −gAB

ζ0N
√
γ
DϑB − (ζ0M + ζ1)DπA + · · · .

where the ellipsis denotes terms of zeroth order. This system is evidently sym-
metric hyperbolic whence the the evolution equations are well-posed relative to
any Lagrangian slicing in which Σλ is spacelike with respect to hµν .20,21

Since Xλ ∈ X(Cλ)∩X(Cλ)⊥ the evolution is totally gauge. The gauge trans-
formations on the fields (ϕA, πA) generated by the vector fields XNH and XMJ

for N,M arbitrary express the covariance of the bosonic string under diffeo-
morphisms of X. The complete indeterminacy of the metric h generated by the
vector fields δ/δhσρ is also a result of invariance under diffeomorphisms—which

20 One can also see this by noting that (3B.31) is a wave equation.
21 See Remark 6A.4.



124 §7 The Energy-Momentum Map

in two dimensions implies that the conformal factor is the only possible degree of
freedom in h, cf. Example d in §3B—coupled with conformal invariance—which
implies that even this degree of freedom is gauge.

In our examples, we have encountered at most secondary constraints, and in
Example a there were only primary constraints. This is typical: in mechanics
it is rare to find (uncontrived) systems with secondary constraints, and in field
theories at most secondary constraints are the rule. (Two exceptional cases
are Palatini gravity, which has tertiary constraints (see Part V), and the KdV
equation, which has only primary constraints (see Gotay [1988].) In principle,
however, the constraint chain 6E.12) can have arbitrary length, but this has no
physical significance.

7 The Energy-Momentum Map

In Chapter 4 we defined a covariant momentum mapping for a group G of covari-
ant canonical transformations of the multisymplectic manifold Z. This chapter
correlates those ideas with momentum mappings (in the usual sense) on the
presymplectic manifold Zτ and the symplectic manifold T ∗Yτ , and introduces
the energy-momentum map on Zτ . We then show that this energy-momentum
map projects to a function Eτ on the τ -primary constraint set Pτ , and that
under certain circumstances, Eτ is identifiable with the negative of the Hamil-
tonian. This is the key result which enables us in Part III to prove that the
final constraint set for first class theories coincides with E−1

τ (0), when G is the
gauge group of the theory.

7A Induced Actions on Fields

We first show how group actions on Y and Z, etc., can be extended to actions
on fields. Given a left action of a group G on a bundle πXK : K → X covering an
action of G on X, we get an induced left action of G on the space K of sections
of πXK defined by

ηK(σ) = ηK ◦ σ ◦ η−1
X (7A.1)

for η ∈ G and σ ∈ K, which generalizes the usual push-forward operation on
tensor fields. The infinitesimal generator ξK(σ) of this action is simply the
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(negative of the) Lie derivative:

ξK(σ) = −£ξσ = ξK ◦ σ − Tσ ◦ ξX . (7A.2)

We consider the relationship between transformations of the spaces Z, Z,
and Zτ . Let ηZ : Z → Z be a covariant canonical transformation covering
ηX : X → X with the induced transformation ηZ : Z → Z on fields given by
(7A.1). For each τ ∈ Emb(Σ, X), ηZ restricts to the mapping

ηZτ : Zτ → ZηX◦τ

defined by
ηZτ

(σ) = ηZ ◦ σ ◦ η−1
τ , (7A.3)

where ητ := ηX

∣∣Στ is the induced diffeomorphism from Στ to ηX(Στ ).

Proposition 7A.1. ηZτ
is a canonical transformation relative to the two-forms

Ωτ and ΩηX◦τ ; that is,
(ηZτ

)∗ΩηX◦τ = Ωτ .

Proof. From equation (7A.3)

TηZτ · V = TηZ ◦ (V ◦ η−1
τ ) (7A.4)

for V ∈ TσZτ . Thus,

(ηZτ
)∗ΩηX◦τ (V,W )

= ΩηX◦τ

(
TηZ · V ◦ η−1

τ , T ηZ ·W ◦ η−1
τ

)
(by (7A.4))

=
∫

ηX(Στ )

(ηZ ◦ σ ◦ η−1
τ )∗(iTηZ ·W◦η−1

τ
iTηZ ·V ◦η−1

τ
Ω) (by (5B.8))

=
∫

ηX(Στ )

(η−1
τ )∗[σ∗η∗Z(iTηZ ·W iTηZ ·V Ω)]

=
∫

Στ

(σ∗ηZ
∗)(iTηZ ·W iTηZ ·V Ω) (change of variables formula)

=
∫

Στ

σ∗(iW iV ηZ
∗Ω) (by naturality of pull-back)

=
∫

Στ

σ∗(iW iV Ω) (since η is covariant canonical)

= Ωτ (V,W ). (by (5B.8))
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�

Similarly, one shows the following:

Proposition 7A.2. If ηZ : Z → Z is a special covariant canonical transforma-
tion, then ηZτ

is a special canonical transformation.

7B The Energy-Momentum Map

Let G be a group acting by covariant canonical transformations on Z and let

J : Z → g∗ ⊗ ΛnZ

be a corresponding covariant momentum mapping. This induces the map Eτ :
Zτ → g∗ defined by

〈Eτ (σ), ξ〉 =
∫

Στ

σ∗〈J, ξ〉 (7B.1)

where ξ ∈ g and 〈J, ξ〉 : Z → ΛnZ is defined by 〈J, ξ〉(z) := 〈J(z), ξ〉. While Eτ

is not a momentum map in the usual sense on Zτ—since G does not necessarily
act on Zτ—it will be shown later to be closely related to the Hamiltonian in the
instantaneous formulation of classical field theory. For this reason we shall call
Eτ the energy-momentum map. Further justification for this terminology is
given in the interlude following this chapter.

For actions on Z lifted from actions on Y , using adapted coordinates and
(4C.7), (7B.1) becomes

〈Eτ (σ), ξ〉 =
∫

Στ

σ∗
(
(pA

µξA + p ξµ) dnxµ − pA
µξνdyA ∧ dn−1xµν

)
=
∫

Στ

(
(pA

0ξA + p ξ0) dnx0 − pA
µξνσA

,i σ
∗(dxi ∧ dn−1xµν)

)
where the integrands are regarded as functions of xi and where we write, in
coordinates, σ(xi) = (xi, σA(xi), p(xi), pA

µ(xi)). Since

dxi ∧ dn−1xµν = δi
ν d

nxµ − δi
µ d

nxν ,

the expression above can be written in the form

〈Eτ (σ), ξ〉 =
∫

Στ

(
pA

0(ξA − ξiσA
,i) + (p+ pA

iσA
,i)ξ0

)
dnx0 (7B.2)

=
∫

Στ

(
pA

0(ξA − ξµσA
,µ) + (p+ pA

µσA
,µ)ξ0

)
dnx0, (7B.3)
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where (7B.3) is obtained from (7B.2) by adding and subtracting the term
ξ0pA

0σA
,0. (For this to make sense, we suppose that σ is the restriction to

Στ of a section of πXZ . Of course, (7B.3) is independent of this choice of exten-
sion.)

To obtain a bona fide momentum map on Zτ , we restrict attention to the
subgroup Gτ of G consisting of transformations which stabilize the image of τ ;
that is,

Gτ := {η ∈ G | ηX(Στ ) = Στ}. (7B.4)

We emphasize that the condition ηX(Στ ) = Στ within (7B.4) does not mean
that each point of Στ is left fixed by ηX , but rather that ηX moves the whole
Cauchy surface Στ onto itself.

