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Abstract. We investigate the extent to which first- and second-class constraints decouple 
in the Dirac constraint algorithm for degenerate dynamical systems. We find the two classes 
to be inextricably intertwined. Some consequences of this failure of ‘apartheid’ are dis- 
cussed. 

Degenerate dynamical systems are characterised by the presence of constraints on the 
admissible Cauchy data for their evolution equations?. Such constraints fall into two 
categories: the ‘first’ and ‘second’ classesll. First-class constraints are correlated, at 
least to some extent, with the gauge properties of the system (Dirac 1964, Gotay 1983, 
Gotay and Nester 1979, Gotay et a1 1978, Hanson et a1 1976, Sundermeyer 1982), 
while second-class constraints reflect the appearance of non-dynamic degrees of free- 
dom in the theory (Dirac 1964, Gotay 1981, Hanson et a1 1976, Sundermeyer 1982). 

It is apparent that these two classes of initial-value constraints play fundamentally 
distinct roles in the’ canonical analysis. Moreover, by introducing Dirac brackets, one 
can eliminate the second-class constraints altogether, leaving a purely first-class system 
(Dirac 1964, Gotay 1981, Hanson et a1 1976, Sundermeyer 1982). This effective 
decoupling of the first- and second-class constraints in the canonical formalism suggests 
that there may be a dynamic segregation between these constraints in the constraint 
algorithm itself: 

To make this notion precise, recall that in the Dirac constraint theory1 one begins 
with certain primary constraints and that each additional constraint arises from the 
requirement that some prior constraint be preserved in time. Now we ask: Does the 
preservation of a first-class constraint necessarily result in another jirst-class constraint? 
Conversely, does every first-class constraint arise from the requirement that some other 
first-class constraint be preserved? Is the same true for second-class constraints?. If so, 
the constraint algorithm would enforce a sort of ‘apartheid’ between the two classes 
of constraints: constraints of a given class would generate, and could only be generated 
by, constraints of that same class. 

This strict decoupling, if found to be always the case, would obviously yield a 
substantial simplification in the canonical analysis of degenerate systems. Actually, 
t Supported in part by the Natural Sciences and Engineering Research Council of Canada, 
* Present address: Dept. Mathematics, US Naval Academy, Annapolis, Maryland 21402, USA. 
7 The Dirac constraint theory and its applications are discussed in Dirac (1964), Gotay et al(1978); Hanson 
er a1 (1976) and Sundermeyer (1982). 
/ I  A constraint is said to be ,first class if its Poisson bracket with any other constraint weakly vanishes, and 
second class otherwise. 
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apartheid seems to have become part of constraint theory folklore, even though it does 
not appear to have been explicitly discussed anywhere. Regardless, we know of no 
instance in the literature in which the constraint algorithm mixes first- and second-class 
constraints. 

In this note we settle the apartheid issue, finding that constraints may indeed cross 
‘class lines’ in the constraint algorithm. Specifically, we prove that the preservation 
of a first-class constraint can only lead to another first-class constraint, but exhibit 
counterexamples which show that this need not be true for second-class constraints. 
We then briefly discuss some of the physical implications of our results. 

We begin with apartheid on the first-class level. Let 4 be a first-class constraint 
and denote by HT Dirac’s ‘total’ Hamiltonian. Demanding that 4 be preserved in time 
leads to the derived constraint 

6 = (4, HT} 21 O, 

where { a ,  a } .  is the Poisson bracket and = means ‘weak’ equality. We show that the 
constraint 4 = 0, if non-trivial, is again first class. For any constraint x, the Jacobi 
identity yields 

((4, HT}, X I  = {{x, HT}, 4) -{{x, 41, HT}. 
Since x is a constraint so is {x, H T } ;  the first term on the RHS then weakly vanishes 
by the assumption on 4. Similarly, as 4 is first class {x, 4} = 0 and the second term 
on the RHS must then weakly vanish by the constraint algorithm. Thus {{  4, HT}, x} = 0 
for all constraints x, i.e., {4, HT} is first class. 

This answers our first question in the affirmative, perhaps not too surprisingly (in 
fact, this result is implicit in the work of Dirac (1964)). What is interesting is that the 
converse of this result fails. 

We illustrate this via the Lagrangian 

L = $ 2 1 2  - ;w2 - f( z3  - y3)  + ( y  + z ) x .  

Upon going overto the Hamiltonian formulation we find three primary constraintsp, = 0, 
pz  = 0 and pw = 0. The total Hamiltonian is then 

HT=iW2(p: + 1)  + f ( z 3 - y 3 )  - ( y  + z ) x  + U y P y  +U$, + U,P,, 
where uY, U, and U, are Lagrange multipliers. The constraint algorithm yields three 
secondary constraints 

{Pp f f T } = x + y 2 = o  

{ p , ,  H T } = x - z 2 = o  

{ P w  HT) = -w(P: + 1 )  = 0 

and subsequently forces U, U, and U, to vanish. The equations of motion are all trivial. 
A functionally independent set of constraints for this system consists of one 

first-class constraint x = 0 and six second-class constraints 

P y  = 0, Y = O ,  P L  = 0, z = o ,  P w  = 0, w = o .  

