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Abstract. We study certain aspects of the problem of quantizing a presym-
plectic dynamical system. Such a system is quantized by imbedding the pre-
symplectic manifold M under consideration into a symplectic manifold X
and then geometrically quantizing the latter. It is known that this procedure
will yield consistent results provided the imbedding M -• X is coisotropic;
we show that such imbeddings always exist and are "locally unique." Further-
more, we investigate the extent to which the resulting quantum dynamics
is independent of the choice of coisotropic imbedding; that is, we examine to
what extent the presymplectic phase space M determines the quantum re-
presentation space and the quantization of observables. The quantization is
carried out within the geometric quantization framework of Kostant and
Souriau.

I. Introduction

Let (M, Ω) be a presymplectic manifold, that is, a manifold M endowed with a
closed 2-form Ω of constant rank. Such manifolds appear frequently in physics,
in which context M represents the (degenerate) phase space of a dynamical system
and Ω generalizes the Lagrange bracket [1]. Indeed, presymplectic phase spaces
arise naturally in relativistic dynamics (e.g., spinning particles in curved space-
time [2], Kaluza-Klein electrodynamics [3]), in the Dirac theory of constraints
[4-7], in Lagrangian dynamics [5-8], and also in time-dependent dynamics
[9-10].

Unfortunately, little is known regarding the quantization of systems described
classically by presymplectic geometries, since most quantization procedures
have been developed for symplectic systems (i.e., under the assumption that Ω is
nondegenerate). On the other hand, the quantization of symplectic systems is,
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at this point, relatively well understood [11-13]. Consequently, one approach
to quantizing a presymplectic dynamical system is to—in some natural manner—
associate to it a symplectic system and then quantize the latter.

There are many ways of associating a symplectic manifold to a presymplectic
manifold (M, Ω). One method is to "extend" (M, Ω) to a symplectic phase space.
More precisely, one searches for a symplectic manifold (X, ω) and an imbedding
j : M -> X such that j*ω = Ω many such imbeddings can always be found.* Another
possibility is to "reduce" (M, Ω) as follows [1,14]. Let N be the characteristic
distribution of the presymplectic form Ω, i.e.,

Since Ω is closed N is involutive; denote by M the space of all integral manifolds
of N. If M is a quotient manifold of M with projection p, then there exists a unique
symplectic form Ω on M such that Ω = p*Ω. The pair (M, Ώ) is called the reduced
phase space of (M, Ώ). A third way to associate a symplectic manifold to (M, Ω)
is via the imposition of a gauge condition [15]. This method is particularly ap-
propriate when M is realized as a level set of the momentum mapping defined by the
action of a gauge group on some symplectic manifold [16]. Imposing a gauge
condition amounts to reducing the gauge group to one of its subgroups. A maximal
reduction occurs if the subgroup in question consists only of the identity; this
corresponds to giving a section M -• M of the canonical projection p: M ^ M.
The image of such a section is a symplectic submanifold of (M, Ω).

Of the three methods listed above, the first is perhaps the most natural and
straightforward. In fact, presymplectic manifolds often arise in practice as sub-
manifolds of symplectic manifolds.This is the case, for instance, in Dirac's theory
of constrained classical systems [4-7]. Here, the ambient space(X, ω)is the phase
space of the system under consideration and M is the "constraint set," that is,
the submanifold of X consisting of all points which are admissible initial data
for the equations of motion of the system. To quantize such a constrained dynami-
cal system, Dirac [17] quantized the ambient space (X, ω) and then imposed certain
constraints on the quantum wave functions. We now briefly review Dirac's
procedure, generalizing to the case of an arbitrary presymplectic dynamical
system.2

Given a presymplectic manifold (M, Ω\ one first imbeds it in some symplectic
manifold (X, ω). Without loss of generality it may be assumed that M is globally
defined as a submanifold of X by the vanishing of certain functions ("constraints").
Now, the quantization of the imbedding space (X, ω) produces a space 2tf of
quantum states and associates to some class of smooth functions g on X quantum
operators Ig on Jf. One then postulates that the physically admissible quantum
states of the system are those which belong to the subspace Jf 0 of ffi defined by

J4?0 = {σeJ^\Άf[σ\ = 0 for all quantizable constraints/}.