For any η ∈ Gτ , the map ητ := ηX

∣∣Στ is an element of Diff(Στ ). It follows
from Proposition 7A.1 that

ηZτ
(σ) = ηZ ◦ σ ◦ η−1

τ (7B.5)

is a canonical action of Gτ on Zτ . From (7A.2), the infinitesimal generator of
this action is

ξZτ(σ) = ξZ ◦ σ − Tσ ◦ ξτ , (7B.6)

where ξτ generates ητ .
Being a subgroup of G, Gτ has a covariant momentum map which is given

by J followed by the projection from g∗ ⊗ ΛnZ to g∗τ ⊗ ΛnZ, where gτ is the
Lie algebra of Gτ . Note that in adapted coordinates, ξ ∈ gτ when ξ0X = 0 on
Στ . From (7B.1), the map J induces the map Jτ := Eτ

∣∣ gτ : Zτ → g∗τ given by

〈Jτ (σ), ξ〉 =
∫

Στ

σ∗〈J, ξ〉 (7B.7)

for ξ ∈ gτ .

Proposition 7B.1. Jτ is a momentum map for the Gτ -action on Zτ defined
by (7B.5), and it is Ad∗-equivariant if J is.

Proof. Let V ∈ TσZτ and let v be a πXZ-vertical vector field on Z such that
V = v ◦ σ. If fλ is the flow of v, let σλ = fλ ◦ σ so that the curve σλ ∈ Zτ has
tangent vector V at λ = 0. Therefore, with Jτ defined by (7B.7),we have

〈iV dJτ (σ), ξ〉 =
d

dλ

[∫
Στ

σ∗λ〈J, ξ〉
]∣∣∣∣

λ=0

=
∫

Στ

σ∗£v〈J, ξ〉.
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But ∫
Στ

σ∗£v〈J, ξ〉 =
∫

Στ

σ∗(div〈J, ξ〉+ ivd〈J, ξ〉),

and since Σ is compact and boundaryless,∫
Στ

σ∗(div〈J, ξ〉) =
∫

Στ

dσ∗(iv〈J, ξ〉) = 0

by Stokes’ theorem. Therefore, by the definition (4C.3) of a covariant momen-
tum mapping,

〈iV dJτ (σ), ξ〉 =
∫

Στ

σ∗(ivd〈J, ξ〉) =
∫

Στ

σ∗[iviξZ
Ω]. (7B.8)

Note that ξZ need not be πXZ-vertical, so we cannot yet use Lemma 5B.1.

Now for any w ∈ TΣτ , we have

σ∗(iviTσ·wΩ) = −σ∗(iTσ·wivΩ) = −iWσ∗(ivΩ) = 0

by the naturality of pull-back and the fact that σ∗(ivΩ) vanishes since it is an
(n+ 1)-form on an n-manifold. In particular, for w = ξτ , we have

σ∗(iviTσ·ξτ Ω) = 0.

Combining this result with (7B.8) and using the fact that ξZ − Tσ · ξτ is πXZ-
vertical, we get

〈iV dJτ (σ), ξ〉 =
∫

Στ

σ∗(iviξZ−Tσ·ξτ
Ω)

= Ωτ (ξZτ
, V )

by (7B.6) and (5B.8). Thus Jτ is a momentum map.

To show that Jτ is Ad∗-equivariant, we verify that for η ∈ Gτ and ξ ∈ gτ ,
Jτ satisfies the condition

〈Jτ (σ),Adη−1 ξ〉 = 〈Jτ (ηZτ
(σ)), ξ〉.

However, from (7B.7) and (4C.4), we have

〈Jτ (σ),Adη−1 ξ〉 =
∫

Στ

σ∗〈J,Adη−1 ξ〉 =
∫

Στ

σ∗ηZ
∗〈J, ξ〉;
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whereas from (7B.5), (7B.7), and the change of variables formula, we get

〈Jτ (ηZτ
(σ)), ξ〉 =

∫
Στ

(ηZ ◦ σ ◦ η−1
τ )∗〈J, ξ〉

=
∫

Στ

(η−1
τ )∗σ∗ηZ

∗〈J, ξ〉

=
∫

Στ

σ∗ηZ
∗〈J, ξ〉,

thereby establishing the desired equality. �

7C Induced Momentum Maps on T ∗Yτ

We now demonstrate how the group actions and momentum maps carry over
from the multisymplectic context to the instantaneous formalism. Recall that
the phase space (T ∗Yτ , ωτ ) is the symplectic quotient of the presymplectic man-
ifold (Zτ ,Ωτ ) by the map Rτ . The key observation is that both the action of
Gτ and the momentum map Jτ pass to the quotient.

First consider a canonical transformation ηZτ
: Zτ → Zτ . Define a map

ηT∗Yτ
: T ∗Yτ → T ∗Yτ as follows: For each π ∈ T ∗ϕYτ , set

ηT∗Yτ(π) = Rτ (ηZτ(σ)) (7C.1)

where σ is any element of R−1
τ ({π}).

Proposition 7C.1. The map ηT∗Yτ
is a canonical transformation.

Proof. To begin, we must show that ηT∗Yτ
is well-defined; that is

Rτ (ηZτ(σ)) = Rτ (ηZτ(σ
′)) whenever σ, σ′ ∈ R−1

τ ({π}).

Since ηZτ
is a canonical transformation, it preserves the kernel of Ωτ . But this

kernel equals the kernel of TRτ by Corollary 5C.3(ii). Therefore, ηZτ
preserves

the fibers of Rτ , and so ηT∗Yτ
is well defined.

Since ηZτ
is a diffeomorphism and Rτ is a submersion, ηT∗Yτ

is a diffeomor-
phism. That the map ηT∗Yτ

preserves the symplectic form ωτ is a straightfor-
ward computation using (7C.1), Corollary 5C.3, and the definitions. �

This proposition shows that the canonical action of Gτ on Zτ gives rise to a
canonical action of Gτ on T ∗Yτ such that Rτ is equivariant; that is, for η ∈ Gτ ,
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the following diagram commutes:

Zτ
Rτ−−−−→ T ∗Yτ

ηZτ

y yηT∗Yτ

Zτ −−−−→
Rτ

T ∗Yτ

Regarding momentum maps, we have:

Proposition 7C.2. If Jτ is a momentum map for the action of Gτ on Zτ , then
Jτ : T ∗Yτ → g∗τ defined by the diagram

Zτ

T ∗Yτ

g∗τRτ

Jτ

Jτ
?

@
@R

�
��

(7C.2)

is a momentum map for the induced action of Gτ on T ∗Yτ . Further, if Jτ is
Ad∗-equivariant, then so is Jτ .

Proof. This follows from the facts thatRτ is equivariant andRτ
∗ωτ = Ωτ . �

We emphasize that the momentum map Jτ , which we have defined on T ∗Yτ ,
corresponds to the action of Gτ only . For the full group G, the corresponding
energy-momentum map does not pass from Zτ to T ∗Yτ . However, as we will see
in §7D, the energy-momentum map Eτ does project to the primary constraint
submanifold in T ∗Yτ .

