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Editorial
Anthony Quas

MATHEMATICAL ModELLIng:  
WHAT, HoW And WHY?

In my work and outside it too I often hear about 
Mathematical Modelling. In this editorial I'll say 
a bit about what it is; how to do it; and why it's 
important.

What is Mathematical Modelling? 

First let's try a quick answer: Mathematical 
Modelling is the process of using mathematics 
to understand something `in the real world'. For 
high school students the closest thing to this in 
the curriculum might be the (often-dreaded) word 
problems. Here is an example taken from the 
internet: 

Mr.S is planting flowers to give his girl 
friend on Valentine's day, which is half 
a year away. Currently the flowers are 7 
inches tall and will be fully grown once 
they reach one foot. If the flowers grow 
at a rate of half an inch per month, then 
how large will they be on the day? Will the 
flowers be fully grown? or will he have to 
find another gift? 

The aim here is to take something which is on 
the surface not a mathematical question, translate 
it into a mathematical question, solve the 
mathematical question and translate the answer 
back into the framework of the original question. 

In this case we let x denote the height of the flowers 
on Valentine's Day and say that x = 7 + t / 2 
where t is the number of months until Valentine's 
Day. Since we're told it's half a year away we have 
t = 6 so that we can compute x = 10. Since we're 
told the flowers will be 12 inches when they're 
fully grown it sounds as though `Mr.S' will have 
to think of a new present. 

For some more advanced examples, here are some 
other questions that might be approached using 
mathematical modelling.

When light 
is reflected 
in water the 
r e f l e c t i o n 
seems to be 
stretched out 
along the line 
connecting the 
viewer and 
the source. 
Why is this? 
Why isn't it 
stretched in the 
perpendicular 
d i r e c t i o n 
(horizontally in 
this picture)?

In the case of a fast-spreading epidemic involving 
an unknown disease (e.g. the SARS epidemic that 
hit China in late 2002 / early 2003 and spread 
to other countries including Canada) what are 
the best policies to follow to minimize sickness 
and death from the disease while avoiding over-
reacting? 

Finally one of the most important cases of all: 
climate modelling. Here you're trying to predict 
the weather patterns in 10 years; 20 years; 100 
years. For more information on this see the article 
in this issue by Adam Monahan. 

How do you do Mathematical Modelling? 

Just as in the case of the word problem, a first 
step is trying to decide which variables to study 
in the problem. There is an important difference 
though. The word problem is typically constructed 
to give you all of the information you need to 
solve the problem (and no more). Generally the 
variables are given to you in the statement of the 
problem itself. When you're doing more advanced 
modelling you have to decide which variables to 
include (and often equally importantly which ones 
to leave out of consideration). 
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This last idea is at first sight quite surprising. 
Surely the best model is the one that takes 
everything into account? Actually that's not 
usually considered to be the case. Rather a good 
model is usually considered to be the simplest one 
that explains the behaviour you're trying to study. 
This is an important idea that is sometimes called 
`Occam's Razor' (named after a 14th Century 
monk who first expressed it). 

For example in the case of the reflected lights one 
might try to take account of the positions of all 
of the water molecules! This would probably be a 
bad idea because people don't know exactly how 
liquids work. Also because there are a number of 
trillion trillion water molecules in the picture it 
would be impossible to do any computations even 
if you did know where they all were. 

In practice what you do is this: pick out some 
variables that you think could be important (in 
the water case I used the `slopiness' of the water: 
how far away from being flat it is as a variable for 
example) and try to write down some equations 
relating the observations to the situation you're 
modelling. This may involve making some guesses 
as to how things work. Test your model: does it 
give the results you expected?; can you apply it to 
make predictions in situations other than the one 

where you know the answer? If it's not working 
you may need to tweak the model to improve it. 

Why does mathematical 
modelling matter?

Mathematical modelling can be great or it can 
be useless. It all depends on the model chosen. 
Good mathematical modelling should make some 
predictions that you can test with existing data 
(it's important that you haven't already used the 
data to build the model-otherwise you end up with 
a circular argument: you build the model to work 
for a certain set of data and then check that it 
works with that same data). It should then make 
some predictions that you can test in the future. 

You can use mathematical modelling to test ideas 
that would be impractical or unethical to do as 
an actual experiment. For instance in the SARS 
modelling example you might want to predict what 
would happen if we took no action and compare 
it to the effect of (say) shutting down schools and 
airports for two weeks. Doing an actual experiment 
would be politically impossible but doing it in the 
model doesn't impact people in the same way. 

In the best case, mathematical modelling tells you 
how things work and informs decisions. It is an 
invaluable tool across science and economics.



2 3

Marie Kim is at Cheong Shim International Academy, 
currently in 11th grade. She's from South Korea, and 
plans to go to the U.S. for college and major in biology 
or neurology.

Negative numbers. Most students find the 
concept hard to understand and to accept at first. 
Mathematicians before Descartes refused to accept 
negative numbers, including the great Pascal 
himself. Negative numbers actually are believed 
to have been found in the East the earliest, in 
China. An ancient Chinese text, written in 
B.C. 1000, titled \Ku Jang San Sul" - meaning 
 \nine arithmetic formulas"- includes in part a 
computation of negative numbers.

(-1) x (-1) = 1  . . . but WHY?
Marie Kim, Cheong Shim International Academy

1. Pattern 

2 x 2 = 4 1 x 2 = 2 0 x 2 = 0 (-1) x 2 = (-2) (-2) x 2 = (-4) 

2 x 1 = 2 1 x 1 = 1 0 x 1 = 0 (-1) x 1 = (-1) (-2) x 1 = (-2) 

2 x 0 = 0 1 x 0 = 0 0 x 0 = 0 (-1) x 0 = 0 (-2) x 0 = 0 

Take a look at the pattern above. In each row, you'll be able to find that constant decrease in the 
number multiplied results in constant change in the product. The same for each column. Applying this 
same pattern, the next row will be: 

2 x (-1) = (-2) 1 x (-1) = (-1) 0 x (-1) = 0 (-1) x (-1) = 1 (-2) x (-1) = 2 

This pattern is an initial indication why the statement \negative number multiplied by negative number 
results in positive number" might be correct. 

2. number line 

On the number line, `3 x 2' is thought of as `moving by 2 three times in the same direction as 2 - the 
positive direction.' 

*2

2. Number line

On the number line, `2 x 3' is thought as `moving by 2 three times in the 
same direction as 2 - the positive direction.'

 

Similarly, `(-2) x 3' is thought as `moving by 2 three times in the opposite 
direction of 2 - the negative direction.'

Now, keeping those two models in mind, `(-2) x (-3)' can be thought as `moving by 
(-2) three times in the opposite direction of (-2)'; so it will be the same as `moving by 2 
three times in the positive direction.'  This results in `(-2) x (-3) = 6'; negative number 
times negative number equals positive number which would look like the first number line. 

3. Proof

This one may be the most complicated out of the three. Using the distribution property, it can be 
proved that multiplying two negative numbers result in a positive number.

Let's put `a' and `b' as two real numbers.

x = ab + (-a)(b) +  (-a)(-b)

Positive and negative numbers are often explained 
with the model of `debt and profit.' Profit is 
positive and debt is negative; adding positive 
numbers results in profit while adding negative 
numbers deducts profit - adding to debt. This 
model however, failed to make people understand 
the concept of multiplying a negative number by a 
negative number since it is hard to find such cases 
in everyday life. 

How is the concept `negative number x negative 
number' explained, then? There are quite a few 
illustrations and models that are available to help 
people understand and accept such a concept. Out 
of those explanations, here are three easy ones. 
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Similarly, ̀ 3 x (-2)' is thought of as ̀ moving by 2 three times in the opposite direction of 2 - the negative 
direction.' 

Now, keeping those two models in mind, ̀ (-2) x (-3)' can be thought as ̀ moving by (-2) three times in the 
opposite direction of (-2)'; so it will be the same as `moving by 2 three times in the positive direction.' 
This results in `(-2) x (-3) = 6'; negative number times negative number equals positive number which 
would look like the first number line. 

3. Proof 

This one may be the most complicated out of the three. Using the distribution property, it can be 
proved that multiplying two negative numbers result in a positive number. 

Let's put `a' and `b' as two real numbers. 

 x = ab + (-a)(b) + (-a)(-b)

Let's expand it this way first.

 x = ab + (-a) {(b) + (-b)} (factoring `-a' out) 

 x = ab + (-a) (0) 

 x = ab + 0 

  x = ab 

Do it again but this time in a different order. 

 x = {a + (-a)} b + (-a)(-b) (factoring `b' out)

 x = (0)b + (-a)(-b)

  x = 0 + (-a)(-b)

  x = (-a)(-b) 

So `x = ab and x = (-a)(-b),' which leads us to `ab = (-a)(-b)' 

Other explanations for `(-) x (-) = (+)' do exist and can be found easily, for example using complex 
numbers. But, don't just go and look it up; take your time and think of your own way to explain 

`(-) x (-) = (+).'

*2

2. Number line

On the number line, `2 x 3' is thought as `moving by 2 three times in the 
same direction as 2 - the positive direction.'

 

Similarly, `(-2) x 3' is thought as `moving by 2 three times in the opposite 
direction of 2 - the negative direction.'

Now, keeping those two models in mind, `(-2) x (-3)' can be thought as `moving by 
(-2) three times in the opposite direction of (-2)'; so it will be the same as `moving by 2 
three times in the positive direction.'  This results in `(-2) x (-3) = 6'; negative number 
times negative number equals positive number which would look like the first number line. 

