Addendum

Mark J. Gotay, Janusz Grabowski and Hendrik B. Grundling, An Obstruction to Quantizing Compact Symplectic Manifolds, Proc. Amer. Math. Soc. **128**, 237–243 [2000]

October 14, 1999

We have redone the proof of Theorem 4. While the original proof remains valid, the proof given here is simpler. The discussion beginning with Theorem 4 and ending two paragraphs after the proof of Theorem 4 should be replaced by the following:

Theorem 4 Let M be a nonzero coadjoint orbit in \mathfrak{b}^* , where \mathfrak{b} is a compact, simple Lie algebra. Then M admits \mathfrak{b} as a basic algebra.

Proof. We first observe that since \mathfrak{b} is compact and semisimple, its adjoint group B is compact [**Va**, Thm. 4.11.7]. Consequently M is compact.

Now the elements of \mathfrak{b} , regarded as (linear) functions on \mathfrak{b}^* , form a finitedimensional space of observables on M closed with respect to the Poisson bracket $\{ , \}$. Their Hamiltonian vector fields are complete due to the compactness of M; moreover, transitivity is automatic since M is an orbit. Thus \mathfrak{b} satisfies (B1) and (B2). We will show below that \mathfrak{b} is minimal with respect to these properties. Given this, let \mathcal{B} be a subspace of \mathfrak{b} which is minimal amongst all such satisfying (B2). Then \mathcal{B} is a basic set and generates \mathfrak{b} , for otherwise the transitive Lie algebra generated by \mathcal{B} would be smaller than \mathfrak{b} , which contradicts the minimality of \mathfrak{b} . It follows that \mathfrak{b} is a basic algebra.

Identifying \mathfrak{b} with \mathfrak{b}^* by means of the Ad-invariant inner product (1), we can identify adjoint and coadjoint orbits. Thus $M = O_h$ for some $h \in \mathfrak{b}$. With respect to this identification $\{f, g\}(k) = \langle [f, g], k \rangle$ for $f, g, k \in \mathfrak{b}$. It is easy to see that the isotropy subalgebra $\mathfrak{b}_h = \{f \in \mathfrak{b} \mid [f, h] = 0\} = [\mathfrak{b}, h]^{\perp}$, so we have the decomposition

$$\mathfrak{b} = \mathfrak{b}_h \oplus [\mathfrak{b}, h] \tag{4}$$

with

$$[\mathfrak{b}_h, [\mathfrak{b}, h]] \subset [\mathfrak{b}, h]. \tag{5}$$

Suppose now that \mathfrak{b} is not minimal, and let $\mathfrak{a} \subset \mathfrak{b}$ be a minimal subalgebra for the compact orbit O_h . Proposition 1 implies that \mathfrak{a} is compact and semisimple, and hence has a commutative Cartan subalgebra \mathfrak{c} . We extend \mathfrak{c} to a Cartan subalgebra \mathfrak{k} of \mathfrak{b} . Now fix a Cartan subalgebra of \mathfrak{b} containing h; since this subalgebra is commutative it must be contained in \mathfrak{b}_h . As all Cartan subalgebras of a compact semisimple Lie algebra are conjugate under B [Va, Thm. 4.12.2], we may map \mathfrak{k} onto this subalgebra by some conjugation. Since O_h is an adjoint orbit, the image of \mathfrak{a} under this conjugation is also basic for O_h . Thus without loss of generality we may suppose that $\mathfrak{c} \subset \mathfrak{k} \subset \mathfrak{b}_h$.