For lifted actions we are able to obtain explicit formulas for the energy-
momentum and momentum maps on Zτ and T ∗Yτ and the relationship between
them. Suppose the action of G on Z is obtained by lifting an action of G on Y .
Then η ∈ G maps Yτ to YηX◦τ according to

ηYτ
(ϕ) = ηY ◦ ϕ ◦ η−1

τ (7C.3)

where ητ = ηX

∣∣Στ . This in turn restricts to an action of Gτ on Yτ given by the
same formula, with the infinitesimal generator

ξYτ
(ϕ) = ξY ◦ ϕ− Tϕ ◦ ξτ (7C.4)

where ξτ = ξX
∣∣Στ .
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Corollary 7C.3. For actions lifted from Y :

(i) The energy-momentum map on Zτ is

〈Eτ (σ), ξ〉 =
∫

Στ

ϕ∗(iξY
σ) (7C.5)

where ξ ∈ g, and ϕ = πYZ ◦ σ.

(ii) The induced Gτ -action on T ∗Yτ given by (7C.1) is the usual cotangent
action; that is,

ηT∗Yτ
(π) = (η−1

Yτ
)∗π.

(iii) The corresponding induced momentum map Jτ on T ∗Yτ defined by
(7C.2) is the standard one; that is,

〈Jτ (ϕ, π), ξ〉 = 〈π, ξYτ(ϕ)〉 =
∫

Στ

π (ξYτ(ϕ)) (7C.6)

for ξ ∈ gτ . Moreover, the momentum maps J, Jτ , and Jτ are all Ad∗-
equivariant.

Proof. To prove (i), substitute formula (4C.6) into (7B.1) and note that

σ∗〈J, ξ〉 = σ∗πYZ
∗iξY

σ = ϕ∗iξY
σ. (7C.7)

To prove (ii) let η ∈ Gτ , π = Rτ (σ) ∈ T ∗ϕYτ and V ∈ TηYτ(ϕ)Yτ . Then

〈ηT∗Yτ(π), V 〉

= 〈Rτ (ηZτ
(σ)), V 〉 (by (7C.1))

=
∫

Στ

(ηYτ
(ϕ))∗[iV (ηZτ

(σ))] (by (5C.1))

=
∫

Στ

(η−1
τ )∗ϕ∗ηY

∗[iV (ηZτ(σ))] (by (7C.3))

=
∫

Στ

ϕ∗ηY
∗[iV (ηZτ(σ))] (by the change of variables formula)

=
∫

Στ

ϕ∗[iTη−1
Y ·V ηY

∗(ηZτ
(σ))]

=
∫

Στ

ϕ∗[iTη−1
Y ·V σ] (by (4B.3))
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= 〈Rτ (σ), T η−1
Y · V 〉 (by (5C.1))

= 〈π, Tη−1
Y · V 〉

= 〈(η−1
Y )∗π, V 〉.

To prove (iii) we compute, taking into account (7C.2), (7C.5), and (7C.4),

〈Jτ (Rτ (σ)), ξ〉 = 〈Jτ (σ), ξ〉 =
∫

Στ

ϕ∗(iξY
σ)

=
∫

Στ

ϕ∗(iξY −Tϕ·ξτσ) = 〈Rτ (σ), ξYτ(ϕ)〉,

where we have used

ϕ∗iTϕ·ξτσ = iξτϕ
∗σ = 0

since ϕ∗σ is an (n+ 1)-form on the n-manifold Στ .

Finally, equivariance follows from Propositions 4C.1, 7B.1, and 7C.2. �

7D The Hamiltonian and the Energy-Momentum Map

In §7B we defined the energy-momentum map Eτ on Zτ . Here we show that for
lifted actions, Eτ projects to a well-defined function

Eτ : Pτ → g∗

on the τ -primary constraint set, which we refer to as the “instantaneous energy-
momentum map.” This is the central object for our later analysis.

Let the group G act on Y and consider the lifted action of G on Z. Using
(4C.5) rewrite formula (7B.1) as

〈Eτ (σ), ξ〉 =
∫

Στ

〈Eτ (σ), ξ〉

for σ ∈ Zτ and ξ ∈ g, where

〈Eτ (σ), ξ〉 = σ∗(iξZ
Θ) (7D.1)

defines the energy-momentum density Eτ .

While Eτ does not directly factor through the reduction map to give an
instantaneous energy-momentum density on T ∗Yτ , we nonetheless have:
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Proposition 7D.1. The energy-momentum density Eτ induces an instanta-
neous energy-momentum density on Pτ ⊂ T ∗Yτ .

Proof. Given any (ϕ, π) ∈ Pτ , let σ be a holonomic lift of (ϕ, π) to Nτ (cf.
§6C). We claim that for any x ∈ Στ and ξ ∈ g, the quantity

〈Eτ (σ)(x), ξ〉 ∈ Λn
xΣτ

depends only upon j1ϕ(x) and π(x). Thus, setting

〈Eτ (ϕ, π)(x), ξ〉 = 〈Eτ (σ)(x), ξ〉 (7D.2)

defines the instantaneous energy-momentum density (which we denote by the
same symbol Eτ ) on Pτ .

If ξX(x) is transverse to Στ , then (7D.1) combined with (6C.10) gives

〈Eτ (σ)(x), ξ〉 = −Hτ,ξ(ϕ, π)(x). (7D.3)

On the other hand, if ξX(x) ∈ TxΣτ , then from (7C.7) we compute

〈Eτ (σ)(x), ξ〉 = ϕ∗(iξY (ϕ(x))σ(x)) = ϕ∗(iξY (ϕ(x))−Txϕ·ξX(x)σ(x))

where we have used the same ‘trick’ as in the proof of Corollary 7C.3(iii). Since
ξY − Tϕ · ξX is πXY -vertical, we can now apply (5C.2) to obtain

〈Eτ (σ)(x), ξ〉 =
〈
Rτ (σ)(x), ξY (ϕ(x))− Txϕ · ξX(x)

〉
= 〈π(x), ξYτ

(ϕ)(x)〉. (7D.4)

In either case, 〈Eτ (σ)(x), ξ〉 depends only upon the values of ϕ, its first
derivatives, and π along Στ . Thus the definition (7D.2) is meaningful for any
ξ ∈ g. �

Integrating (7D.2), we get the instantaneous energy-momentum map

Eτ : Pτ → g∗ defined by

〈Eτ (σ), ξ〉 =
∫

Στ

〈Eτ (ϕ, π), ξ〉. (7D.5)

Two cases warrant special attention:

Corollary 7D.2. Let ξ ∈ g.