3. Proof

This one may be the most complicated out of the three. Using the distribution property, it can be 
proved that multiplying two negative numbers result in a positive number.

Let's put `a' and `b' as two real numbers.

x = ab + (-a)(b) +  (-a)(-b)
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Aziz Inan was born in Turkey, did his PhD at Stanford 
and now teaches Electrical Engineering at University 
of Portland. He enjoys posing Recreational Math Puz-
zles. He has noted that even his name has a puzzling 
geometric property. Write out AZIZ INAN. Swap A’s 
and I’s and rotate the consonants by 90 degrees. The 
two names switch places!

Introduction 

In most of the world's countries, a specific 
calendar date in a four-digit year is expressed in 
the format DD/MM/YYYY (or DD.MM.YYYY 
or DD-MM-YYYY) where the first two digits 
(DD) are reserved for the day, the next two (MM) 
for the month and the last four (YYYY) for the 
year numbers. (The United States is one of the 
few countries which use the MM/DD/YYYY date 
format in which the places of the month and the 
day numbers are switched.) In general, if one 
removes the separators between the day, the month 
and the year numbers, a full date number consists 
of a single eight-digit number sequence given as 
DDMMYYYY. For example, the birth date of 
the famous American recreational mathematician 
Martin Gardner is 21 October 1914 which can be 
expressed as a single date number as 21101914 
in the DDMMYYYY format (or 10211914 in the 
MMDDYYYY format).

Palindrome 
dates 

Assuming each 
date in all the 
four-digit years 
is assigned a 
single eight-
digit date 
n u m b e r 
DDMMYYYY, 
a question that 
comes to mind 

is, \Can some of these eight-digit full dates be 
palindrome numbers?" (A palindrome number 
is a number that reads the same forwards or 
backwards [1-2].)

The answer is yes, and these special dates are 
called palindrome dates.

For example, in the DDMMYYYY date format, 
the first palindrome date of this (21st) century 
occurred on 10 February 2001 since this date, 
expressed as the single date number 10022001, is 
indeed a palindrome number. Note that palindrome 
date 10022001 is also the first palindrome date of 
this century that occurred in the MMDDYYYY 
date format, but it corresponds to a different 
actual date, which is October 2, 2001. 

Generally speaking, palindrome dates are very rare 
and sometimes don't occur for centuries. If any, only 
a single palindrome date can exist in a given four-
digit year Y1Y2Y3Y4. Also, among all four-digit 
years, a specific date designated by both month 
and day numbers as D1D2M1M2 (or M1M2D1D2) 
can be a palindrome date only once represented 
by a date number D1D2M1M2M2M1D2D1 (or 
M1M2D1D2D2D1M2M1). 

In the DDMMY1Y2Y3Y4 date format, since 
each single palindrome date number must satisfy 

Palindrome dates in Four-digit Years
Aziz S. Inan

Table 1 

Palindrome date combinations in the DDMMY1Y2Y3Y4 date format. Note that the total number of 
palindrome dates in each category adds up to 335.

D=Y4 D=Y3 M=Y2 M=Y1 Y1 Y2 Y3 Y4 N
0 1 to 9 0 1 to 9 1 to 9 0 1 to 9 0 81
0 1 to 9 1 1,2 1,2 1 1 to 9 0 18
1,2 0 to 9 0 1 to 9 1 to 9 0 0 to 9 1,2 180
1,2 0 to 9 1 1,2 1,2 1 0 to 9 1,2 40
3 0 0 1,3 to 9 1,3 to 9 0 0 3 8
3 1 0 1,3,5,7,8 1,3,5,7,8 0 1 3 5
3 0 1 1 1 1 0 3 1
3 1 1 0,2 0,2 1 1 3 2
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each  single  palindrome  date  number must 
satisfy Y4Y3Y2Y1Y1Y2Y3Y4, palindrome dates 
can only occur in years ending with a digit Y4 
less than four (since day number cannot exceed 
31). In addition, the hundredth digit  Y2  of  the  
year  number  of  the  palindrome  date  must  
either  be  zero  or  one  (since month number 
cannot exceed 12). In the special case when the 
thousandth digit Y1 of the year satisfies Y1 > 2, 
Y2 must equal zero. In other words, palindrome 
dates in the second and  third  millenniums  (years  
1001  to  3000)  can  only  occur  in  the  first  
two  centuries  of each millennium. On the other 
hand, palindrome dates that fall between fourth 
and tenth millenniums  (years  3001  to  10000)  
can  only  occur  in  the  first  century  of  each 
millennium. Also, between years 1000 to 10000, 
palindrome dates in each century all fall on the 
same month with month number Y2Y1. Table 1 
provides allpossible combinationsof  palindrome  
dates  in  the  DDMMY1Y2Y3Y4  date  format  
categorized  in  terms  of different  values  and  
ranges  of  digits  Y4,  Y2,  Y3  and  Y1,  where  N  
is  the  total  number  of palindrome dates in each 
category. Based on Table 1, in the DDMMYYYY 
date format, a total of 335 palindrome dates exist 
among all the four-digit years. 

In  the  MMDDY1Y2Y3Y4  date  format,  palindrome  
dates  represented  by Y4Y3Y2Y1Y1Y2Y3Y4 can 
only occur in years ending with digit Y4 equal to 
either zero or one since the month number cannot 
exceed 12. In the case when Y4 = 1, the tenth 
digit Y3 of  the  year  number  cannot  exceed  
two.  In  addition,  the  second  digit  Y2  of  the  
year number  of  the  palindrome  date  must  be  
less  than  four  since  the  day  number  cannot 
exceed 31. Furthermore, if Y1 > 1, then, Y2 < 3. 
That is, for the MMDDY1Y2Y3Y4 date format, 
palindrome dates in the second millennium (years 
1001 to 2000) can occur only in  the  first  four  
centuries  of  each  millennium.  On  the  other  

hand,  palindrome  dates between  the  third  and  
tenth  millenniums  (2001  to  10000)  only  occur  
in  the  first  three centuries of each millennium. 
Also, between years 1000 and 10000, palindrome 
dates in each century all fall on the same day 
of the month, with day number equal to Y2Y1. 
Table 2  provides  all  possible  combinations  of  
palindrome  dates  in  the  MMDDY1Y2Y3Y4  
date format  categorized  in  terms  of  different  
values  and  ranges  of  digits  Y4,  Y2,  Y3  and  
Y1, where N is the total number of palindrome 
dates in each category. 

According to Table 2, there are a total of 331 
palindrome dates in the MMDDYYYY date format 
involving all the four-digit years.

Note  that  even  if  some  palindrome  date  
numbers  represented  by Y4Y3Y2Y1Y1Y2Y3Y4 
are valid date numbers in each date format, unless 
the day and the month  numbers  are  the  same,  
they  correspond  to  different  actual  dates  in  
each  date format  (e.g.,  palindrome  date  number  
10022001  as  mentioned  above).  There  are  also 
palindrome date numbers which are only valid 
dates in one date format but not the other. 

For  example,  palindrome  date  number  
21022012  is  a  valid  date  number  in  the 
DDMMYYYY date format and represents 21 
February 2012. However, 21022012 is not a valid 
date number in the MMDDYYYY format since its 
month number 21 exceeds 12. 

Palindrome dates in the second millennium 

In the DDMMYYYY date format, a total of 61 
palindrome dates occurred in the second  millennium  
(years  1001  to  2000),  31  in  the  11th  century  
(all  in  the  month  of January)  and  30  in  the  
12th  century  (all  in  November),  with  the  last  
one  being  29 November  1192  (29111192).  No  
other  palindrome  dates  occurred  between  the  

TABLE 2

Table 2. Palindrome date combinations in the MMDDY1Y2Y3Y4 date format. Note that the total 
number of palindrome dates in each category adds up to 331. 

Y4Y3Y2Y1Y1Y2Y3Y4, 
palindrome dates can 
only occur in years 
ending with a digit Y4 
less than four (since day 
number cannot exceed 
31). In addition, the 
hundreds digit Y2 of 
the year number of the 
palindrome date must 
either be zero or one (since month number cannot 
exceed 12). In the special case when the thousands 
digit Y1 of the year satisfies Y1 > 2, Y2 must equal 
zero. In other words, palindrome dates in the 
second and third millenniums (years 1001 to 3000) 
can only occur in the first two centuries of each 
millennium. On the other hand, palindrome dates 
that fall between fourth and tenth millenniums 
(years 3001 to 10000) can only occur in the first 
century of each millennium. Also, between years 
1000 to 10000, palindrome dates in each century 
all fall on the same month with month number 
Y2Y1. Table 1 provides all possible combinations 
of palindrome dates in the DDMMY1Y2Y3Y4 date 
format categorized in terms of different values 
and ranges of digits Y4, Y2, Y3 and Y1, where N 
is the total number of palindrome dates in each 
category. Based on Table 1, in the DDMMYYYY 
date format, a total of 335 palindrome dates exist 
among all the four-digit years. 

In the MMDDY1Y2Y3Y4 date format, palindrome 
dates represented by Y4Y3Y2Y1Y1Y2Y3Y4 can 
only occur in years ending with digit Y4 equal 
to either zero or one since the month number 
cannot exceed 12. In the case when Y4 = 1, the 
tenth digit Y3 of the year number cannot exceed 
two. In addition, the second digit Y2 of the year 
number of the palindrome date must be less than 
four since the day number cannot exceed 31. 
Furthermore, if Y1 > 1, then, Y2 < 3. That is, for 
the MMDDY1Y2Y3Y4 date format, palindrome 
dates in the second millennium (years 1001 to 
2000) can occur only in the first four centuries of 
each millennium. On the other hand, palindrome 
dates between the third and tenth millenniums 
(2001 to 10000) only occur in the first three 
centuries of each millennium. Also, between 
years 1000 and 10000, palindrome dates in each 
century all fall on the same day of the month, 

with day number equal to Y2Y1. Table 2 provides 
all possible combinations of palindrome dates in 
the MMDDY1Y2Y3Y4 date format categorized in 
terms of different values and ranges of digits Y4, 
Y2, Y3 and Y1, where N is the total number of 
palindrome dates in each category. 

