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We have redone the proof of Theorem 4. While the original proof remains
valid, the proof given here is simpler. The discussion beginning with Theorem
4 and ending two paragraphs after the proof of Theorem 4 should be replaced
by the following:

Theorem 4 Let M be a nonzero coadjoint orbit in b∗, where b is a compact,
simple Lie algebra. Then M admits b as a basic algebra.

Proof. We first observe that since b is compact and semisimple, its adjoint group
B is compact [Va, Thm. 4.11.7]. Consequently M is compact.

Now the elements of b, regarded as (linear) functions on b∗, form a finite-
dimensional space of observables onM closed with respect to the Poisson bracket
{ , }. Their Hamiltonian vector fields are complete due to the compactness of
M ; moreover, transitivity is automatic since M is an orbit. Thus b satisfies
(B1) and (B2). We will show below that b is minimal with respect to these
properties. Given this, let B be a subspace of b which is minimal amongst all
such satisfying (B2). Then B is a basic set and generates b, for otherwise the
transitive Lie algebra generated by B would be smaller than b, which contradicts
the minimality of b. It follows that b is a basic algebra.

Identifying b with b∗ by means of the Ad -invariant inner product (1), we
can identify adjoint and coadjoint orbits. Thus M = Oh for some h ∈ b. With
respect to this identification {f, g}(k) = 〈[f, g], k〉 for f, g, k ∈ b. It is easy to
see that the isotropy subalgebra bh = {f ∈ b | [f, h] = 0} = [b, h]⊥, so we have
the decomposition

b = bh ⊕ [b, h] (4)

with

[bh, [b, h]] ⊂ [b, h]. (5)

Suppose now that b is not minimal, and let a ⊂ b be a minimal subalgebra for
the compact orbit Oh. Proposition 1 implies that a is compact and semisimple,
and hence has a commutative Cartan subalgebra c. We extend c to a Cartan
subalgebra k of b. Now fix a Cartan subalgebra of b containing h; since this
subalgebra is commutative it must be contained in bh. As all Cartan subalgebras
of a compact semisimple Lie algebra are conjugate under B [Va, Thm. 4.12.2],
we may map k onto this subalgebra by some conjugation. Since Oh is an adjoint
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orbit, the image of a under this conjugation is also basic for Oh. Thus without
loss of generality we may suppose that c ⊂ k ⊂ bh.

Passing to complexifications we have the root space decomposition

aC = cC ⊕
( ∑

δ∈∆

aδ

)

where ∆ ⊂ c ∗C is the set of roots of (aC, cC). The inclusion c ⊂ k implies that
every root space aδ of (aC, cC) is also a root space bδ′ of (bC, kC) for some unique
δ′ ∈ k ∗C with δ′ | a = δ. We can therefore write

aC = cC ⊕
( ∑

δ∈∆

bδ′

)
. (6)

By transitivity [a, h] = ThOh = [b, h]. Recalling that h ∈ k so that [bδ′ , h] ⊂ bδ′ ,
we compute using (6),

[bC, h] = [aC, h] = [cC, h]⊕
( ∑

δ∈∆

[bδ′ , h]

)
⊂
∑
δ∈∆

bδ′ =
∑
δ∈∆

aδ ⊂ aC.

Thus

[b, h] ⊂ a. (7)

Let h be the Lie algebra generated by [b, h]; then from (4) and (5) we see
that h is an ideal in b. From (7) it follows that h ⊆ a. But as b is simple, h = b

and this forces a = b, whence b is minimal.

When b is merely semisimple this result need not hold. For instance, S2 is
a coadjoint orbit in su(2)∗ ⊕ {0} ⊂ su(2)∗ ⊕ su(2)∗ ∼= so(4)∗ with basic algebra
su(2), not so(4). (More generally, if there are several simple components, say
b = b1 ⊕ · · · ⊕ bK , then there will be low-dimensional orbits for which b is not
basic; for instance, for h a regular element in a Cartan subalgebra c of b1 we
have bh = c⊕ b2⊕ · · · ⊕ bK , and the corresponding orbit is B/Bh ∼= B1/C with
basic algebra b1, not b.)

When M has maximal dimension in b∗, however, b will be a basic algebra
on M . Indeed, it is a well-known result of Duflo and Vergne that the isotropy
algebras of maximal coadjoint orbits are abelian (see, e.g. [MR, pps. 278-280]).
But, referring back to the proof of Theorem 4 it follows from this fact, (4), (5),
and the semisimplicity of b that [b, h] generates b, i.e. h = b. So again (7) yields
a = b.
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