(i) If ξX is everywhere transverse to Στ , then

〈Eτ (ϕ, π), ξ〉 = −Hτ,ξ(ϕ, π) (7D.6)
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(ii) If ξX is everywhere tangent to Στ , then

〈Eτ (ϕ, π), ξ〉 = 〈Jτ (ϕ, π), ξ〉. (7D.7)

Proof. Assertion (i) follows from (7D.3) and (ii) is a consequence of (7D.4)
and (7C.6). �

Remark 7D.3. In general, Eτ is defined only on the primary constraint set
Pτ , as Hτ,ξ is. However, if G = Gτ , then Eτ = Jτ is defined on all of T ∗Yτ . (It
was not necessary that σ be a holonomic lift for the proof of the second part of
Proposition 7D.1, corresponding to the case when ξX(x) ∈ TxΣτ .) �

Remark 7D.4. Although the instantaneous energy-momentum map can be
identified with the Hamiltonian (when ξX t Στ ) and the momentum map Jτ

for Gτ (when ξX ‖Στ ), it is important to realize that 〈Eτ (ϕ, π), ξ〉 is defined for
any ξ ∈ g, regardless of whether or not it is everywhere transverse or tangent
to Στ . �

Remark 7D.5. The relation (7D.6) between the instantaneous energy-momen-
tum map and the Hamiltonian is only asserted to be valid in the context of lifted
actions; for more general actions, we do not claim such a relationship. Luckily,
in most examples, lifted actions are the appropriate ones to consider. �

The instantaneous energy-momentum map Eτ on Pτ is the cornerstone of
our work since, via (7D.6) above, it constitutes the fundamental link between
dynamics and the gauge group. From it we will be able to correlate the notion
of “gauge transformation” as arising from the gauge group action with that in
the Dirac–Bergmann theory of constraints. This in turn will make it possible
to “recover” the first class initial value constraints from Eτ because, according
to §6E, they are the generators of gauge transformations.

Remark 7D.6. Indeed, in Chapter 10 we will show that for parametrized the-
ories in which all fields are variational, the final constraint set Cτ ⊂ E−1

τ (0).
Combining this with the relation (7D.6), we see that for such theories the
Hamiltonian (defined relative to a G-slicing) must vanish “on shell;” that is,
Hτ,ξ

∣∣Cτ = 0 as predicted in Remark 6E.18. �

Thus, in some sense, the energy-momentum map encodes in a single geo-
metric object virtually all of the physically relevant information about a given
classical field theory: its dynamics, its initial value constraints and its gauge
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freedom. Momentarily, in Interlude II, we will see that Eτ also incorporates the
stress-energy-momentum tensor of a theory. It is these properties of Eτ that
will eventually enable us to achieve our main goal; viz., to write the evolution
equations in adjoint form.

Examples

a Particle Mechanics. If G = Diff(R) acts on Y = R×Q by time repara-
metrizations, then from (4C.9) the energy-momentum map on Zt = R × T ∗Q

is

〈Et(p, q1, · · · , qN , p1, · · · , pN ), χ〉 = pχ(t).

But p = 0 on N by virtue of the time reparametrization-covariance of L, cf.
example a in §4D. Thus the instantaneous energy momentum map on Pt =
Rt(Nt) vanishes. The subgroup Gt consists of those diffeomorphisms which fix
τ(Σ) = t ∈ R. However, the actions of Gt on Zt and on T ∗Yt = T ∗Q are trivial.

If G = Diff(R)×G, where G acts only on the factor Q, then G ⊂ Gt. In this
case, Jt reduces to the usual momentum map on T ∗Q.

b Electromagnetism. For electromagnetism on a fixed background with
G = F(X), we find from (4C.12) and (7B.1) that in adapted coordinates,

〈Eτ (A, p,F), χ〉 =
∫

Στ

Fν0χ,ν d
3x0

for χ ∈ F(X). Now G = Gτ , so in this case Jτ and Eτ coincide. Using the
expression above for Eτ , (7C.2), and Eν = Fν0, we get

〈Jτ (A,E), χ〉 =
∫

Στ

Eνχ,ν d
3x0 (7D.8)

on T ∗Yτ . Note that this agrees with formula (7C.6). When restricted to the
primary constraint set Pτ ⊂ T ∗Yτ given by E0 = 0, (7D.8) becomes

〈Eτ (A,E), χ〉 =
∫

Στ

Eiχ,i d
3x0. (7D.9)
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In the parametrized case, when G = Diff(X) n F(X), Eτ is replaced by Ẽτ

where, with the help of (4C.16),

〈Ẽτ (A, p,F; g, ρ), (ξ, χ)〉

=
∫

Στ

(
Fν0(−Aµξ

µ
,ν −Aν,µξ

µ + χ,ν)− ρσρ0(2gσρξ
ν

,ρ + gσρ,µξ
µ)

+ (p+ FµνAµ,ν + ρσρµgσρ,µ)ξ0
)
d3x0. (7D.10)

Since elements of Gτ preserve Στ , each (ξ, χ) ∈ g̃τ satisfies ξ0
∣∣Στ = 0. Then Ẽτ

projects to the momentum map

〈J̃τ (A,E; g, ρ), (ξ, χ)〉 =
∫

Στ

(
Eν(−Aµξ

µ
,ν −Aν,iξ

i + χ,ν)

− ρσρ0(2gσρξ
ν

,ρ + gσρ,iξ
i)
)
d3x0 (7D.11)

for the action of G̃τ on T ∗Ỹτ .
On P̃τ , Ẽτ induces the instantaneous energy-momentum map

〈Ẽτ (A,E; g), (ξ, χ)〉

=
∫

Στ

(
Ei(−Aµξ

µ
,i −Ai,µξ

µ + χ,i)−
1
4
FµνFµνξ

0

)
d3x0,

where we have used (3B.14). Adding and subtracting −EiAµ,iξ
µ to the inte-

grand and rearranging yields∫
Στ

(
Ei(χ−Aµξ

µ),i + EiFijξ
j +

(
1
2
EiFi0 −

1
4
FijFij

)
ξ0
)
d3x0.

Using (6C.17) and (6C.19) to express Fi0 in terms of Ei and Fij , this eventually
gives

〈Ẽτ (A,E; g), (ξ, χ)〉 =

−
∫

Στ

[
(ξµAµ − χ),iE

i +
1

N
√
γ

(ξ0M i + ξi)EjFij

+ ξ0Nγ−1/2
(1

2
γijE

iEj +
1

4N2
γikγjmFijFkm

)]
d3x0 (7D.12)

where we have again made use of the splitting (6B.8)–(6B.10) of the metric g.
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c A Topological Field Theory. Since the Chern–Simons Lagrangian den-
sity is not equivariant with respect to the G = Diff(X)nF(X)-action, we are not
guaranteed that our theory as developed above will apply. So we must proceed
by hand.

On Zτ the multimomentum map (4C.19) induces the map

〈Eτ (σ),(ξ, χ)〉

=
∫

Στ

(
pν0(−Aµξ

µ
,ν −Aν,µξ

µ + χ,ν) + (p+ pµνAµ,ν)ξ0
)
d2x0.

Now Eτ projects to the genuine momentum map

〈Iτ (A, π), (ξ, χ)〉 =
∫

Στ

πν(−Aµξ
µ

,ν −Aν,iξ
i + χ,ν) d2x0 (7D.13)

on T ∗Yτ . Similarly, from (3B.20), one verifies that Eτ projects to the “ersatz”
instantaneous energy-momentum map

〈Eτ (A), (ξ, χ)〉

=
∫

Στ

(
ε0ijAj(−Aµξ

µ
,i −Ai,µξ

µ + χ,i) + εµνρAρAν,µξ
0
)
d2x0

=
∫

Στ

ε0ij

(
Aj(χ−Aµξ

µ),i +AjFikξ
k +

1
2
A0Fijξ

0

)
d2x0 (7D.14)

on Pτ .