According to Table 2, there are a total of 331 
palindrome dates in the MMDDYYYY date 
format involving all the four-digit years. 

Note that even if some palindrome date numbers 
represented by Y4Y3Y2Y1Y1Y2Y3Y4 are valid 
date numbers in each date format, unless the 
day and the month numbers are the same, they 
correspond to different actual dates in each date 
format (e.g., palindrome date number 10022001 
as mentioned earlier). There are also palindrome 
date numbers which are only valid dates in one 
date format but not the other. 

For example, palindrome date number 21022012 
is a valid date number in the DDMMYYYY 
date format and represents 21 February 2012. 
However, 21022012 is not a valid date number in 
the MMDDYYYY format since its month number 
21 exceeds 12. 

Palindrome dates in the 
second millennium

In the DDMMYYYY date format, a total of 
61 palindrome dates occurred in the second 
millennium (years 1001 to 2000), 31 in the 11th 
century (all in the month of January) and 30 in 
the 12th century (all in November), with the last 
one being 29 November 1192 (29111192). No other 
palindrome dates occurred between the 13th and 
20th centuries, more than 800 years. 

In the MMDDYYYY date format, a total of 43 
palindrome dates occurred during the second 

Table 2.

Palindrome date combinations in the MMDDY1Y2Y3Y4 date format. Note that the total 
number of palindrome dates in each category adds up to 331.

M=Y4 M=Y3 D=Y2 D=Y1 Y1 Y2 Y3 Y4 N
0 1 to 9 0 to 2 1 to 9 1 to 9 0 to 2 1 to 9 0 243
0 1,3,5,7,8 3 1 1 3 1,3,5,7,8 0 5
1 0 to 2 0 to 2 1 to 9 1 to 9 0 to 2 0 to 2 1 81
1 0,2 3 1 1 3 02 1 2
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millennium, split as 12, 12, 12 and 7 among the 
11th, 12th, 13th and 14th centuries respectively. 
The 11th century palindrome dates all occurred 
on the first day of the month, the 12th century 
ones all on the 11th day, 13th century ones all on 
the 21st day of the month, and the 14th century 
ones all on the 31st day of the month. The 
last palindrome date of the second millennium 
occurred on August 31, 1380 (08311380) and no 
other palindrome dates existed between the 15th 
and 20th centuries, over 600 years. 

Also, interestingly enough, among all the palin-
drome date numbers in the second millennium 
common to both date formats, only two corre-
spond to the same actual dates: 1 January 1010 
(01011010) and 11 November 1111 (11111111). 

Palindrome dates in the 21st century 

The 21st century has 29 palindrome dates in the 
DDMMYYYY versus only 12 in the MMDDYYYY 
date formats. The first palindrome date in this 
century in each date format was 10022001, in 
2001. The second palindrome date of this century 
in the DDMMYYYY date format was 20022002 
representing 20 February 2002. The third 
palindrome date in the DDMMYYYY date format, 
which also happens to be the second palindrome 
date in this century in the MMDDYYYY format, 
is 01022010. This date number represents 1 
February 2010 in the DDMMYYYY date format 
versus January 2, 2010 in the MMDDYYYY 
format. The first twelve palindrome dates of this 
century in both date formats are provided in Table 
3. Note that in this century, palindrome dates in 
the DDMMYYYY date format all occur in the 
month of February. On the other hand, in the 
MMDDYYYY date format, palindrome dates of 
this century all fall on the second day of the month. 
The last palindrome date of this century will be 29 
February 2092 (29022092) in the DDMMYYYY 
date format versus September 2, 2090 (09022090) 
in the MMDDYYYY format. Also, there is one 
common palindrome date to occur in this century, 
02022020, which corresponds to the same actual 
date in each format, that being 2 February 2020. 

Palindrome dates after the 21st century 

After this century, in the DDMMYYYY date 
format there will be 31 more palindrome dates, 

all in the month of December, to occur during 
the 22nd century and no more after that until the 
end of the third millennium. In the MMDDYYYY 
format, 12 more palindrome dates (all being on the 
12th day of the month) are to occur in the 22nd 
century followed by 12 more (all on day 22 of the 
month) in the 23rd, and no more afterwards until 
year 3001. In addition, there is a second palindrome 
date to occur in this millennium, 12122121, which 
is not only common to both date formats but also 
represents the same actual day in each format, 
which is 12 December 2121. In the DDMMYYYY 
date format, starting with the fourth millennium 
there will be 31 more palindrome dates (all in the 
month of March) to occur in the 31st century, 30 
(all in April) to occur in the 41st, 31 (all in May) 
to occur in the 51st, 30 (all in June) to occur in 
the 61st, 31 (all in July) to occur in the 71st, 31 
(all in August) to occur in the 81st, and 30 (all 
in September) to occur in the 91st centuries, the 
last one being 29 September 9092 (29099092). No 
other palindrome dates will exist in all the other 

Table 3. 

The first twelve palindrome dates of the 21st century in 
each date format. 

Number MMDDYYYY DDMMYYYY

1 10022001
October 2, 2001

10022001
10 February 2001

2 01022010
January 2, 2010

20022002
20 February 2002

3 11022011
November 2, 2011

01022010
1 February 2010

4 02022020
February 2, 2020

11022011
11 February 2011

5 12022021
December 2, 2021

21022012
21 February 2012

6 03022030
March 2, 2030

02022020
2 February 2020

7 04022040
April 2, 2040

12022021
12 February 2021

8 05022050
May 2, 2050

22022022
22 February 2022

9 06022060
June 2, 2060

03022030
3 February 2030

10 07022070
July 2, 2070

13022031
13 February 2031

11 08022080
August 2,2080

23022032
23 February 2032

12 09022090
September 2, 2090

04022040
4 February 2040
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centuries that fall between the fourth and tenth 
millenniums (year 3001 to 10000). 

The number of palindrome dates to occur in the 
MMDDYYYY date format starting with the 
fourth millennium up to the tenth is 36 per each 
millennium, distributed as 12, 12 and 12 between 
the first three centuries of each millennium. The 
12 palindrome dates in each century all fall on the 
same day of the month, which equals the reverse 
of the first two digits of the year number. For 
example, there will be 36 palindrome dates in the 
6th millennium and these 36 palindrome dates will 
be distributed as 12, 12 and 12 between the 51st, 
52nd, and 53rd centuries respectively. The 12 in 
the 51st century will all happen on the fifth day 
of the month, the 12 in the 52nd on day 15 of the 
month, and the 12 in the 53rd are all going to be on 
the 25th day of the month. No further palindrome 
dates will exist in the other centuries (54th to 
60th) of the 6th millennium. The last palindrome 

Alex Lamoureux is a senior at Queen Elizabeth 
School in Calgary. He enjoys reading, fencing, and 
video games – in addition to his school work. 

Michael Lamoureux is a professor of mathematics at 
the University of Calgary, He does research in analy-
sis and its applications to geophysics and signal pro-
cessing, and teaches courses from calculus to gradu-
ate research seminars.

Coming home 

\Hey Dad," announced Alex one day, arriving 
home from school. \There is something weird 
about the fraction one-sixth. See, if you write it 
out in decimal form, 

1/6 = .16666 . . . 

and start moving the decimal place, you get 
primes!" 

\That's nuts," said his father, Michael. \The first 

Primes from Fractions
Alex P. Lamoureux and Michael P. Lamoureux 

date in four- digit years in the MMDDYYYY date 
format will be 09299290, which is September 29, 
9290 and after this one, no more palindrome dates 
will occur until the next one which is October 10, 
10101 (101010101) to occur in year 10101. 

Lastly, between the fourth and tenth millenniums, 
there is one common palindrome date that exists 
in each millennium that corresponds to the same 
actual date in each date format. For example, 
common palindrome date number 05055050 to 
occur during the first century of the 6th millennium 
represents 5 May 5050 in each date format. 

References: 

1. M. Gardner, The Colossal Book of Mathematics, 
Chapter 3, W. W. Norton & Company, 2001. 

2. J. N. Friend, Numbers: Fun and Facts, Chapter 
VIII, Charles Scribner's Sons, 1954.

decimal gives you 1," he points out, \which is not 
a prime. Next one is 16, also not a prime. And 
after that is 166, 1666, 16666, none of which are 
primes. So what are you talking about?"

\No, Dad, you have to round up the numbers. So 
you start with 1.666 . . . which rounds up to 2, 
which is a prime. Next is 16.666 . . ., which rounds 
up to 17, which is also a prime. 

After that is is 166.666 . . ., which rounds to 167, 
also prime, and after that is 1667, which I'm pretty 
sure is a prime too."

\You're right Alex, all of those are primes. But 
the next one, 16667, is that prime?"

\I don't know, but let's check. Of course two 
doesn't divide it, since it is not even. Three does 
not divide it since the digits don't add to a multiple 
of 3. Five doesn't divide it since it doesn't end in 0 
or 5. What about seven?" 
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\Yes, what about seven? With our calculator, or 
even in our head, we can check that 16667/7 = 
2381. So that one is not prime."