1 For instance, take {X, ω) = (5~*M, ωM + π*Ω), where ωM is the canonical symplectic form on ^ * M

and π: ^~*M -> M is the projection. See also Sect. Ill

2 Examples illustrating Dirac's "quantization via imbedding" program may be found in A. Hanson,

T. Regge and C. Teitelboim, Accademia Nazionale dei Lincei, Rome, 22 (1976)
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In essence, this procedure allows one to quantize an "unconstrained" symplectic
system—as opposed to a "constrained" presymplectic system—by enforcing the
constraints on the quantum rather than classical level.

This approach, however, may lead to inconsistencies. Specifically, in the presence
of quantizable second class3 constraints ffl0 reduces to zero, i.e., there are no
nontrivial eigenstates of the constraint operators Άf [14,17]. Hence the method of
"quantization via imbedding" may lead to meaningful results only if all constraints
are first class. From a global standpoint, this means that in order to obtain consist-
ent quantum dynamics it is necessary to place a restriction on the allowable types
of imbeddings (M, Ω) -> (X, ω).

The requirement that all constraints be first class is equivalent to the condition
that the imbedding of (M, Ω) into (X, ω) be coisotropic [cf. Sect. III]. It is a funda-
mental fact [18,19] that, for any presymplectic manifold (M, Ω), such imbeddings
always exist and are "locally unique" in the sense that a neighborhood of M in the
imbedding space is (up to symplectomorphism) completely determined by (M, Ω).

These results imply that of the three ways of associating a symplectic manifold
to a presymplectic manifold (M, Ω) listed above, only the first one—leading to an
extended phase space—does not require any additional assumptions on (M, Ω).
The method of quantizing a presymplectic dynamical system "via imbedding" is
therefore the most generally applicable one, and we will accordingly restrict
consideration to it in this paper.

The fact that a neighborhood of the coisotropic submanifold M in the extended
phase space (X, ω) is completely determined by (M, Ω) up to symplectomorphism
is quite significant. Physically, this means that in a local sense it is possible to
canonically associate to every presymplectic dynamical system a symplectic system.
Furthermore, it implies that the classical symplectic dynamics obtained in this
manner is effectively independent of the choice of coisotropic imbedding. This, of
course, is to be expected since it is the presymplectic phase space (M, Ω) that is
of primary importance rather than the auxiliary ambient space (X, ώ).

The purpose of this paper is to determine the extent to which this classical
property carries over to the quantal domain. That is, to what extent is the quantum
dynamics of the system independent of the choice of coisotropic imbedding?
To what extent does the coisotropic submanifold M determine the space of quan-
tum states and the quantization of observables? More precisely, we investigate the
conditions under which the quantum representation space 3tf corresponding to the
symplectic phase space (X, ω) can be reconstructed from the knowledge of the
values of the wave functions on the submanifold M. We also inquire as to whether
the knowledge of a classical dynamical variable/in an (arbitrarily small) neighbor-
hood of M in X is sufficient to determine the quantum operator Άf.

These investigations are carried out within the geometric quantization frame-
work of Kostant and Souriau [11-13]; the pertinent features of this theory are
summarized in the next section. Throughout this paper, we adhere to the notation
and terminology of [12].

3 A constraint/is/ϊrsί class if, for each constraint/', the Poisson bracket {/,/'} induced by ω vanishes
when restricted to M. A constraint which is not first class is second class
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II. Quantization Assumptions

The supplementary structures on a 2n-dimensional symplectic manifold (X, ω)
needed for geometric quantization are a prequantization, a polarization and a
metaplectic frame bundle.