Not surprisingly, 〈Eτ , (ξ, χ)〉 fails to coincide with the Chern–Simons Hamil-
tonian (6C.32) (when ξX is transverse to Στ ) because of the term involving χ.
Nonetheless, an integration by parts shows that they agree on the final con-
straint set, cf. (6E.26). Indeed, the extra term in Eτ amounts to adding the
first class constraint F12 = 0 to the Hamiltonian with Lagrange multiplier χ,
and this is certainly permissible according to the discussion at the end of §6E.
From a slightly different point of view, since the action of F(X) on J1Y leaves
the Lagrangian density invariant up to a divergence, its action on TYτ will
leave the instantaneous Lagrangian (6C.28) invariant. In fact, (7D.13) is just
the momentum map for this action (compare (7D.8)).

Alternately, we could proceed by simply dropping the F(X)-action. The
above formulæ remain valid, provided the terms involving χ are removed. In
this context (7D.14) will now of course be a genuine energy-momentum map.
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d Bosonic Strings. For the bosonic string, (4C.25) eventually leads to the
expression

〈Eτ (σ), (ξ, λ)〉 =
∫

Στ

(
−pA

0ϕA
,µξ

µ

+ ρσρ0(2λhσρ − hσνξ
ν

,ρ − hρνξ
ν

,σ − hσρ,νξ
ν)

+ (p+ pA
µϕA

,µ + ρσρµhσρ,µ)ξ0
)
d1x0 (7D.15)

for the energy-momentum map on Zτ .
Restricting to the subgroup Gτ , (7D.15) reduces to

〈Jτ (ϕ, h, π,$), (ξ, λ)〉 =∫
Στ

(
−(π ·Dϕ)ξ1 + 2λ$σ

σ −2$σ
ρξ

ρ
,σ −$σρhσρ,1ξ

1
)
d1x0 (7D.16)

on T ∗Yτ , where we have used h to lower the index on $.
Finally, making use of (3B.25)–((3B.27) and (6B.8)–(6B.10) in (7D.15), we

compute on Pτ

〈Eτ (ϕ, h, π), (ξ, λ)〉

=
∫

Στ

(
1

2h00
√
−h

ξ0(π2 +Dϕ2) +
(
h01

h00
ξ0 − ξ1

)
(π ·Dϕ)

)
d1x0

= −
∫

Στ

(
1

2
√
γ
ξ0N(π2 +Dϕ2) + (ξ0M + ξ1)(π ·Dϕ)

)
d1x0. (7D.17)

Note that this expression does not depend on λ. When ξ = (1,0), it reduces to

〈Eτ (ϕ, h, π), ((1,0), λ)〉 = −
∫

Στ

(
1

2
√
γ
N(π2 +Dϕ2) +M(π ·Dϕ)

)
d1x0

from which one can read off the string superhamiltonian

H =
1

2
√
γ

(π2 +Dϕ2)

and the string supermomentum

J = π ·Dϕ.

Thus as claimed in the Introduction we have E = −(H, J), that is, the su-
perhamiltonian and supermomentum are the components of the instantaneous
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energy-momentum map. The supermomentum by itself is a component of the
momentum map Jτ for the group Gτ which does act in the instantaneous for-
malism, unlike G.
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Interlude II—The Stress-Energy-Momentum

Tensor22

For many years classical field theorists grappled with the problem of construct-
ing a suitable stress-energy-momentum (“SEM”) tensor for a given collection
of fields. There are various candidates for this object; for instance, from space-
time translations via Noether’s theorem one can build the so-called canonical

SEM tensor density

tµν = Lδµ
ν −

∂L

∂vA
µ
vA

ν , (II.1)

as is found in in, for example, Soper [1976], equation (3.3.3). Unfortunately,
tµν is typically neither symmetric nor gauge-invariant, and much work has gone
into efforts to “repair” it, cf. Belinfante [1939], Wentzel [1949], Corson [1953],
and Davis [1970], General relativity provides an entirely different method of
generating a SEM tensor (Hawking and Ellis [1973], Misner et al. [1973]). For
a matter field coupled to gravity,

Tµν = 2
δL

δgµν
(II.2)

defines the Hilbert SEM tensor density. By its very definition, Tµν is both
symmetric and gauge-covariant. Despite its lack of an immediate physical inter-
pretation, this “modern” construction of the SEM tensor has largely supplanted
that based on Noether’s theorem. Formulæ like this are also important in con-
tinuum mechanics, relativistic or not. For example, in nonrelativistic elasticity
theory, (II.2) is sometimes called the Doyle–Eriksen formula and it defines
the Cauchy stress tensor. This formula has been connected to the covariance of
the theory by Marsden and Hughes [1983], and Simo and Marsden [1984]. For
further development of this idea, see Yavari et al. [2006].

Discussions and other definitions of SEM tensors and related objects can
be found in Souriau [1974], Kijowski and Tulczyjew [1979], as well as Ferraris
and Francaviglia [1985, 1991], In general, however, the physical significance of
these proposed SEM tensors remains unclear. In field theories on a Minkowski
background, tµν is often symmetrized by adding to it a certain expression which
is attributed to the energy density, momentum density, and stress arising from

22 This is essentially a condensed version of Gotay and Marsden [1992].
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spin. While one can give a definite prescription for carrying out this symmetriza-
tion Belinfante [1939], such modifications are nonetheless ad hoc. The situation
is more problematical for field theories on a curved background, or for topolog-
ical field theories in which there is no metric at all. Even for systems coupled
to gravity, the definition (II.2) of Tµν has no direct physical significance. Now,
the Hilbert tensor can be regarded as a constitutive tensor for the matter fields
by virtue of the fact that it acts as the source of Einstein’s equations. But
this interpretation of Tµν is in a sense secondary, and it would be preferable to
have its justification as a SEM tensor follow from first principles, i.e., from an
analysis based on symmetries and Noether theory.

Moreover the relations between various SEM tensors, and in particular the
canonical and Hilbert tensors, is somewhat obscure. On occasion, Tµν is ob-
tained by directly symmetrizing tµν (as in the case of the Dirac field), but more
often not (e.g., electromagnetism). For tensor or spinor field theories, Belinfante
[1940] and Rosenfeld [1940] (see also Trautman [1965] ) showed that Tµ

ν can be
viewed as the result of “correcting” tµν :

Tµ
ν = tµν +∇ρK

µρ
ν (II.3)

for some quantities Kµρ
ν . We refer to (II.3) as the Belinfante–Rosenfeld

formula .
Our purpose in this Interlude is to show how the multisymplectic formalism

we have developed can be used to give a physically meaningful definition of
the SEM tensor based on covariance considerations for (essentially) arbitrary
field theories that suffers none of these maladies. We will demonstrate that the
SEM tensor density so defined (we call it Tµ

ν) satisfies a generalized version
of the Belinfante–Rosenfeld formula (II.3), and hence naturally incorporates
both tµν and the “correction terms” which are necessary to make the latter
gauge-covariant. Furthermore, in the presence of a metric on spacetime, we
will show that our SEM tensor coincides with the Hilbert tensor, and hence is
automatically symmetric.