\Still, Dad, this fraction one-sixth is doing pretty 
good. See, by comparison, if you look at one-half, 
in decimal it is 

1/2 = .5000 ...,

so shifting decimals gives you 5 (a prime), then 
the numbers 50, 500, 5000, etc., none of which are 
prime."

\Same thing with one-third, in decimal 

1/3 = .3333 . . . , 

so shifting gives you 3 (a prime), then the numbers 
33, 333, 3333, etc., also none of which are prime. 
The fractions one-fourth, and one-fifth also give 
only one prime each."

\So the one-sixth is pretty special. Why is that, 
Dad?"

Why is that? 

Why indeed? This is a question for a number 
theorist, and neither of us are such. But it still 
is interesting to think about. The pattern of the 
numbers generated by one-sixth are pretty special. 
Except for the first number 2, the integers we get 
are of the form of a one, followed by many sixes, 
and ending in seven. That is, they look like this: 

1666 ... 6667. 

So these are always odd numbers, which is good, 
as they will not be divisible by 2. The digits never 
add up to a multiple of 3 (since the 1+7 is not 
a multiple of 3, while the sixes all are), so this 
number is not divisible by 3. And of course it is 
not divisible by 5. So at least we have a few factors 
that \can't" happen. 

In fact, this pattern of repeating digits might 
remind us of Mersenne primes, those primes of 
the form n = 2k - 1. In binary notation, where we 
use only the digits 0 and 1, these primes are in 
the form 

n=111 . . . 111(binary),with exactly k repeats of 1

Of course, not all numbers binary numbers of this 
form are prime, but many are, including 

 3 = 11(binary) 
 7 = 111(binary) 
 31 = 11111(binary) 
 127 = 1111111(binary)

and even the huge prime number

243112609 - 1 = 111 . . . (binary) with 43112609 

ones, which was discovered in 2008.

So perhaps our one-sixth prime generator can also 
produce big primes for us. How can we tell?

Testing for primes 

To find out experimentally what is going on, we 
can use a computer program that can look at a big 
integer and decide whether it is prime. There are 
lots of tools out there: MAPLETM, MathematicaTM, 
GIMPS, among others. Since the second author is 
a mathematician, he has access to lots of these 
tools. So we just use any one of them. 

Mathematica is a useful mathematical tool, with 
plenty of commands to do all sorts of mathematical 
calculations quickly and painlessly. It has a very 
simple command, PrimeQ[n], which tests whether 
an integer n is prime or not. Mathematica is also 
smart enough  to keep track of all the digits of 
a very long number. Another nice command, 
FactorInteger[n] will compute the prime factors of 
n, if we are interested in those. 

So, for instance, we type in PrimeQ[16667] and 
discover the number 16667 is not a prime. Type 
in PrimeQ[166667] and discover 166667 is actually 
a prime. 

A little \FOR" loop can be used to test a bunch 
of numbers: 

For[n=0, n<101, If[PrimeQ[Round[(1/6)*10^n]], 
Print[n]]; n++]. 

We can make the code a bit nicer by typing out 
both the prime and its index n: 

For[n=0, n<101, If[PrimeQ[x = Round[(1/6)*10^n]], 
Print[x,n]]; n++]. 

With this little piece of code, we can find the 
prime numbers hidden in the decimal expansion 
of any fraction. 



10 11

Some fractions 

We start with the fraction 1/6 = .16666 . . ., and see how many primes appear in the first 100 digits. 
We test for number of digits n up to 100, and get the following twelve primes: 

2, n = 1 
17, n = 2 
167, n = 3 
1667, n = 4 
166667, n = 6 
1666666667, n = 10 
166666666667, n = 12 
166666666666667, n = 15 
166666666666666666666666666666667, n = 33 
1666666666666666666666666666666666666666666666666666667, n = 55 
16666666666666666666666666666666666666666666666666666667, n = 56 
1666666666666666666666666666666666666666666666666666666666667, n = 61 

a ratio of two integers. Everyone knows about 
the number pi, which is irrational. Its decimal 
expansion starts out as π = 3.1415926 . . . Here, in 
the first 100 digits, we see only four primes:

3, n = 1 
31, n = 2 
314159 n = 6 
314159265359 n = 12

Another prime that we learn about in calculus is 
the exponential number e = 2.718 .... 

There are only two primes that appear in the first 
100 digits of the expansion. 

3,  n=1  
2718281828459045235360287471352662
4977572470936999595749669676277240
76630353547594571,  n=85

Wow, that's not a lot of primes! 

Conclusion 

Well, one-sixth is pretty special. We get a dozen 
primes in its first one hundred digits, which is a 
lot more than our other test cases! We have no 
idea why. Michael thinks Alex should experiment 
with more fractions, and more digits, to see what 
is going on. Or maybe some of the readers of this 
article might be inspired to look into why we get 
primes this way. 

In fact, if we are patient (and have a fast enough 
computer), we can use Mathematica to find more 
primes of this form. Up to one-thousand digits, 
we find primes of the form 1666 . . . 6667 for digit 
lengths of n = 154, 201, 462, 570, 841, and 848. 
There may be more! 

Alex pointed out that one-sixth seems really 
special. So let's use this numerical test to compare 
what we get with other fractions. 

To start, let's try the fraction 1/7 = .142857 . ... 
We get the following five primes, with digit length 
less than 100: 

1429, n = 4 
1428571, n = 7 
1428571429, n = 10 
1428571428571429, n = 16 
1428571428571428571428571, n = 25

For the fraction 1/9 = .1111 . . . we only get get 
three primes in the first one hundred digits: 

11, n = 2  
1111111111111111111,  n = 19  
11111111111111111111111, n = 23

So again, it looks like one-sixth is pretty special. 

Irrational numbers 

Not all number are fractions, some of them are 
irrational - numbers that cannot be written as 
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Bill Russell teaches math at James Bowie High 
School in Austin, Texas, where he's worked for the 
past 22 years.

Solving a math problem that involves numbers can 
often open the door to discovering a more general 
mathematical concept. Much of mathematics is 
about relationships, and once these relationships 
are recognized, the next logical step is to try to 
extend them into more profound revelations.

For example, while practicing multiplication 
tables, an elementary student might observe that 
the product of two odd numbers always appears 
to be an odd number. However, since there are 
infinitely many 2-number combinations of odd 
numbers, it is not possible to check each pairing 
and make sure that the product is odd. However, 
a first-year algebra student has the tools necessary 
to prove this relationship is always true.

Any odd number can be represented as 2n + 1, 
where n is some integer. A second odd number, then, 
can be represented as 2m + 1 for some (possibly 
different) integer m. The product of these two 
integers, then, is (2m + 1)(2n + 1)=4mn + 2m + 2n +1 
 =2(2mn + m + n)+1 
This last expression represents one more than 
an even integer, and is therefore an odd integer, 
thus proving that the product of 2 odd integers is 
always odd.

This very simple example shows how a specific 
numerical problem such as 3 x 5 = 15 can be 
extended to arrive at a more general mathematical 

concept such as odd x odd = odd. The following is 
a more advanced example of this principle.

Problem A (Take 1)

A total of 240 meters of fencing is to be used to 
enclose a rectangular region and divide it into 15 
smaller rectangular regions (see Figure 1). Find 
the values of x and y that will maximize the total 
enclosed area.

Solution: From the picture, 240 = 4x + 6y, or 

y = -  x + 40. The goal is to maximize the area.

 A(x) = xy = x(-  x = 40) (2)

We observe that the function A(x) is quadratic 
and therefore its graph has a vertical line of 
symmetry midway between its zeros. Since 
equation (2) above is in factored form, one can 
easily finds its zeros by setting each factor equal 
to zero and solving. This reveals that the function 
has zeros at x = 0 and x = 60. Furthermore, 
since the leading coefficient of (2) is negative, the 
function will take on a maximum value at the 
vertex, which, as symmetry dictates, is located 
midway between the zeros at x = 30. This gives a 

corresponding width of y = - (30) + 40 = 20 ft. 

Thus, the maximum area enclosed is  
20 m x 30 m = 600 m2, a correct but less than 
provocative outcome. 

Of much greater interest is to observe that in this 
optimum situation, the total horizontal fencing 
used is 4 x 30 = 120 m, and the total vertical 
fencing used is 6 x 20 = 120 m! The question that 
should arise is whether this is a coincidence | 
an accident of the specific numbers chosen | 
or whether this is a numerical example of some 
greater law of rectangular regions. Moreover, if 

Reasoning from the Specific  
to the general

Bill Russell

Figure 1 

Specific example of the 
fencing problem
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this is a universal truth, then how would one 
prove this?

It would be easy enough to repeat the computations 
using other numbers, but even if similar results 
were observed the only thing that would be proven 
is that the rule holds for those specific numbers 
chosen. To prove that it always holds true, it is 
necessary to solve the related general problem by 
replacing the numbers with variables. With this in 
mind, the original problem can now be restated.

Problem A 
(Take 2)

A total of T meters 
of fencing is to be 
used to enclose 
a rectangular 
region and divide 
it into smaller 
rectangular regions 
using m horizontal 

pieces, each of length x and n vertical pieces, each 
of length y (see Figure 2). Show that when the 
enclosed area is maximized that the total amount 
of vertical fencing used equals the total amount of 
horizontal fencing used.

Solution: In this version of the problem,  

T = mx + ny or 

true, it is necessary to solve the related general problem by replacing the numbers with variables.  With this in 
mind, the original problem can now be restated. 

Problem A (Take 2):  A total of T meters of fencing is to be used to enclose a rectangular region and divide it 
into smaller rectangular regions using m horizontal pieces, each of length x and n vertical pieces, each of 
length y (see Figure 2).  Show that when the enclosed area is maximized that the total amount of vertical 
fencing used equals the total amount of horizontal fencing used. 

