ZMATH


 

0656.53034

Fernández, Marisa; Gotay, Mark J.; Gray, Alfred
Compact parallelizable four dimensional symplectic and complex manifolds. (English)
[J] Proc. Am. Math. Soc. 103, No.4, 1209-1212 (1988). [ISSN 0002-9939]

{\it A. Van de Ven} [Proc. Natl. Acad. Sci. USA 55, 1624-1627 (1966; Zbl 0144.210)] and {\it S. T. Yau} [Topology 15, 51-53 (1976; Zbl 0331.32013)] have given examples of compact 4-dimensional almost complex manifolds with no complex structures, and {\it N. Brotherton} [Bull. Lond. Math. Soc. 10, 303-304 (1978; Zbl 0409.53031)] has proven the nonexistence of complex structures on certain parallelizable 4- dimensional manifolds. \par In this paper, the authors define a real parallelizable, compact 4- dimensional manifold $E\sp 4$ to be a principal circle bundle over a principal circle bundle $E\sp 3$ over a torus $T\sp 2$ with the first Betti number $b\sb 1(E\sp 4)$ satisfying $2\le b\sb 1(E\sp 4)\le 4$, and prove the following: if $b\sb 1(E\sp 4)=2$ then $E\sp 4$ has symplectic but no complex structures, and if $b\sb 1(E\sp 4)=3$ then $E\sp 4$ has both symplectic and complex structures but no positive definite Kaehler metrics, though it carries indefinite Kaehler metrics. Moreover, $b\sb 1(E\sp 4)=4$ if and only if $E\sp 4$ is a 4-torus $T\sp 4$.
[ A.Bucki ]

MSC 2000:
*53C15 Geometric structures on manifolds
53C55 Complex differential geometry (global)
32Q99 Complex manifolds

Keywords: symplectic structure; principal circle bundle; torus; Betti number; complex structures; indefinite Kaehler metrics
Citations: Zbl 0144.210; Zbl 0331.32013; Zbl 0409.53031