As might be expected by now, the key ingredient in our analysis is the mul-
timomentum map associated to the spacetime diffeomorphism group. We use it
to define the SEM tensor density Tµ

ν by means of fluxes across hypersurfaces in
spacetime. This makes intuitive sense, since the multimomentum map describes
how the fields “respond” to spacetime deformations. One main consequence is
that our definition uniquely determines Tµ

ν ; this is because our definition is
“integral” (i.e., in terms of fluxes) as opposed to being based on differential
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conservation laws as is traditionally done, cf. Davis [1970]. Thus unlike, say,
tµν , our SEM tensor is not merely defined up to a curl, and correspondingly
there is no possibility of—and no necessity for—modifying it. The fact that the
relevant group is the entire spacetime diffeomorphism group, and not just the
translation group, is also crucial. Indeed, nonconstant deformations are what
give rise to the “correction terms” mentioned above. Moreover, our analysis is
then applicable to field theories on arbitrary spacetimes (in which context of
course the translation group, let alone the Poincaré group, no longer has global
meaning).

The SEM tensor measures the response of the fields to localized (i.e., com-
pactly supported) spacetime deformations. We therefore assume that the La-
grangian field theory under consideration is parametrized, at least to the ex-
tent that that the image of the gauge group G under the natural projection
Aut(Y ) → Diff(X) contains the group Diffc(X) of compactly supported diffeo-
morphisms. However, Diffc(X) does not necessarily act on the fields, at least
not ab initio. The reason is that Diffc(X) is not naturally a subgroup of G, but
rather is a subgroup of the quotient group G/GId, where GId consists of those ele-
ments of G that cover the identity onX. Therefore, to define the SEM tensor, we
need an embedding Diffc(X) → G, so that each element of Diffc(X) gives rise to
a gauge transformation. To be precise, assume there is a group monomorphism
of Diffc(X) into G such that the composition Diffc(X) → G → Diff(X) is the
identity. In general, G is larger than Diffc(X), but the stress-energy-momentum
tensor is associated only with the Diffc(X) “part” of G. For instance, in contin-
uum mechanics in the inverse material representation, Tµν is to measure the net
energy flow, momentum flux and stress across hypersurfaces in spacetime—even
if the material has internal structure.

The embedding Diffc(X) → G of Lie groups determines, by differentiation,
a Lie algebra monomorphism Xc(X) → g given by23 ξ 7→ ξY , where ξA =
ξA(xµ, yB , [ξν ]) is a smooth differential function of ξν . We suppose that the
action of Diffc(X) on Y is “local” in the sense that ξA depends on ξν and its
derivatives up to some order k < ∞. We call k the differential index of
the field theory; it is the order of the highest derivatives that appear in the
transformation laws for the fields. The association ξ 7→ ξY is linear in ξν , so
that in coordinates we may write

ξA = CAρ1...ρk
ν ξν

,ρ1...ρk
+ . . .+ CAρ

νξ
ν

,ρ + CA
νξ

ν ,

23 Here we are concretely viewing G ⊂ Aut(Y ), so that g ⊂ aut(Y ).
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where the coefficients CAρ1...ρr
ν for r = 0, 1, . . . , k depend only upon xµ and yB .

For tensor field theories, using the standard embedding η 7→ η∗ = (η−1)∗,
one has simply

ξA = CAρ
νξ

ν
,ρ,

so k = 1 in this instance (unless φ is a scalar field, in which case all the coeffi-
cient functions CAρ1...ρm

ν vanish). But if one uses a “nonstandard” embedding
Diffc(X) → G, zeroth order terms may appear as well:

ξA = CAρ
νξ

ν
,ρ + CA

νξ
ν . (II.4)

We will illustrate this in the context of electromagnetism in the Examples fol-
lowing. For a field theory based on a linear connection on X (such as Palatini
gravity), one would have k = 2. For the sake of simplicity, we henceforth sup-
pose that k ≤ 1 as is typically the case in applications, such as tensor and spinor
field theories; the general situation is covered in Gotay and Marsden [1992].

Before proceeding to the definition of the SEM tensor, we derive the con-
sequences of the covariance condition (4D.2). Substituting (II.4) into (4D.2)
yields

L,νξ
ν + Lξν

,ν +LA

(
CAρ

νξ
ν

,ρ + CA
νξ

ν
)

+LA
µ
(
CAρ

νξ
ν

,ρµ + (DµC
Aρ

ν)ξν
,ρ

+ CA
νξ

ν
,µ + (DµC

A
ν)ξν − vA

νξ
ν

,µ

)
= 0,

where Dµ = ∂µ + vA
µ∂A is the is the formal or “total” derivative, and we have

abbreviated ∂L/∂vA
µ by LA

µ, etc. Since Diffc(X) → G is an embedding , ξν and
its derivatives are arbitrarily specifiable. Thus, equating to zero the coefficients
of the ξν

,ρ1...ρm
, we obtain the following results.

For m = 2:

CA(ρ1
ν LA

ρ2) = 0.

For m = 1:

(Lδρ
ν − LA

ρvA
ν) + CAρ

νLA + CA
νLA

ρ + (DµC
Aρ

ν)LA
µ = 0.

For m = 0:

L,ν + CA
νLA + (DµC

A
ν)LA

µ = 0.
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Using the Leibniz rule and setting

Kρ1...ρmµ
ν := CAρ1...ρm

ν LA
µ,

these can be rewritten

K
(ρ1ρ2)
ν = 0

(Lδρ
ν − LA

ρvA
ν) +Kρ

ν +DµK
ρµ
ν + CAρ

ν

δL

δyA
= 0

L,ν +DµK
µ
ν + CA

ν
δL

δyA
= 0.


(II.5)

We are now ready to state our main result, which characterizes fluxes of the
multimomentum map JL in the Lagrangian representation across hypersurfaces
in X.

Theorem II.1. Consider a G-covariant Lagrangian field theory. For each sec-
tion φ : X → Y there exists a unique (1, 1)-tensor density T(φ) on X such
that ∫

Σ

i∗Σ (j1φ)∗JL(ξY ) =
∫

Σ

Tµ
ν(φ)ξνdnxµ (II.6)

for all ξ ∈ Xc(X) and all hypersurfaces Σ, where iΣ : Σ → X is the inclusion.24

We call T(φ) the SEM tensor density of the field φ.

Proof. Recall that we take k ≤ 1. Using (4D.8) and (II.4), the left hand side
of (II.6) becomes∫

Σ

i∗Σ (j1φ)∗JL(ξY )

=
∫

Σ

(
LA

µ
(
ξA − vA

νξ
ν
)

+ Lξµ
)
dnxµ

=
∫

Σ

(
LA

µ
(
CAρ

νξ
ν

,ρ + CA
νξ

ν − vA
νξ

ν
)

+ Lδµ
νξ

ν
)
dnxµ

=
∫

Σ

(
Kρµ

ν ξν
,ρ +

(
Lδµ

ν − LA
µvA

ν +Kµ
ν

)
ξν
)
dnxµ. (II.7)

24 Here Σ is completely arbitrary; it need not be noncompact nor without boundary. It also

need not be spacelike in the presence of a metric on X.
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Let U ⊂ X be a chart in which Σ∩U is a hyperplane. By means of a partition
of unity argument, it suffices to consider the case when the vector field ξ has
support contained in U . Construct an (n + 1)-dimensional region V ⊂ X such
that ∂V = (Σ ∩ U) ∪ Σ′, where ξ |Σ′ = 0. By the divergence theorem, the first
term in (II.7) becomes∫

Σ

Kρµ
ν ξν

,ρd
nxµ =

∫
V

(Kρµ
ν ξν

,ρ),µ d
n+1x

=
∫

V

(
Kρµ

ν ,µ ξ
ν

,ρ +Kρµ
ν ξν

,ρµ

)
dn+1x. (II.8)

In (II.8) the second term on the last line vanishes by virtue of the first
equation in (II.5). Applying the Leibniz rule to the first term yields∫

V

Kρµ
ν ,µ ξ

ν
,ρd

n+1x =
∫

V

((
Kρµ

ν ,µ ξ
ν
)
,ρ
−Kρµ

ν ,µρ ξ
ν
)
dn+1x.