Solution:  In this version of the problem, nymxT +=  or 
n
mxTy = , and the goal is to maximize  

                                                                    ( )=
n
mxTxxA .                                                                         (3) 

We observe that ( )xA  is a quadratic function and that the leading coefficient 
n
m  is negative, indicating as 

before that the function takes on a maximum value at the vertex.  This function has zeros at 0=x  and at 

m
Tx = , and the vertex lies midway between these zeros at 

m
Tx
2

= .  Thus, the total horizontal fencing used is 

22
T

m
Tm = , precisely one-half of the total fencing, thereby completing this proof. 

Let's take a moment and review what we just did.  After solving a routine specific numerical problem, we 
observed an interesting result.  Attempting to prove a general theorem that would encompass many such 
specific problems, we restated the original problem in more general terms and tried to prove it.  Although our 
proof depended mostly on some simple algebra, we supplemented that algebra with words that explain to the 
reader what we were doing.  In the end, we were rewarded with a remarkably simple yet powerful result that 
precludes the need for repeating those same calculations in the future.  For example, we now know that if 300 
meters of fencing is available, then the optimum enclosure uses 150 meters of fencing in each direction. 

In Problem A, proving the general case was relatively easy because we were able to use the exact same 
methodology for the general problem that we used in the specific numerical problem.  The only difference was 
that in the general problem we used variables in the formula rather than numbers.  Although this is sometimes 
possible, solving the general problem will sometimes require visualizing a completely different approach to the 
problem, as the next example illustrates. 

At several times in the secondary curriculum, students are exposed to a unit on finding the areas of triangles.  
The following is a problem that they might encounter in such a unit. 

Problem B (Take 1):  Find the area of a triangle with vertices at (2, 1), (8, 3) and (4, 6). 

Solution:  Most of my students approach this problem by using Heron's Formula, which states that the area of 
a triangle with sides of lengths a, b, and c is ( )( )( )csbsassA = , where s is the semiperimeter of the 

triangle. The distance formula is used to find that a, b, and c are 5, 40 , and 29 .  Substituting these values 
into Heron's Formula (and using a calculator, since the calculations with those radicals get pretty messy) gives 
the value of the area as exactly 13.   

At this point, the observant student should marvel at the result.  Even though two of the sides had lengths that 
are irrational values and these numbers are plugged into a formula that requires taking a square root, the 
answer came out a nice neat integer.  This raises the question of whether or not this will always be the case if 
you only use integer values for the coordinates of the vertices.  Again, you could try repeating the calculations 
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you only use integer values for the coordinates of the vertices.  Again, you could try repeating the calculations 
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true, it is necessary to solve the related general problem by replacing the numbers with variables.  With this in 
mind, the original problem can now be restated. 

Problem A (Take 2):  A total of T meters of fencing is to be used to enclose a rectangular region and divide it 
into smaller rectangular regions using m horizontal pieces, each of length x and n vertical pieces, each of 
length y (see Figure 2).  Show that when the enclosed area is maximized that the total amount of vertical 
fencing used equals the total amount of horizontal fencing used. 

Solution:  In this version of the problem, nymxT +=  or 
n
mxTy = , and the goal is to maximize  

                                                                    ( )=
n
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We observe that ( )xA  is a quadratic function and that the leading coefficient 
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before that the function takes on a maximum value at the vertex.  This function has zeros at 0=x  and at 
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Tm = , precisely one-half of the total fencing, thereby completing this proof. 

Let's take a moment and review what we just did.  After solving a routine specific numerical problem, we 
observed an interesting result.  Attempting to prove a general theorem that would encompass many such 
specific problems, we restated the original problem in more general terms and tried to prove it.  Although our 
proof depended mostly on some simple algebra, we supplemented that algebra with words that explain to the 
reader what we were doing.  In the end, we were rewarded with a remarkably simple yet powerful result that 
precludes the need for repeating those same calculations in the future.  For example, we now know that if 300 
meters of fencing is available, then the optimum enclosure uses 150 meters of fencing in each direction. 

In Problem A, proving the general case was relatively easy because we were able to use the exact same 
methodology for the general problem that we used in the specific numerical problem.  The only difference was 
that in the general problem we used variables in the formula rather than numbers.  Although this is sometimes 
possible, solving the general problem will sometimes require visualizing a completely different approach to the 
problem, as the next example illustrates. 

At several times in the secondary curriculum, students are exposed to a unit on finding the areas of triangles.  
The following is a problem that they might encounter in such a unit. 

Problem B (Take 1):  Find the area of a triangle with vertices at (2, 1), (8, 3) and (4, 6). 

Solution:  Most of my students approach this problem by using Heron's Formula, which states that the area of 
a triangle with sides of lengths a, b, and c is ( )( )( )csbsassA = , where s is the semiperimeter of the 

triangle. The distance formula is used to find that a, b, and c are 5, 40 , and 29 .  Substituting these values 
into Heron's Formula (and using a calculator, since the calculations with those radicals get pretty messy) gives 
the value of the area as exactly 13.   

At this point, the observant student should marvel at the result.  Even though two of the sides had lengths that 
are irrational values and these numbers are plugged into a formula that requires taking a square root, the 
answer came out a nice neat integer.  This raises the question of whether or not this will always be the case if 
you only use integer values for the coordinates of the vertices.  Again, you could try repeating the calculations 
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out a nice neat integer. This raises the question 
of whether or not this will always be the case if 
you only use integer values for the coordinates of 
the vertices. Again, you could try repeating the 
calculations using different points. Eventually, 
you would find that sometimes the area is not 

an integer but rather is a multiple of 

using different points.  Eventually, you would find that sometimes the area is not an integer but rather is a 

multiple of 
2
1  (for example, if the point (8, 3) is changed to (7, 3), the area becomes 10.5.)  However, after 

trying several sets of points, you find that the area always seems to be half of an integer.  Although you haven't 
actually proved anything yet, you are now ready to state a hypothesis and try to prove it.  Before reading any 
further, see if you can state the property that we will need to prove.  Finished?  My statement of the general 
problem appears below.  Keep in mind that there are other correct ways of stating it. 

Problem B (Take 2):  Prove that if all of the vertices of a triangle have integer coordinates, then twice the 
triangle's area is always an integer. 

Solution:  We could try to prove this using Heron's Formula, but it should quickly become clear that this 
approach would be messy.  It would be necessary to show that the radicand ( )( )( )csbsass  is always a 
perfect square, and since we would have radical expressions for s, a, b, and c, this looks like an algebraic 
nightmare.  Consequently, we are motivated to find a different approach to the problem. 

Start by drawing the original triangle (the one with numerical vertices) on graph paper.  It should look like 
Figure 3.  We want to try to visualize the area using integers rather than radicals.  After a bit of thought, you 
might envision the triangle enclosed inside of a 6  5 rectangle, as shown in Figure 4 (the gridlines have been 
deleted for clarity.)  It is now clear that the area A is simply 32130 AAA , where each of the Aj (j = 1,2,3) is 
the area of a right triangle, which is half the product of its legs.   

For our numerical example, then, we have ( ) ( ) ( ) 1325
2
143

2
126

2
130 ==A , as previously found.  

Moreover, though, it should now be apparent why the area must always be half of an integer.  Armed with this 
new insight, we are ready to proceed with our proof. 

A proof is a connected series of statements intended to establish a proposition.  As before, we are going to 
have to use words in these statements, and we want to choose those words carefully so that our proof says 
what we intend for it to say.  With this in mind, let's carefully analyze each of these statements one at a time.  
We must first get rid of all numbers and replace them with variables as we did in our first proof, identifying this 
as the given information.  This is easy enough. 

Statement 1: Let ( ) ( )dcYbaX ,,, , and ( )feZ ,  be the coordinates of the vertices of triangle XYZ, where 
edcba ,,,, and f are integers.

Next we have to describe the rectangle enclosing the triangle, and this is actually a bit tricky.  For now, let's 
claim the following:   

1 2 3 4 5 6 7 8 9

1

1

2

3

4

5

6

Figure 3 
Specific example of the 

triangle problem 

Figure 4 
More general picture of 

the triangle problem 

A

A1 A2

A3

 (for 

example, if the point (8, 3) is changed to (7, 3), 
the area becomes 10.5.) However, after trying 
several sets of points, you find that the area 
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ways of stating it.
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as previously found. Moreover, though, it should 
now be apparent why the area must always be 
half of an integer. Armed with this new insight, 
we are ready to proceed with our proof.

A proof is a connected series of statements intended 
to establish a proposition. As before, we are going 
to have to use words in these statements, and 
we want to choose those words carefully so that 
our proof says what we intend for it to say. With 
this in mind, let's carefully analyze each of these 
statements one at a time. We must first get rid of 
all numbers and replace them with variables as we 
did in our first proof, identifying this as the given 
information. This is easy enough.

Statement 1

Let X(a,b), Y(c,d) and Z(e,f ) be the vertices of 
triangle XYZ, where a, b, c, d, e, and f are integers. 

Next we have to describe the rectangle enclosing 
the triangle, and this is actually a bit tricky. For 
now, let's claim the following: 

Statement 2

A rectangle with its sides parallel to the 
coordinate axes can be drawn so that X, 
Y, and Z all lie on the rectangle and at 
least one of the vertices of the triangle 
coincides with a vertex of the rectangle. 

This is actually a pretty strong (and not 
completely true!) statement and would 
be rather difficult to justify rigorously, 
but it seems obvious from our existing 
drawing, so for now we're going to 
proceed with the assumption that it 
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is true. Bear in mind that in a truly thorough 
proof, this statement would require considerable 
justification. 