A prequantization of (X, ω) consists of a complex line bundle L over X with a
connection V and an invariant Hermitian inner product such that

curvature V = — h~ιω,

where h is Planck's constant.
A polarization of (X, ω) is an involutive ^-dimensional complex distribution

F on X such that

and dim (FnF) is constant where F denotes the complex conjugate of F. A
polarization F defines two complex distributions FnF and F + F which are
the complexifications of certain real distributions D and E, respectively:

FnF = Dc and F + F = Ec.

Note that D1 = E, where " _L" denotes the symplectic orthogonal complement4

Since F is involutive D is also, so that D defines a foliation of X. We denote by
X/D the space of all integral manifolds of D and by nD the canonical projection
X-+X/D. A polarization F is strongly admissible if E is involutive, the spaces
X/D and X/E of integral manifolds of D and E, respectively, are (Hausdorfί)
quotient manifolds of X and the canonical projection πED: X/D -• X/E is a
submersion. If F is strongly admissible, then each fiber P of πED has a pseudo-
Kahler structure such that F l π ^ " 1 ^ ) projects onto the distribution of anti-
holomorphic vector fields on P [12].

A metaplectic structure on (X, ω) is given by a bundle of metaplectic frames,
that is, a right principal Mp{n, U) bundle over X doubly covering the symplectic
frame bundle of (X, ω).5 The metaplectic structure is used to define the complex
line bundle^A nF, the bundle of half-forms relative to F. This bundle has a canoni-
cally defined partial flat connection covering F.

We denote by ffl the quantum state space corresponding to the geometric
quantization structures given above. Elements of ffl are sections of the complex
line bundle L®Jί\ nF which are covariantly constant along F. If F is strongly
admissible then, equivalently, wave functions σe J f are represented by sections of
L®Λ/Λ nF which are covariantly constant along D and holomorphic along the
fibers of πED. Such sections have supports contained in the subset S of X which is
the union of those integral manifolds A of D for which the holonomy group of the
induced flat connection in (L (x) ̂ /Λ nF) \ A is trivial. The set S is called the Bohr-
Sommerfeld variety since it is locally determined by the generalized Bohr-
Sommerfeld conditions.

4 If {V, ω) is a symplectic vector space and W c V is a linear subspace, then the symplectic orthogonal
complement W1 of W in V is the set of all ve V such that ω(u, w) = 0 for all we W
5 The metaplectic group Mp(n, U) is the double covering of the symplectic group Sp(n, U)
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Each integral manifold A of D has a canonically defined parallelization.
Assuming that the polarization F is strongly admissible and complete (in the
sense that the leaves of D are complete affίne manifolds), it is possible [20,21] to
decompose the Bohr-Sommerfeld variety.

s= (jsk,
k = 0

where d = dimD and Sk is the union of all those leaves of D contained in S which
are affinely isomorphic to the cylinder Th x Ud~k. The dimension of each such
submanifold Skis2n — k.

III. Coisotropic Imbeddings and Quantization

Let (M, Ω) be a presymplectic manifold, and consider an imbedding of M into a
symplectic manifold (X, ω). As noted in the Introduction, inconsistencies may
arise when one quantizes the imbedding (M, Ω) -> (X, ω) if second class cons-
traints are present. To circumvent this difficulty, Dirac [17] suggested replacing
the Poisson bracket by a new bracket operation which is now known as a Dirac
bracket [14,19]. The transition from a Poisson to a Dirac bracket corresponds to
choosing a sympletic submanifold Y of X in such a way that M is defined as a
submanifold of Y by the vanishing of first class constraints only. Thus, by introdu-
cing a Dirac bracket, one can effectively eliminate the second class constraints
from the theory.

Dirac's local constructions suggest the existence of a certain class of imbeddings
(M, Ω) -> (X, ω) which will lead to consistent quantum dynamics. The fact that
second class constraints cannot appear implies that such imbeddings must be
"coisotropic." Specifically, a closed imbedding j of a presymplectic manifold
(M, Ω) into a (connected) symplectic manifold (X, ω) is coisotropic provided both
j*ω = Ω and ^ M 1 c ^)'(^M). The Poisson bracket on (X, ω) is, in this context,
called a "Dirac bracket" [19].