Using the first equation of (II.5) once more, the second integrand here also
vanishes by symmetry. Thus (II.8) reduces to∫

V

(
Kρµ

ν ,µ ξ
ν
)
,ρ
dn+1x =

∫
Σ

Kρµ
ν ,µ ξ

νdnxρ

again by the divergence theorem.
Substituting these results back into (II.7) and reindexing, we therefore obtain

(II.6) with
Tµ

ν = Lδµ
ν − LA

µvA
ν +Kµ

ν +DρK
µρ
ν . (II.9)

Finally, it is clear from the fundamental lemma of the calculus of variations
that Tµ

ν so defined is unique. While we have derived the formula for the
SEM tensor density in coordinates, in fact it is a tensor density as its defining
property (II.6) is clearly intrinsic. �

Reverting to our original notation, this last formula becomes

Tµ
ν = Lδµ

ν − LA
µvA

ν + LA
µCA

ν +Dρ(LA
ρCAµ

ν ). (II.10)

Taking (II.1) into account, we see that

Tµ
ν = tµν + “correction terms”;

hence Tµ
ν may be regarded as a modification of the canonical SEM tensor den-

sity. Formula (II.10) is thus a generalized Belinfante–Rosenfeld formula .
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Remark II.2. Formula (II.10) is consistent with (II.1) if one uses, instead of
Diffc(X), just translations in X and sets ξA = 0. Similarly, if one uses the
Poincaré group in place of Diffc(X) then, for tensor field theories, Tµ

ν reduces
to the canonical SEM tensor as modified by Belinfante [1939]; see also Wentzel
[1949] and Corson [1953]. However, with our approach the “correction terms”
in (II.10) naturally appear.

Remark II.3. Although we have derived (II.10) in the case when k = 1, it
happens that this expression is valid for any k. The proof for k ≥ 2 is similar,
except that now it is necessary to require that φ be on shell (i.e., φ must satisfy
the Euler–Lagrange equations) for (II.6) to hold. �

Remark II.4. Although this theorem presupposes that one has chosen an em-
bedding Diffc(X) → G, it is shown in Gotay and Marsden [1992] that this choice
is ultimately irrelevant. Thus even though the last two terms in (II.10) individ-
ually depend upon the choice of embedding, their sum does not. See the recent
review paper by Forger and Römer [2004] for an alternative approach which
avoids this issue. �

Remark II.5. As noted previously, the image of G under the natural projection
Aut(Y ) → Diff(X) may be strictly larger than Diffc(X). Let us denote this
image by D (= G/GId). In such cases one could consider an embedding D → G.
But then the relation (II.6) between the integrals of JL and Tµ

ν for general
vector fields ξ in the Lie algebra of D might only hold modulo surface terms.
For instance, suppose that k = 1 and that D = Diff(X). Tracing back through
the proof of Theorem II.1, and using Stokes’ theorem in place of the divergence
theorem, we obtain∫

Σ

i∗Σ (j1φ)∗JL(ξY ) =
∫

Σ

Tµ
ν ξ

νdnxµ +
1
2

∫
∂Σ

LA
µCAρ

ν ξ
νdn−1xµρ

for ξ ∈ X(X). In the asymptotically flat context, it is plausible that surface
terms such as the one in this expression could be identified with the energy and
momentum of the gravitational field. (See the gravity example in Part V for
further discussion of this point.)

In any event we emphasize that Theorem II.1 as stated is valid regardless
of what D is, as long as Diffc(X) ⊂ D, and thus can always be used to define
Tµ

ν . �

We now collect some of the important properties of our SEM tensor density.
Proofs not given below may be found in Gotay and Marsden [1992].
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First, combining (II.10) and the last condition in (II.5) we obtain the gen-

eralized Hilbert formula

Tµ
ν = −CAµ

ν

δL

δyA
. (II.11)

In particular, we conclude that T(φ) vanishes on shell. This is a typical feature of
parametrized theories in which all fields are variational; compare Remark 6E.18.
However, this is not the full story; see the discussion after Proposition II.8 as
to what happens when only the “matter fields” are variational.

Proposition II.6.

DµTµ
ν = (vA

ν − CA
ν)
δL

δyA
.

See Proposition II.10 following for an application of this result.

Proof. From (II.9)

DµTµ
ν = Dµ

(
Lδµ

ν − LA
µvA

ν +Kµ
ν +DρK

µρ
ν

)
=
(
L,ν + LAv

A
ν + LA

µvA
µν − (DµLA

µ)vA
ν − LA

µvA
νµ

+DµK
µ
ν +DµDρK

µρ
ν ) .

Here the third and fifth terms cancel while the second and fourth combine to
produce a variational derivative. Using the first of (II.5) the last term is seen
to vanish. Thus we obtain

DµTµ
ν = L,ν +DµK

µ
ν +

δL

δyA
vA

ν .

The result now follows from the last of (II.5). �

Proposition II.7. T(φ) is gauge-covariant.

By this we mean that the tensor density T(φ) satisfies

T(ηY(φ)) = ηX∗T(φ) (II.12)

for all η ∈ G and solutions φ of the Euler–Lagrange equations. When the
gauge transformation η is purely “internal”, i.e., η ∈ GId, (II.12) reduces to
T(ηY(φ)) = T(φ). Thus T(φ) is actually gauge-invariant in this case. At the
opposite extreme, when ηY is the lift of a diffeomorphism of X, (II.12) reiterates
the fact that T(φ) is a tensor density.
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One can also inquire as to the dependence of Tµ
ν upon the choice of La-

grangian density L. As is well known, L is not uniquely fixed; one is free to
add a G-equivariant divergence to it without changing the physical content of
the theory. But Tµ

ν , unlike tµν , is independent of such ambiguities, as the next
result shows.

Proposition II.8. Tµ
ν depends only upon the divergence equivalence class of

L.

We now turn to a brief discussion of what happens when a metric g is
present on X. This metric may or may not be variational and, in any case,
need not represent gravity. We refer to the remaining fields ψa collectively as
“matter” fields (even though this appellation may be somewhat inappropriate
in particular examples). Below L will always refer to the matter Lagrangian;
a “free field” Lagrangian for the metric is immaterial. We assume that the ψa

are on shell.
Let Diffc(X) act on g by pushforward. Then for ξ ∈ Xc(X) the “metric

component” of ξY is

(ξY )αβ = −(gνβξ
ν

,α + gναξ
ν

,β);

hence
C ρ

αβν = −(gνβδ
ρ
α + gναδ

ρ
β) (II.13)

is the only nonzero coefficient in (II.4).
Formula (II.10) gives

Tµ
ν = Lδµ

ν − La
µva

ν + La
µCa

ν +Dρ(La
ρCaµ

ν)

− ∂L

∂wαβµ
wαβν − 2Dρ

(
∂L

∂wµβρ
gνβ

)
(II.14)

where wαβν are the velocity variables associated to the gαβ . On the other hand,
from (II.11) and (II.13) we have

Tµ
ν = −C µ

αβν

δL

δgαβ
= 2

δL

δgµρ
gνρ.