Clearly, there are many different ways to draw 
the triangle and the rectangle based only on 
Statement 2. We can only deal with one such 
orientation at a time, so we make the following 
our next statement:

Statement 3

Assume without loss of generality that vertex X is 
in the lower left corner of the rectangle and vertex 
Y lies on the vertical side to its right. Figure 4, 
then represents this particular configuration.

Effectively, we are claiming that the proof 
proceeds the same regardless of which triangle 
vertex coincides with which rectangle vertex, as 
long as all of the conditions of Statement 2 are 
met. The disclaimer in bold (often abbreviated 
\WLOG") is a great time-saver, but one should 

exercise caution when making this claim. 

One of my more cynical college professors once 
informed me that the words \without loss of 
generality" are almost always followed by a 
statement that results in a loss of generality. 
While he likely overstated the extent of its 
misuse, his overall message to use this statement 
cautiously is worth remembering. For example, 
in our first problem you do not want to claim,  
\Assume WLOG that and m = 5 and n = 3." 
There can be little doubt that this condition 
limits the generality of the proof. By contrast, in 
our current problem, we could list each possible 
configuration implied by Statement 2 and work 
out the area for each, but such an exercise would 
be pointless and repetitive. Hence, in this case, the 
use of \WLOG" seems justified. 

The rest of the proof proceeds much as it would if 
numbers were involved.

Figure 5

An obtuse triangle 
that does not conform 
to the conditions of 
statement 2

Statement 4

The dimensions of the rectangle, then, are (c - a) x (f - b). Also,

Statement 2: A rectangle with its sides parallel to the coordinate axes can be drawn so that X, Y, and Z all lie 
on the rectangle and at least one of the vertices of the triangle coincides with a vertex of the rectangle.

This is actually a pretty strong (and not completely true!) statement and would be rather difficult to justify 
rigorously, but it seems obvious from our existing drawing, so for now we're going to proceed with the 
assumption that it is true.  Bear in mind that in a truly thorough proof, this statement would require considerable 
justification.  

Clearly, there are many different ways to draw the triangle and the rectangle based only on Statement 2.  We 
can only deal with one such orientation at a time, so we make the following our next statement: 

Statement 3: Assume without loss of generality that vertex X is in the lower left corner of the rectangle and 
vertex Y lies on the vertical side to its right. Figure 4, then represents this particular configuration.

Effectively, we are claiming that the proof proceeds the same regardless of which triangle vertex coincides with 
which rectangle vertex, as long as all of the conditions of Statement 2 are met.  The disclaimer in bold (often 
abbreviated "WLOG") is a great time-saver, but one should exercise caution when making this claim.   

One of my more cynical college professors once informed me that the words "without loss of generality" are 
almost always followed by a statement that results in a loss of generality.  While he likely overstated the extent 
of its misuse, his overall message to use this statement cautiously is worth remembering.  For example, in our 
first problem you do not want to claim, "Assume WLOG that 5=m and 3=n ."  There can be little doubt that 
this condition limits the generality of the proof.  By contrast, in our current problem, we could list each possible 
configuration implied by Statement 2 and work out the area for each, but such an exercise would be pointless 
and repetitive.  Hence, in this case, the use of "WLOG" seems justified.   

The rest of the proof proceeds much as it would if numbers were involved. 

Statement 4: The dimensions of the rectangle, then, are ( ) ( )bfac .  Also,  

                             ( )( )bfaeA =
2
1

1 , ( )( )dfecA =
2
1

2 , and ( )( )bdacA =
2
1

3 .                                (4)

Thus,   

                              ( )( ) ( )( ) ( )( ) ( )( )[ ]bdacdfecbfaebfacA ++=
2
1                                     (5) 

                     and ( )( ) ( )( ) ( )( ) ( )( )[ ]bdacdfecbfaebfacA ++= 22 .                                    (6)

We now need to interpret this algebraic statement (6) to explain why it establishes our proposition. 

Statement 5:  Since edcba ,,,, and f are integers and the set of integers is closed under the operations of 
addition, subtraction, and multiplication, it follows that 2A must be an integer.

In case you are not familiar with the use of the word "closed" in Statement 5, 
this just says that any time you add, subtract, or multiply two integers, the 
result will always be an integer.  These closure properties justify the 
conclusion that A2  is an integer. 

It might appear that we are finished with this proof, but we have to tidy up one 
loose end.  For Statement 2 to be true, each vertex of the triangle must have 
at least one coordinate that is either a maximum or a minimum value within 
the triangle.  That is always true if XYZ  is right or acute, but if XYZ is 
obtuse, it is only true if one of the sides of the triangle lies on one of the sides 
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triangle that does not 
conform to the conditions of 
Statement 2. 
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integers is closed under the operations of addition, 
subtraction, and multiplication, it follows that 2A 
must be an integer.

In case you are not familiar with the use of the 
word \closed" in Statement 5, this just says that 
any time you add, subtract, or multiply two 
integers, the result will always be an integer. These 
closure properties justify the conclusion that 2A is 
an integer.

It might appear that we are finished with this 
proof, but we have to tidy up one loose end. For 
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Pythagorean Crimes is written by the Greek ac-
ademic, Tefcros Michaelides. In a compact \da 
Vinci Code" style, the reader is led helter skel-
ter through historical, mathematical, and artistic 
events of the early 1900s - all to set up an exciting 
murder trial. 

By the end of the book I was thoroughly satisfied, 
but for the first part of the book, where the 
majority of the mathematical history is found, I 
was distracted: The self-reflections of the narrator, 
Michael Ingerinos, and the conversations with his 
friend, Stephanos Kandartzis, sometimes felt forced.

For example, to introduce a discussion of prime 
numbers, the author sacrificed authentic self-
reflections in order to teach the mathematically 
unprimed:

\I knew that prime numbers were those that 
cannot be divided except by themselves and the 
number one." P. 19

...But within a page, a question from the narrator 
shows that he is at a significantly higher level: 

\...Isn't that Gauss' conjecture? If I'm not 
mistaken, he worked out, but was unable to 
prove, how many prime numbers are smaller than 
a given number." P. 20

The motivation to expand the readership to 
include those that need an explanation of prime 
numbers is understandable, but it unfortunately 
undermines the believability of the narrator. 

The believability of the narrator doesn't matter 
if you are reading for the purpose of getting a 
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Pythagorean Crimes is written by the Greek 
academic, Tefcros Michaelides. In a compact 
�daVinci Code� style, the reader is led helter 
skelter through historical, mathematical, and 
artistic events of the early 1900s � all to set up an 
exciting murder trial. 

By the end of the book I was thoroughly 
satisfied, but for the first part of the book, where 
the majority of the mathematical history is 
found, I was distracted: The self-reflections of the 
narrator, Michael Igerinos, and the conversations 
with his friend, Stephanos Kandartzis, sometimes 
felt forced.

For example, to introduce a discussion of prime 
numbers, the author sacrificed authentic self-
reflections in order to teach the mathematically 
unprimed:

�� I knew that prime numbers were those that 
cannot be divided except by themselves and the 
number one.� P.19

� but within a page, a question from the narrator 
shows that he is at a significantly higher level:

� �Isn�t that Gauss� conjecture? If I�m not 
mistaken, he worked out, but was unable to prove, 
how many prime numbers are smaller than a given 
number.�� P.20

The motivation to expand the readership to 
include those that need an explanation of prime 
numbers is understandable, but it unfortunately 
undermines the believability of the narrator.

The believability of the narrator doesn�t matter 
if you are reading for the purpose of getting a 
glimpse of mathematicians at the turn of the last 

century. Here the book delivers with aplomb:

�This was the first time in the history of 
mathematics that someone had been bold enough 
to prove the existence of a mathematical solution 
without illustrating how it was to be constructed. 
The article Hilbert published in 1888 created an 
uproar. The ultraconservative Kronecker, who 
doubted even the existence of irrational numbers 
such as the square root of 2, dismissed the solution 
without further argument. Gordan himself, who 
was known for his geniality and his generosity 
toward young, talented mathematicians, responded 
angrily to Hilbert�s paper, saying, �This is not 
mathematics, but theology.� As for Lindemann, 
he described his former pupil�s method as 
unheimlich � profane. Others, however, such as 
Arthur Cayley in Cambridge and Klein studied 
the proof in detail and, having initially believed it 
to be impossible, ended up congratulating Hilbert 
warmly. Hilbert became a fanatical proponent of 
proofs of existence. �Inside this hall,� he would 
often say in his lectures, �there is at least one 
student who has more hair on his head than any 
other. We don�t know who that person is, nor is 
there any practical way of finding out. But this 
doesn�t mean that he doesn�t exist!�� P.59

That is the kind of paragraph which made the 
book such a satisfying read. My reservations about 
the development of Stefanos and Michael are also 
off-set by insightful psychological sketches of other 
people:

� � the top brass at [military] headquarters 
considered me and the three other mathematicians 
who worked with the French to be geniuses. This 
didn�t stop them from burdening us with all sorts 
of chores whenever they could, however, just so we 
wouldn�t forget our place.� P.155

By the middle of the book Michael and Stefanos 
were more believable and definitely interestingly 
opinionated� For example, here is a discussion on 
the newly constructed Eifel Tower:

 [Stefanos:] �This monument symbolizes a new 
era, the era of technology. What we have before 
us is a marvel of statics, dynamics, chemistry, 
electricity � they have all combined to make this 
the tallest construction in the world. And the 
foundations of all these subjects are to be found 
in mathematics. What you see is an apotheosis of 

Book Review
Gord Hamilton

Statement 2 to be true, each vertex of the triangle 
must have at least one coordinate that is either a 
maximum or a minimum value within the triangle. 
That is always true if ΔXYZ is right or acute, but 
if ΔXYZ is obtuse, it is only true if one of the 
sides of the triangle lies on one of the sides of the 
rectangle. Again, this is not an easy statement to 
justify rigorously, but a couple of quick sketches 
should convince you that it is true. Thus, way 
back at the beginning, we need to split this proof 
into two separate cases.