For the purpose of quantization, it is important to determine if coisotropic
imbeddings of a given presymplectic manifold exist. Furthermore, to ensure that
the notion of Dirac bracket is not too arbitrary to be useful, it is necessary to
classify all possible coisotropic imbeddings. The following theorem settles both of
these issues.

Coisotropic Imbedding Theorem [18, 19]: Any presymplectic manifold (M,Ω)
can be coίsotropίcally imbedded in some symplectic manifold. Moreover, given any
two such imbeddings j ί ' {M, Ω)-+ (X1, ωχ) and j 2 :(M, Ω)->(X2, ω2), there exists a
symplectomorphism φ from a neighborhood ofjί (M) in X1 onto a neighborhood of
j2(M) in X2 such that j 2 = ψojγ.

The last part of this Theorem implies that a neighborhood of the coisotropic
submanifold M in a symplectic imbedding space (X, ω) is completely determined by
(M, Ω) up to a symplectomorphism which reduces to the identity on M. In other
words, the coisotropic imbedding (M, Ω)-> (X, ω) is "locally unique."

As remarked upon earlier, this Theorem has the consequence that the classical
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symplectic dynamics of the system under consideration is effectively independent
of the choice of coisotropic imbedding (M, Ω)-> (X, ω). On the quantum level,
one would hope that an analogous result holds. Unfortunately, even though the
structure of a neighborhood of M in X is uniquely determined, X can be quite
arbitrary globally. Since the quantization process depends significantly upon the
global topology and geometry of the imbedding space (X, ω), it is clear that one
cannot expect the quantization of the system to be independent of the choice of
(X, ω) in general. On the other hand, the above Theorem does imply that all
quantization constructions which employ only (arbitrarily small) neighborhoods
of M in X are insensitive to the choice of (X, ω).

One can nevertheless eliminate a substantial portion of the dependence of
the quantization upon the choice of (X, ω) by restricting consideration to
certain simple types of coisotropic imbeddings. For instance, it is always possible
to choose the imbedding M -» X in such a way that X is a tubular neighborhood
of the zero section of some vector bundle over M.6 As an illustration of the use-
fulness of such imbeddings, consider the construction of the prequantization line
bundle and the metaplectic frame bundle over the imbedding space (X, ω).

The existence and uniqueness of these structures depend upon the topology of
X and can be characterized cohomologically [11.13]. According to general
principles, one would like these bundles to be determined by the topology of M
rather than that of X. This will in fact be the case if X is taken to be a tubular
neighborhood of M, since such an X is homotopic to M. Since the choice of ambient
space is to a certain extent arbitrary in any case, one loses no generality by restrict-
ing X in this manner.

Thus it is always possible, by suitably restricting the class of allowable imbedd-
ings, to characterize the prequantization and metaplectic structures solely in
terms of the cohomology of M. Recent work of Yaisman [22] shows that this is
also the case regarding the existence of (certain types of) polarizations of (X, ώ). It
remains to determine to what extent a similar result holds concerning the quantum
representation space.

IV. Quantum Wave Functions

Let the presymplectic manifold (M, Ω) be coisotropically imbedded in the connect-
ed symplectic manifold (X, ω) where, in view of the remarks at the end of the last
section, it is assumed that X is a tubular neighborhood of the zero section of some
vector bundle over M. Let ffl denote the space of quantum states associated to
(X, ω) by the geometric quantization procedure. In this section we study the de-
pendence of 2tf upon the choice of imbedding M -• X. Since the structure of
3^ is very sensitive to the choice of polarization, so also is the extent to which the
coisotropic submanifold M determines Jf.

For a completely general polarization F we have the following fundamental
result.