Raising indices then yields

Theorem II.9.

Tµν = 2
δL

δgµν
. (II.15)
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As a consequence, the “matter” SEM tensor density Tµν is manifestly sym-
metric, gauge-covariant, and independent of the choice of embedding—attributes
that are hardly obvious from (II.14)! Nor does it vanish in general. Perhaps
most importantly, this result imparts a straightforward physical interpretation
à la Noether to the Hilbert SEM tensor.

We derive one last consequence of our formalism.

Proposition II.10. Tµ
ν is covariantly conserved.

Proof. Fix a point x ∈ X and work in normal coordinates centered there.
Since g has pure index 1, Proposition II.6 gives

∇µTµ
ν(x) = DµT

µ
ν(x) =

(
δL

δgαβ
wαβν

)
(x).

But wαβν(x) = 0 in normal coordinates centered at x. �

The proof of this result does not rely on the field equations for the metric.
(Indeed, g may not even have field equations.) In particular, it is not necessary
to couple a field theory to gravity and appeal to Einstein’s equations to force
Tµ

ν to be covariantly conserved; Proposition II.10 is a general property of Tµ
ν .

See Fischer [1982,1985] for further discussion of this and related matters.

Examples

a Particle Mechanics. For parametrized particle mechanics, we have
JL(χ) = −Eχ for χ ∈ F(R). Thus the (scalar) SEM tensor reduces to just
Tt

t = −E and vanishes on shell, consistent with Example 4D.a.

b Electromagnetism. The Maxwell theory provides a simple, yet non-
trivial example of our constructions.

Since ∂L/∂vαβ = Fαβ√−g, the canonical SEM tensor (II.1) is

tµν = −
[
1
4
gµνFαβF

αβ + gνβFαµDβAα

]√
−g.

It is clearly neither symmetric nor gauge-invariant. To “fix” it, one adds the
term gνβFαµDαAβ

√
−g, thereby producing

Tµν = −
[
1
4
gµνFαβF

αβ + gνβFαµFβα

]√
−g. (II.16)
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We now derive (II.16) using our methods. The standard embedding of
Diffc(X) into the gauge group G = Diff(X) n C∞(X) is simply η 7→ (η, 0).
However, to illustrate the independence of our results upon the choice of em-
bedding, we instead choose the nonstandard one given as follows: fix χ ∈ F(X)
and define η 7→ (η, η∗χ− χ). Then the induced action of Diffc(X) on Y is

ηY ·A = η∗A+ d(η∗χ− χ).

Then for ξ ∈ Xc(X),

ξY = ξν ∂

∂xν
− (Aνξ

ν
,α + χ,νξ

ν
,α + χ,ανξ

ν)
∂

∂Aα

so (II.4) holds with

C ρ
αν = −(Aν + χ,ν)δρ

α and Cαν = −χ,αν .

Thus k = 1, but note that zeroth order derivative terms appear as well.
Applying (II.10), and observing that the metric is nonderivatively coupled

to A, we obtain

Tµ
ν = −

[
1
4
FαβF

αβδµ
ν + FαµDνAα

]√
−g

− Fαµχ,αν

√
−g −Dα

(
Fµα[Aν + χ,ν ]

√
−g
)
.

Using Maxwell’s equations Dα(Fµα√−g) = 0, the last term becomes

−Fµα(DαAν + χ,να)
√
−g.

Substituting into the above and raising the index we obtain (II.16). All trace
of χ has disappeared, as it must by the general theory presented.

Note that (II.16) does not necessarily vanish when Maxwell’s equations are
satisfied, because the metric is nonvariational—see Example 4D.b.

c A Topological Field Theory. We compute

Tµ
ν = εµαβAνFαβ .

That Tµ
ν vanishes on shell reflects the fact that topological field theories have

no “local physics,” and hence no localizable “energy” or “momentum.” (It is
necessary to qualify these terms since, in the absence of a metric, one cannot
distinguish one from the other.) However, this does not preclude the possibility
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that such a theory has a total nonzero energy/momentum content. In fact,
using the formula in Remark II.5, we can explicitly compute the “topological”
energy/momentum at infinity:

−
∫

Σ

i∗Σ (j1A)∗JL(ξY ) =
∫

∂Σ

[i(ξ)A]A

for arbitrary ξ ∈ X(X).

d Bosonic Strings. Since h is nonderivatively coupled to φ, (II.10) gives

Tµν =
[
gABv

A
µv

B
ν −

1
2
hµνh

αβgABv
A

αv
B

β

]√
−h.

As φ is a scalar field, this coincides with the canonical SEM tensor density.
Again we see that the SEM tensor density vanishes on shell. One can also check
directly that this formula is consistent with Theorem II.9:

Tµν = −2
δL

δhµν
.

In the jargon of elasticity theory, our treatment of the string corresponds to
the “body” representation. This is consistent with Tµν being a 2 × 2 matrix;
in some sense it describes the “internal” distribution of energy, momentum and
stress. Physically, then, the vanishing of Tµν on shell can be interpreted to mean
that if the string is to be harmonically mapped into spacetime, then it must be
“internally unstressed.” To obtain the “physical” 4 × 4 SEM tensor on the
spacetime (M, g), one would have to work in the inverse material representation
and consider a “cloud” of strings.

In this example, the parameter space X was not the physical spacetime.
This happens in other contexts as well (including our Example a) . For instance,
Künzle and Duval [1986] have constructed a Kaluza-Klein version of classical
field theory; in their approach X is a certain circle bundle over spacetime. The
SEM tensor is then defined on this space and so is a 5× 5 matrix; in the case of
an adiabatic fluid, the additional components of Tµ

ν can be interpreted as an
entropy-flux vector (Künzle [1986]).

Remark II.11. String theory has a certain communality with relativistic elas-
ticity. (See Beig and Schmidt [2003] for an introduction to this theory.) Rela-
tivistic elasticity has, as its basic fields, the world tube of the elastic material
and a Lorentz metric g on the physical spacetime M . The world tube is viewed
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as a map Φ : B×R →M , where B is a 3-dimensional reference region and R is
the time axis. The matter Lagrangian density is a given constitutive function
of the relativistic spatial version of the Cauchy-Green tensor, namely g+ u⊗ u,
where u is the world velocity field of Φ. See Marsden and Hughes [1983], §5.7,
for more details on how this is set up. The spacetime diffeomorphism group acts
on the world tube by composition on the left, which is a relativistic version of
the principle of material frame indifference, and it acts on the metric as usual,
by push-forward. Thus, our theory applies to this case, and so one must have
the stress energy momentum tensor given by either via the Noether based defi-
nition (II.6), or equivalently via the Hilbert formula (II.15). The former seems
not to be known in relativistic elasticity. The Hilbert formula is common in the
literature and is found on page 313 of Marsden and Hughes [1983], which can
also be consulted for additional references. �
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Sternberg, S. [1977], Some preliminary remarks on the formal variational calcu-
lus of Gel’fand and Dikki, Lecture Notes in Math. 676, 399–407.

Sundermeyer, K. [1982], Constrained dynamics, Lecture Notes in Phys. 169.

Suris, Y. B [1989], The canonicity of mappings generated by Runge–Kutta type
methods when integrating the system ẍ = −∂u/∂x, USSR Comput. Math.
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