Passing to complexifications we have the root space decomposition

$$\mathfrak{a}_{\mathbb{C}} = \mathfrak{c}_{\mathbb{C}} \oplus \Bigg(\sum_{\delta \in \Delta} \mathfrak{a}_{\delta}\Bigg)$$

where $\Delta \subset \mathfrak{c}_{\mathbb{C}}^*$ is the set of roots of $(\mathfrak{a}_{\mathbb{C}}, \mathfrak{c}_{\mathbb{C}})$. The inclusion $\mathfrak{c} \subset \mathfrak{k}$ implies that every root space \mathfrak{a}_{δ} of $(\mathfrak{a}_{\mathbb{C}}, \mathfrak{c}_{\mathbb{C}})$ is also a root space $\mathfrak{b}_{\delta'}$ of $(\mathfrak{b}_{\mathbb{C}}, \mathfrak{k}_{\mathbb{C}})$ for some unique $\delta' \in \mathfrak{k}_{\mathbb{C}}^*$ with $\delta' | \mathfrak{a} = \delta$. We can therefore write

$$\mathfrak{a}_{\mathbb{C}} = \mathfrak{c}_{\mathbb{C}} \oplus \left(\sum_{\delta \in \Delta} \mathfrak{b}_{\delta'} \right).$$
 (6)

By transitivity $[\mathfrak{a}, h] = T_h O_h = [\mathfrak{b}, h]$. Recalling that $h \in \mathfrak{k}$ so that $[\mathfrak{b}_{\delta'}, h] \subset \mathfrak{b}_{\delta'}$, we compute using (6),

$$[\mathfrak{b}_{\mathbb{C}},h] = [\mathfrak{a}_{\mathbb{C}},h] = [\mathfrak{c}_{\mathbb{C}},h] \oplus \Bigg(\sum_{\delta \in \Delta} [\mathfrak{b}_{\delta'},h]\Bigg) \subset \sum_{\delta \in \Delta} \mathfrak{b}_{\delta'} = \sum_{\delta \in \Delta} \mathfrak{a}_{\delta} \subset \mathfrak{a}_{\mathbb{C}}.$$

Thus

$$[\mathfrak{b},h] \subset \mathfrak{a}.\tag{7}$$

Let \mathfrak{h} be the Lie algebra generated by $[\mathfrak{b}, h]$; then from (4) and (5) we see that \mathfrak{h} is an ideal in \mathfrak{b} . From (7) it follows that $\mathfrak{h} \subseteq \mathfrak{a}$. But as \mathfrak{b} is simple, $\mathfrak{h} = \mathfrak{b}$ and this forces $\mathfrak{a} = \mathfrak{b}$, whence \mathfrak{b} is minimal.

When \mathfrak{b} is merely semisimple this result need not hold. For instance, S^2 is a coadjoint orbit in $\mathfrak{su}(2)^* \oplus \{0\} \subset \mathfrak{su}(2)^* \oplus \mathfrak{su}(2)^* \cong \mathfrak{so}(4)^*$ with basic algebra $\mathfrak{su}(2)$, not $\mathfrak{so}(4)$. (More generally, if there are several simple components, say $\mathfrak{b} = \mathfrak{b}_1 \oplus \cdots \oplus \mathfrak{b}_K$, then there will be low-dimensional orbits for which \mathfrak{b} is not basic; for instance, for h a regular element in a Cartan subalgebra \mathfrak{c} of \mathfrak{b}_1 we have $\mathfrak{b}_h = \mathfrak{c} \oplus \mathfrak{b}_2 \oplus \cdots \oplus \mathfrak{b}_K$, and the corresponding orbit is $B/B_h \cong B_1/C$ with basic algebra \mathfrak{b}_1 , not \mathfrak{b} .)

When *M* has *maximal* dimension in \mathfrak{b}^* , however, \mathfrak{b} will be a basic algebra on *M*. Indeed, it is a well-known result of Duflo and Vergne that the isotropy algebras of maximal coadjoint orbits are abelian (see, e.g. [**MR**, pps. 278-280]). But, referring back to the proof of Theorem 4 it follows from this fact, (4), (5), and the semisimplicity of \mathfrak{b} that $[\mathfrak{b}, h]$ generates \mathfrak{b} , i.e. $\mathfrak{h} = \mathfrak{b}$. So again (7) yields $\mathfrak{a} = \mathfrak{b}$.

Additional References

[Va] Varadarajan, V.S. [1984] Lie Groups, Lie Algebras and Their Representations. (Springer-Verlag, New York).