6 In particular, one could take this vector bundle to be the dual of the characteristic bundle of (M, Ω),

cf. [18-19]
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Proposition 1. If the Bohr-Sommerfeld variety S is contained in π " 1 (πD(M)),
then each section σeJf is uniquely determined by its restriction to M.
Proof. If S c πD~ι(πD(M)\ then each leaf of D contained in S must intersect M.
Since wave functions σeJ^f are sections of L O ^ / Λ nF covariantly constant along
F with supports contained in S, it follows that any σ e j f can be reconstructed
from σ IM by parallel transport along the leaves of D. •

A polarization is real if F = F. For such polarizations, the converse of Pro-
position 1 holds. Indeed, if each section σ is determined by its restriction
to M, then elements of 3tf must have their supports in π D " 1 (π I ) (M)) ; thus
S c πD~ί(πD(M)). This proves

Proposition 2. Lei F be a real polarization and ffl the corresponding represen-
tation space. If each σeffl is uniquely determined by its restriction to M, then the
Bohr-Sommerfeld variety S is contained in π~ * (πD(M)).

It should be noted that the reality condition on F is essential. If F is even
partially complex (i.e., dim D < n\ then Proposition 2 can fail.7

Since Propositions 1 and 2 do not require strong admissibility, they can be used
to study "wild" polarizations. To simplify matters, however, it is convenient to
classify polarizations F according to the nature of the intersection of E with
3ΓML. We assume that

is constant on M. We begin with the transverse case ί = 0.

Theorem 1. Let M be a compact submanifold of (X, ω) and let F be a strongly
admissible polarization of (X,ω) such that E n J M i = {0}. Then each section
σeJf is uniquely determined by its restriction to M.
Proof We show that π~1 (πD(M)) is both open and closed in X. Since X is assumed
connected, the desired result follows from Proposition 1.

Since E1 = D, the assumption that E is transverse to ^M1 implies that

Consequently, if d = dimD,

n JM)] = 2n-d = dim{X/D),

so that πD(M\ which is isomorphic to the space of integral manifolds
is open in X/D. Since M is compact, so is πD(M) and, as X/D is assumed Hausdorff,
πD(M) is closed in X/D. The continuity of πD then implies that πD~ι(πD(M)) is a
connected component of X. •

The compactness hypothesis in this theorem can be dropped by means of the

7 Here is a counterexample to Proposition 2 in the case when F is "totally" complex. Take X = C,

ω = — idz A dz and let F be spanned by the anti-holomorphic vector field d/dz. Then each wave function

σ e J^ is of the form σ = ψσ0, where σ0 is any trivialization of L (g) yj A ι F covariantly constant along F

and ψ is holomorphic. If M is any compact 1-dimensional submanifold of C then each holomorphic

function on C, and therefore each section in JP, is uniquely determined by its restriction to M. However,

since D = {0}, S = C and π~1(πD(M)) = M does not contain 5. The authors are indebted to I. Singer

for discussions regarding this point
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following construction. The essential use of compactness is to guarantee that every
leaf of D intersects the submanifold M. If M is not compact, then there may exist
integral manifolds of D which do not meet M. However, since X' — πΏ~ι(πΌ{M))
is an open submanifold of X, we may simply "throw away" such leaves by con-
sidering M as being imbedded in X' rather than X. Clearly, X' is symplectic and
inherits all necessary geometric quantization structures from X. In particular, the
restriction of F to X' is a polarization of (X\ ω | X') and (D \ X'f = (F \ Xr) n (F \ X').
We may thus quantize (X\ ω\X') rather than (X, ω). Then by construction every
integral manifold of D \ X' will intersect M so that the conclusion of the theorem
holds for covariantly constant sections of (L | X') ® yj Λ n(F | X1).

Now, let us turn to non-transverse polarizations. When £ φ 0 it is not usually
true that each wave function is uniquely determined by its restriction to M. If,
however, this is the case, then we obtain a topological restriction on the
polarization.