It follows that the two secondary constraints x + y 2  = 0 and x - z2  = 0 produced directly 
by the constraint algorithm are first class even though they are generated by the 
second-class primaries p y  = 0 and p z  = 0, respectively. In this system there is clearly 
no way to disentangle the two classes of constraints within the constraint algorithm 
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itself. (Indeed, there are no first-class primaries with which to generate these two 
first-class secondaries). 

This example shows that it is quite possible for a second-class constraint to generate 
a non-trivial first-class constraint. On the other hand, we have seen that the preservation 
of a first-class constraint can only yield another first-class constraint. This does not 
mean, however, that second-class constraints cannot ultimately arise from the preserva- 
tion of first-class constraints. 

For, consider the Lagrangian 

L = 4x2 + yx2. 

In this case the first-class primary p y  = 0 leads directly to the first-class secondary 
x 2 = 0 ,  in accordance with our findings above. But x 2 = 0  iff x=O which in turn 
generates p x  = 0. Thus the two second-class constraints x = 0 and p x  = 0 are ultimately 
derived from the first-class constraint p y  = 0. The catch is that the first-class constraint 
x 2 = 0  is really the second-class constraint x=O 'in disguise'. More precisely, the 
pathology in this example is due to the presence of the inefectiue first-class constraint 
x2= 0:. 

Ineffective first-class constraints can arise as the result of preserving either first- or 
second-class constraints and can be 'resolved' into effective constraints of either type. 
Moreover, the appearance of ineffective first-class constraints seems to be closely linked 
to the failure of apartheid. In all the systems we have been able to construct in which 
apartheid fails (or which exhibit the bizarre behaviour of the second example), there 
is such a constraint lurking somewheret. This is the case even in our first example: 
although the two first-class constraints x + y 2  = 0 and x - z2 = 0 are themselves effective, 
their first-class difference y 2  +z*=O is not. These observations lead us to conjecture 
that apartheid is valid for systems with no naturally occurring inefective constraints§. 

A physically interesting system which displays many of these pathologies is given 
by the Lagrangian 

This field theory has one second-class primary which generates an ineffective first-class 
secondary (equivalent to two functionally independent constraints, one first class and 
the other second class), which in turn gives rise to a first-class tertiary. In this instance, 
the failure of apartheid (note also the presence of an ineffective constraint) has a direct 
bearing on the physical interpretation of this Lagrangian: Is this system just Lorentz- 
gauged electromagnetism or, rather, something completely different (e.g., a massless, 
divergence-free, spin- 1 field)? 

Apartheid is therefore important for understanding the extent to which first-class 
constraints generate gauge transformations. It is a matter of 'pedigree'. Every member 
of a chain of effective first-class constraints derived from the preservation of a primary 
first-class constraint has unimpeachable credentials as a generator of gauge transforma- 
tions (Gotay 1983, Gotay and Nester 1979). On the other hand, a first-class constraint 
which is derived from a second-class constraint is very suspect as a gauge generator. 

t A constraint 6 is efecriue if d6 f 0 and rnefecriue otherwise. 
$ However, there do exist purely first-class systems in which ineffective constraints appear and for which 
apartheid is valid (e.g., remove the last term from our field theory Lagrangian). 
§ In view o f t h e  fundamental importance of ineffective constraints in the canonical formalism (cf. also Gotay 
1983, Gotay and Nester 1979), one might well distinguish them with the title 'third-class' constraints. 
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Finally, we present a rather surprising corollary of our analysis. Suppose that one 
was somehow able to a priori determine all the second-class constraints in a given 
system. Then it will not always be possible to Jirst eliminate the corresponding set of 
non-dynamical variables and then ‘restart’ the constraint algorithm (using the Dirac 
bracket in place of the Poisson bracket), thereby recovering the ‘missing’ first-class 
constraints. The problem is that ope may lose first-class constraints in the process; in 
particular, one would lose the first-class secondary x = 0 altogether in the first example?. 
In general, therefore, one can only eliminate the second-class constraints from the 
formalism after the conclusion of the constraint algorithm. This is a reflection of our 
finding above that the first- and second-class constraints decouple only after the 
constraint algorithm has been carried to completion. Thus non-dynamical variables 
play an indispensable role in obtaining the field equations and constraints despite the 
fact that such variables are physically irrelevant. 

To summarise: our examples quash all hopes for apartheid in general. We conclude 
that the constraint algorithm itself inextricably intertwines the first- and second-class 
aspects of the canonical formalism and that the failure of apartheid has far-reaching 
physical consequences. 
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