Statement 0

Case 1 | ΔXYZ does not contain an obtuse angle. 

Now that the proof for non-obtuse triangles is 
complete, Statement 6 should begin the proof of 
the obtuse case. The picture for the obtuse case 
looks a bit different (see Figure 5), but otherwise 
the proof should proceed pretty much the same 
as the one that we just did. Try to prove the 

obtuse case on your own. Choose your wording 
carefully, and always question whether or not 
your statements say what you intend for them to 
say. After writing your proof, have a friend read 
it and give you feedback about how clearly you 
made your case.

The body of knowledge encompassed by 
mathematics is constantly growing. The impetus 
for additions to this body of knowledge is curiosity. 
New relationships are constantly being discovered 
because someone perceives an interesting result 
to a problem and starts wondering how and 
if this result can be generalized or extended. 
Although the examples in this article take you 
down mathematical paths that have already been 
trodden many times, they hopefully show you how 
such paths are found in the first place and have 
helped you develop some of the thinking skills 
required to experience mathematical adventures 
of your own. Happy exploring!
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glimpse of mathematicians at the turn of the last 
century. Here the book delivers with aplomb:

\This was the first time in the history of mathematics 
that someone had been bold enough to prove the ex-
istence of a mathematical solution without illustrat-
ing how it was to be constructed. The article Hilbert 
published in 1888 caused an uproar. The ultracon-
servative Kronecker, who doubted even the existence 
of irrational numbers such as the square root of 2, 
dismissed the solution without further argument. 
Gordan himself who was known for his geniality and 
his generosity toward young, talented mathemati-
cians, responded angrily to the paper, saying, \This 
is not mathematics, but theology." As Lindemann, 
he described his former pupil' method as unheimlich 
- profane. Others, however, such as Arthur Cayley in 
Cambridge and Klein studied the proof in detail and, 
having initially believed it to be impossible, ended 
up congratulating Hilbert warmly. Hilbert became 
a fanatical proponent of proofs of existence. \In-
side this hall," he would often say in his lectures,  
\there is at least one student who has more hair 
on his head than any other. We don't know who 
that person is, nor is there any practical way of 
finding our. But this doesn't mean that he doesn't 
exist" P. 59

That is the kind of paragraph which made the book 
such a satisfying read. My reservations about the 
development of Stefanos and Michael are also off-
set by insightful psychological sketches of other 
people:

\... The top brass at [military] headquarters 
considered me and the three other mathematicians 
who worked with the French to be geniuses. This 
didn't stop them from burdening us with all sorts 
of chores. Whenever they could, however, just so 
we wouldn't forget our place." P. 155

By the middle of the book Michael and Stefanos 
were more believable and definitely interestingly 
opinionated... For example, here is a discussion on 
the newly constructed Eiffel Tower:

[Stefanos:] \This moment symbolizes a new era, 
the era of technology. What we have before us 
is a marvel of statics, dynamics, chemistry, 
electricity - they have all combined to make this 
the tallest construction in the world. And the 

foundations of all these subjects are to be found 
in mathematics. What you see is an apotheosis of 
algebra, trigonometry, infinitesimal calculus. It is 
the tower of wisdom! I'm surprised you don't see 
it that way."

[Michael:] \It's the tower of Hubris," I said, 
annoyed \The only thing it symbolizes is human 
arrogance. Mathematics can construct bridges, 
houses, trains, and ships. It doesn't need such 
contraptions to justify itself." P. 84

That's an entertaining argument to eavesdrop.

I also like that the narrator's observations are 
sometimes flawed. For example, he totally misses 
the melancholic mood in Picasso's paintings of 
harlequins and pierrots - declaring them \cheerful 
stuff" P. 149.

However, despite my enjoyment of the book, I 
am uneasy about recommending it for grade 12 
students.

First, the book will not appeal to every top 
mathematics student because of its impressive 
breadth of subject matters - the reader should 
be interested not only in mathematics but also in 
history and art. Without these interests, a person 
is liable to get irritated by the interjections - such 
as the one page summary of the Dreyfus affair in 
the middle of a description of the delegates at a 
mathematics conference:

\French society in 1900 was being torn apart by a 
scandal revolving around Alfred Dreyfus, a young 
lieutenant convicted six years earlier of being a 
spy. After a farcical court-martial, the military 
had sentenced him to hard labour for life and sent 
him to Devil's Island, a penal colony off the coast 
of French Guiana. The royalists, backed by the 
Catholic Church, seized the opportunity of the 
conviction to attack the republican constitution. 
The fact that Dreyfus was a Jew contributed 
to the rekindling of anti-Semitic feeling among 
certain sections of French society." P. 20

Second, many high schools will not want to expose 
their students to some of the passages describing a 
bohemian lifestyle.

In a nutshell - I thoroughly recommend the book, 
but not necessarily for high school student.
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Introduction

Predicting the evolution of the Earth’s climate
system is one of the most daunting mathematical
modelling challenges that humanity has ever un-
dertaken. The atmosphere and ocean display vari-
ability over a bewildering range of space and time
scales - from microns to thousands of kilometers,
and from seconds to millions of years. The challenge
is increased by the fact that the climate system
consists not just of the atmosphere and the ocean
but also includes the cryosphere (frozen water in
land and sea ice), the biosphere (life on Earth), and
the geosphere (the solid Earth). While descriptive
climate science is a centuries-old discipline, modern
climate physics - with a quantitative focus on
mechanism - is relatively recent. In fact, the first
global atmospheric circulation model was built only
in the mid-1950’s (a nice discussion of the history
of atmospheric modelling for weather forecasting
is given in Harper et al. (2007)). Modern climate
physics is a fundamentally mathematical discipline,
making use of tools and techniques from across the
spectrum of modern applied mathematics. This
brief article discusses the interweaving of mathe-
matics with modern climate science.

Climate Modelling and Budgets

An idea fundamental to climate modelling is that
of a “budget”. In everyday life, the budgets we
most often think about are budgets of money. The
money you have may exist in different forms - in
cash or in a bank account; in Canadian dollars or

Euros or renminbi. Each of these forms of money
represents a different “pool”. You can move money
from one pool to another - depositing cash to a bank
account, or changing currencies; we can call such
transfers “fluxes”. Fluxes don’t change the total
amount of money you have (if we neglect service
charges) - they just change the form that it’s in.
You gain or lose money by earning or spending -
these processes represent net changes in the total
amount of money you have. Earning is a “source” of
money, while spending is a “sink”. Different pools
may have different sources and sinks - if you buy
something with cash, that’s a sink for that pool; if
you use your bank card, that’s a sink for your bank
account. The amount of money you have in a given
pool increases with time if the sum (sources + fluxes
- sinks) is positive; it decreases with time if this
sum is negative. The process of budgeting involves
understanding these processes - how much you have
in each pool, what the fluxes are between them,
and what the various sources and sinks are. The
science (and art) of mechanistic modelling involves
representing these processes mathematically.

Mechanistic climate modelling is concerned with
budgets of physical, chemical, and biological quanti-
ties - energy, momentum, water (in various phases),
carbon (in various chemical compounds), terrestrial
vegetation biomass, and many others. Newton’s
Second Law of Motion

F =
d

dt
(mv)

is a mathematical description of the momentum
budget: accelerations are changes in the “mo-
mentum pool” of a physical object resulting from
sources and sinks of momentum which we call
forces. Newton’s Third Law of Motion - “the force
of A on B is equal and opposite to the force of B on
A” - is just a statement that forces acting between
objects are momentum fluxes that may change the
momentum of each object (that is, an individual
momentum pool) but don’t change the total amount

Adam Monahan is an associate professor in the 
School of Earth and Ocean Sciences at the University 
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tions between “large” and “small” scales in the atmo-
sphere and ocean (the “weather-climate connection”).
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of momentum (the sum over all pools). In the
same kind of way, the First Law of Thermodynamics
is a description of the energy budget - energy is
not created or destroyed, just transformed between
pools (gravitational potential energy, kinetic energy,
internal energy, etc.).

Seen in this way, climate modelling seems
straightforward. To build a climate model, all you
need to do is

1. determine what quantities are important to
the part of the climate system you’re con-
cerned with understanding or predicting,

2. decide what the important pools of these
quantities are,

3. come up with mathematical descriptions of
the fluxes between these pools, of the sources,
and of the sinks, and

4. study the properties of the resulting mathe-
matical models to make predictions about the
climate.

So this is a breeze, right? Not really - none of
these steps is easy. As always, the devil is in the
details. All four steps require expertise in physics,
chemistry, biology, or geology - and (particularly in
steps 3 and 4) mathematics.

Mathematics and Climate Modelling

Consider the budget of some climatically significant
quantity - for example, the amount of CO2 in the
atmosphere (Figure 1). If Q is the amount of this
quantity that we have at some time t, then the
budget analysis for the time rate of change of Q we
talked about earlier can be written mathematically
as the differential equation

dQ

dt
= sources + fluxes - sinks

To make predictions about how Q changes in time,
we need to understand the fluxes, sources, and sinks
and represent these mathematically. For example -
what are atmospheric CO2 sources and sinks, and
what determines how strong these are? An im-
portant natural source is respiration by organisms
- the release of CO2 as a byproduct of extracting
energy from organic carbon (what we normally call
“food”). The flip side of this is a major sink of
atmospheric CO2: photosynthesis, by which CO2 is
transformed into organic carbon. To model these
processes mathematically, we need to express rates
of photosynthesis and respiration (in vegetation, in
soils, in animals) as functions of the variables we are
modelling - a wonderful problem of mathematical
biology.