Theorem 2. Let F be a complete strongly admissible real polarization of (X, ω)
such that πD\X-> X/D is a locally trivial fibratίon. If each section σeJΊf is uniquely
determined by its restriction to M, then the integral manifolds ofD are diffeomorphic
to Jk xM"-k with k^ί, where / = dim (D n 3ΓML).
Proof Since πD is a locally trivial fibration and F is both real and complete, all
integral manifolds of D are diffeomorphic to Jk x Un~k for some fixed fc, 0 rg k ^ n.
Thus the Bohr-Sommerfeld variety S = Sk, where dim Sk = 2n — k. Furthermore,
by Proposition 2, S is contained in πD~ 1(πD(M)). Since

dim [πD ~ί {πD (M)) ] = dim (D +

the inclusion S ^ πD~ 1(π£)(M)) implies that k ^ /. D
As a special case, consider a complete real polarization F such that πD is a

locally trivial fibration and 3~ML c D, so that / = codim M. Such a polarization
would play an important role in comparing the quantization in the extended phase
space (X, ω) with the quantization of the reduced phase space (M, Ω), since F n J ' M
projects via p to a polarization of (M, Ω). If each section σeJ^f is uniquely deter-
mined by its restriction to M. then Theorem 2 implies that ^ΓML can be extended
to an involutive isotropic distribution K on X such that the integral manifolds of
K are fc-tori, where k ^ codim M [20.21]. This seems to be a fairly severe restriction.

V. Quantum Operators

Classical dynamical variables are smooth functions on the phase space (X, ω).
Geometric quantization assigns to some classical observables/quantum operators
Qf'm a way which we now briefly describe. Let the observable / generate a one-
parameter group φj of symplectomorphisms of (X, ω). Given a polarization F,
the φ * induce a one-parameter family of unitary transformations, also denoted by
φj, from the representation space J f defined by F to the representation spaces M't
corresponding to the polarizations $~φf\F). Subject to certain regularity assump-
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tions, it is possible to define the Blattner-Kostant-Sternberg kernels

For each σ e j f and σte$fv the value of Jff(σ, σt) is obtained by integrating a
local concomitant δ(σ« σt) constructed from the sections σ and σt over the space of
leaves of the distribution Dn^φf\D\ c.f. [12]. Let όlίt: ^f f -» ̂ f be the linear map
defined by

where ( | •) is the inner product on 2tC. The quantum operator ^/corresponding to
/is given by

For a fixed polarization F of (X, ω), the operator J / will in general depend upon
both the global properties of/on X and the geometry and topology of the imbed-
ding space (X, ω). On the other hand, the Coisotropic Imbedding Theorem implies
that if the construction of ̂ /employs only arbitrarily small neighborhoods of the
coisotropic submanifold M in X then If will be insensitive to both the large-
scale behavior of/and the choice of imbedding M -+ X. The aim of this section is to
find the conditions under which it is possible to determine J/from the knowledge
of/in an arbitrarily small neighborhood of M.

It follows from Theorem 2 that, if / = dim(E n FM1) φ 0 and each σeJf7 is
uniquely determined by its restriction to M, ffl consists of discontinuous sections
of L®\] ΛnF with supports specified by / c ^ / Bohr-Sommerfeld conditions.
Since the presence of Bohr-Sommerfeld conditions usually restricts the class
of quantizable functions and, moreover, since the explicit construction of If
is quite complicated in these cases [12], we assume in what follows that

Theorem 3. Suppose that M is a compact submanifold of (X, ω), and let F be
a sufficiently regular strongly admissible polarization of (X, ω) for which
En^M1 = {0}.8 LetfeC°{X) be such that Άfexists. If there exists anε>0 such
that, for each te [0, ε), Dt = Dn 2Γφ*{ΰ) is a distribution on X satisfying

Dt

then, for each σeJ^9, Άf\_σ~\ can be determined by operations in an arbitrarily small
neighborhood of M in X.
Proof By definition,

It therefore suffices to show that, for each open set U containing M, there exists

8 By "sufficiently regular" we mean a polarization for which the kernels Jft are defined and converge.
See [12] for a detailed explanation



386 M. J. Gotay and J. Sniatycki

tv > 0 such that 3ft{v, φf\σ)) is determined solely by operations in U for each
[0y
Since E n ^"M1 = {0} Theorem 1 implies that both a and v are uniquely deter-

mined by their restrictions to M. Hence φf

t(σ)eJ^ft is uniquely determined by
σ\φf\M). Furthermore, since M is compact, for each open set U containing
M there exists tυ > 0 such that φHM) <= U for all t e [0. tυ).

Now

^ ( v ^ / ( σ ) ) = f <5(v,</>/(σ)),

where for each t we assume that the space X/Dt of integral manifolds of the dis-
tribution Dt = Dn ^~φf\D) is a (Hausdorff) quotient manifold of X with projection
πt. Mimicking the proof of Theorem 1, the assumption that Dt + 9~M = ̂ ~'MX
implies that πt maps M onto X/Dt. Consequently, the integration appearing in
the definition of the kernel Jff is actually over πf(M). Moreover, since the local
concomitant δ(v, φf\σ)) depends only upon the sections v and φf\σ) it follows
that, for each te[0, tv\ the integral of δ(v, φ/(σ)) over X/Dt can be determined
solely by the knowledge of σ, v and/in U, as required. D

For a given polarization F of (X, ω), there is a distinguished subclass of observ-
ables/eC°°(X) which "preserve" F in the sense that έFφf

t(F) = F. Every such
observable/is quantizable [12] and the above expression for Qf reduces to

for all σe Jf\ If F is chosen so that E n ^M1 = {0} then, since Dt = D, the hypothe-
ses of Theorem 3 are satisfied. Thus we have proven the following.

Corollary. Suppose that the polarization F is such that E is transverse to
/// is an observable which preserves F, then the corresponding quantum operator
Άf exists and is independent of the choice of coisotropic imbedding (M, Ω)-> (X, ω).

As was the case with Theorem 1, the hypotheses of Theorem 3 can be weakened
somewhat under certain circumstances. Specifically, if one restricts attention to
those observables / which both preserve F and are "first class" (i.e., v\_f~\ = 0
for all ve$~ML\ then the compactness assumption may be dropped. Indeed,
note that compactness was used only twice in the proof of Theorem 3. In the first
instance, it guaranteed that the projection πt maps M onto X/Dt for each f e[0, ί̂ ).
If M is not compact, this will not necessarily be the case. As in Sect. IV, however,
one may view M as being imbedded in

X'= ft n-\
te[O,tv)

rather than X—provided X' is an open submanifold of X—for then by construc-
tion the projections M-> X'/(Dt\X') will be onto for each ίe[0, tυ). In particular,
if/ preserves F then Dt = D and πf = πD are independent of t, and in this case
X' = πD~1(πD(M)) is open in X. The second use of compactness was to ensure
that φ/(M) a U for each ίe[0, tυ). But this will always be the case if /is first
class, since the flow of any first class observable / preserves M, i.e., φ/(M) = M.
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VI. Discussion

The present work is but a first step in understanding the quantization of a pre-
symplectic dynamical system. We have shown that it is always possible to geo-
metrically quantize a presymplectic manifold by coisotropically imbedding it in
a symplectic manifold. Moreover, we have delineated the extent to which the
quantization so obtained is independent of the specific choice of imbedding.
But there are many problems that we have only touched upon, and others that we
have not considered at all. In this section we briefly glance at some of these pro-
blems, with an eye to both their eventual resolution and future work.

Let (M, Ω) be coisotropically imbedded in the symplectic manifold (X, ω),
and let Jf be the quantum state space associated to (X, ω) by the geometric
quantization procedure. As discussed in the Introduction, the set Jf 0 of dynami-
cally admissible quantum states of the system consists of those σei f for which
Άf\_σ\ = 0 for all quantizable classical constraints/.

The first set of problems concerns the actual construction of the space 2tf 0 .
For instance, for σ to belong to Jf 0 is it necessary to require that «2/[σ] = 0 for
every constraint/, or will it suffice to require this for a set oϊcodim M functionally
independent constraints/? How does one invariantly construct Jf 0 if M cannot
be globally defined as a submanifold of X by the vanishing of constraint functions?
Furthermore, what if the classical constraints are not quantizable in the representa-
tion given by the polarization FΊ

It is possible to partially answer these questions in the following situation.
Suppose that one can identify the coisotropic submanifold M with the zero-level
set of the momentum mapping J associated with the Hamiltonian action of some
Lie group G on the symplectic manifold (X, ω) [1,15,16]. That is, suppose

M = {xeX\ Jξ(x) = 0 for all ξe$},

where g is the Lie algebra of G, the momentum mapping J:X-» g* and

If the quantization map is linear, then to determine Jf 0 it suffices to require that
Ά Jξ[_σ] = 0 for all ξ belonging to a basis of g. Furthermore, if the polarization
F is G-invariant, then the constraints Jξ are directly quantizable as first-order
differential operators on #?. If, in addition, the polarization is such that
E n £ΓML = {0} then, since the Jξ are first class, Theorem 3 and its corollaries imply
that the operators Ά Jξ will be defined independently of the choice of (X, ω). How-
ever, if F is not G-invariant, then one must employ the Blattner-Kostant-Sternberg
kernels in order to quantize the Jξ. In this case, the operators ΆJξ may be more
complicated—if they exist—and the conditions defining Jf 0 may be more difficult
to handle.

This special case notwithstanding, one would like to have an intrinsic means
of constructing J^o which does not depend upon whether the constraints are
globally defined and/or quantizable. More precisely, one would like to use the
geometry of the imbedding (M, Ω) -> (X, ω) to define a projection operator Π
on Jf in such a way that J^o = Π~ x{0}. Operators of this type have been construe-
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ted by Guillemin and Sternberg [23] in the case when X is a punctured cotangent
bundle; perhaps their techniques will be of use in this context.

Another problem concerns the Hubert space structure of J»f 0 . In principle,
one knows how to make J f into a Hubert space; this involves only standard
techniques [12]. However, if zero is in the continuous spectrum of the quantum
constraints If (e.g., if the group G of the preceding discussion is noncompact),
then Jti?0 will not be a subspace of the Hubert space 2tf but rather will consist of
distributional wave functions. The problem, then, is to make J ^ o itself into a
Hubert space. Although it is not clear how to do this in general, the work of
Tulczyjew [24] enables one in some cases to introduce a scalar product on ffl0.
Furthermore, the question arises as to whether the quantum operators Άg for
geC°°(X) restrict to well-defined operators on Jf 0. 9 This is in fact the case
for first class observables since, if g is first class, then Άg commutes with every
quantum constraint Άf.10 If, however, g is not first class, then it is not necessarily
true that J2g[J^0] <= j ^ o in this case Tulczyjew's constructions lead to a family
of operators representing g on J^o.

In addition to the quantization via imbedding technique studied here, there
are (at least) two other ways of quantizing a presymplectic manifold (M, Ω)\ quan-
tize the reduced phase space (M, Ω\ and quantize subsequent to imposing a
maximal gauge condition [cf. the Introduction]. Ultimately, of course, it is neces-
sary to determine to what extent these various quantization procedures are
equivalent; preliminary results have already been obtained along these lines
[15]. One point of contact between these different techniques was noted in Sect. IV.
Another occurs when one considers the quantization of a first class observable.

Suppose that the first class function/is quantizable in the representation given
by the polarization F; then necessarily Et = E + 9~φ*{E) is an involutive
distribution on X [12]. If in addition Dt satisfies the hypothesis of Theorem
3, then dim Dt ^ codim M. In the case when equality holds, we claim that the dis-
tribution Gt = Etn ?ΓM is involutive and complementary to 3~ML in ZΓM.
Indeed, since Dt®&Ή= $~MX, it follows that Etn&~M± = {Q}. Furthermore,

dim Gt = codim{Dt + ^ M 1 )

= dim $ΉL - dim

and the claim is proven. Thus, the integral manifolds of Gt yield a foliation of M
by symplectic submanifolds transverse to 3ΓM1. If these submanifolds map dif-
feomorphically onto the reduced phase space (M, Ω) under the canonical pro-
jection M -• M, then we have a family of gauge conditions. The quantization of
a presymplectic manifold admitting gauge conditions is studied in [15].
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