Figure 1: Estimate of global carbon cycle pools (or reservoirs) and fluxes. Black numbers are estimates of pre-industrial (e.g. natural) values,
while red numbers represent estimates of changes caused by human activities (as of the 1990’s). From Chapter 7 of Solomon et al. (2007).
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There are other sources of CO2 - not the least of
which is the burning of organic carbon stored in
geological reservoirs (coal, oil, natural gas). The
strength of this source – that is, the rate at which we
burn fossil fuels – is largely determined by economic
decisions regarding resource extraction and energy
generation; modelling these emissions represents an
exercise in mathematical economics.

And what about atmospheric CO2 fluxes? Well,
CO2 dissolves in water - in fact, the oceans contain
more than 50 times the amount of carbon that
the atmosphere does - and CO2 is constantly being
exchanged between these atmospheric and oceanic
pools (Figure 2). This CO2 flux between the atmo-
sphere and ocean is very important – but how do we
represent it mathematically? Physical chemistry
tells us that the flux should be proportional to the
air-water CO2 concentration difference

CO2 flux water to air = k
(
[COwater

2 ]− [COair
2 ]

)

This equation is deceptively simple-looking: the
coefficient k bundles together a lot of very compli-
cated physics. The air-water interface consists of
two boundary layers (one in each fluid) which are
often turbulent. Understanding and modelling this
turbulence - the strength and character of which
are responsible for mediating the exchanges of CO2

(and other quantities) between the fluids - is “the
great unsolved problem of classical physics”. This
problem involves more budgets - budgets of mo-
mentum (for the winds and the currents), budgets

of energy (for temperatures), budgets of freshwater
(evaporation and precipitation) - that are the do-
main of the physical disciplines of mechanics and
thermodynamics.

And what determines the concentration of CO2

in water? Well, this is a whole new budget problem
- one with all the complications of the budget
for atmospheric CO2. Currents move CO2 around
along with the water, photosynthesis in the ocean
consumes it, respiration releases it, CO2 reacts with
seawater to form bicarbonate HCO−

3 and carbonate
CO2−

3 ions - and all of these processes need to be
represented mathematically. This involves more
budgets, more equations, and more complications;
as should be clear, even a straightforward ques-
tion like “how much CO2 is exchanged between
the ocean and atmosphere?” can represent a very
involved problem of physics, chemistry, and biology
- and of the mathematics needed to model it all.

Further complicating matters is the fact that
very often, we’re interested not just in the total
amount of some quantity in the atmosphere or
ocean, but also in how the abundance varies from
place to place. We don’t experience globally-
averaged temperature: we experience what the
temperature is right here. Therefore, we need
mathematical models of how quantities vary in
both space and time - that is, partial differential
equations. These represent local budgets, in which
the abundance of our quantity of interest at every
point in space represents a different pool.

Figure 2: Air-sea CO2 fluxes (in moles of carbon per square meter per year) for the year 1995 as computed from a Global Climate Model (left
panel) and as estimated from observations (right panel). Positive values indicate a CO2 flux from the ocean to the atmosphere; negative values
indicate fluxes from the atmosphere to the ocean. While there is broad agreement between the observed and modelled fluxes, there are many
differences in detail. There is still plenty of work to be done in climate modelling. Adapted from Zahariev et al. (2008).

There are other sources of CO2 - not the least of
which is the burning of organic carbon stored in
geological reservoirs (coal, oil, natural gas). The
strength of this source – that is, the rate at which we
burn fossil fuels – is largely determined by economic
decisions regarding resource extraction and energy
generation; modelling these emissions represents an
exercise in mathematical economics.

And what about atmospheric CO2 fluxes? Well,
CO2 dissolves in water - in fact, the oceans contain
more than 50 times the amount of carbon that
the atmosphere does - and CO2 is constantly being
exchanged between these atmospheric and oceanic
pools (Figure 2). This CO2 flux between the atmo-
sphere and ocean is very important – but how do we
represent it mathematically? Physical chemistry
tells us that the flux should be proportional to the
air-water CO2 concentration difference

CO2 flux water to air = k
(
[COwater

2 ]− [COair
2 ]

)

This equation is deceptively simple-looking: the
coefficient k bundles together a lot of very compli-
cated physics. The air-water interface consists of
two boundary layers (one in each fluid) which are
often turbulent. Understanding and modelling this
turbulence - the strength and character of which
are responsible for mediating the exchanges of CO2

(and other quantities) between the fluids - is “the
great unsolved problem of classical physics”. This
problem involves more budgets - budgets of mo-
mentum (for the winds and the currents), budgets

of energy (for temperatures), budgets of freshwater
(evaporation and precipitation) - that are the do-
main of the physical disciplines of mechanics and
thermodynamics.

And what determines the concentration of CO2

in water? Well, this is a whole new budget problem
- one with all the complications of the budget
for atmospheric CO2. Currents move CO2 around
along with the water, photosynthesis in the ocean
consumes it, respiration releases it, CO2 reacts with
seawater to form bicarbonate HCO−

3 and carbonate
CO2−

3 ions - and all of these processes need to be
represented mathematically. This involves more
budgets, more equations, and more complications;
as should be clear, even a straightforward ques-
tion like “how much CO2 is exchanged between
the ocean and atmosphere?” can represent a very
involved problem of physics, chemistry, and biology
- and of the mathematics needed to model it all.

Further complicating matters is the fact that
very often, we’re interested not just in the total
amount of some quantity in the atmosphere or
ocean, but also in how the abundance varies from
place to place. We don’t experience globally-
averaged temperature: we experience what the
temperature is right here. Therefore, we need
mathematical models of how quantities vary in
both space and time - that is, partial differential
equations. These represent local budgets, in which
the abundance of our quantity of interest at every
point in space represents a different pool.

Figure 2: Air-sea CO2 fluxes (in moles of carbon per square meter per year) for the year 1995 as computed from a Global Climate Model (left
panel) and as estimated from observations (right panel). Positive values indicate a CO2 flux from the ocean to the atmosphere; negative values
indicate fluxes from the atmosphere to the ocean. While there is broad agreement between the observed and modelled fluxes, there are many
differences in detail. There is still plenty of work to be done in climate modelling. Adapted from Zahariev et al. (2008).
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For example, the partial differential equation for
the temperature field T (x, y, p, t) (in which pressure
rather than altitude is used as the vertical coordi-
nate, following common meteorological practice) is

cpρ

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ ω

∂T

∂p

)
− ω = ε2 −∇ · q

In this equation - which is just a mathematical
statement of the first law of thermodynamics - (u, v)
is the horizontal velocity vector, ω is the vertical
velocity (in pressure coordinates), cp is the specific
heat capacity of air at constant pressure, ρ is the
air density, and ε2 is the heating rate associated
with viscous dissipation in a turbulent flow. The
vector q is the spatial flux of heat energy through
the atmosphere due to the emission and absorp-
tion of electromagnetic radiation, phase changes of
water, chemical reactions, and conduction. Each
of u, v, ω, ρ, ε2, and q are themselves (x, y, p, t)-
dependent fields with their own budgets (expressed
as partial differential equations). Clearly, modelling
climate variability in both space and time can be
very complicated indeed.

Once we’ve got these partial differential equa-
tions written down, how do we use them to study
the climate system? Some things we can learn by
looking at the form of the equations. In particular,
by considering the relative sizes of different terms
we can gain some insight into the relative impor-
tance of different processes. We can even carry out
formal asymptotic analyses of the equations, to
systematically “throw away” less important terms
to simplify the models.

But even these simplified equations are still very
complicated in general, and can’t be solved by
hand to make predictions. In this case, all we can
do is replace the original equations with discrete
approximations appropriate for simulation by com-
puters. That is, we need to make use of numerical
analysis. In these approximate models, only space
and time scales above a particular threshold are
explicitly modelled. However, the smaller scales
cannot generally be ignored - the nonlinearity of the
original partial differential equations leads to im-
portant interactions between large and small scales.
The effect of the smaller unresolved scales must be
parameterised in terms of the larger resolved scales.
There are different approaches to addressing the
parameterisation problem, but some of the most
promising make use of perspectives from statistical

physics. In particular, an emerging school of
thought takes advantage of the essentially random
character of small-scale turbulence to make use of
tools from probability theory and stochastic
processes.

Such probabilistic perspectives are also useful
for appreciating the difference between “weather”
and “climate”. Robert Heinlein put it best: “Cli-
mate is what you expect, weather is what you
get”. This perspective is fundamentally proba-
bilistic: “climate” is the probability distribution of
outcomes for many rolls of dice, and “weather” is
the outcome of any particular throw. Changes in
climate are changes in the weighting of the dice.
From a dynamical systems perspective, we can
speak of the slowly-evolving “climate attractor” in
contrast to the fast “weather trajectory”.

Of course, all of these mathematical models
would only be so much science fiction without obser-
vations to test them and to help estimate parameter
values - so statistical analyses play a fundamental
role in modern climate science. These analyses
help us understand our budgets. For example, the
increasing trend in atmospheric CO2 concentration
is a result of sources being stronger than sinks and
fluxes (as we burn fossil fuels); statistical analyses
of these trends help us understand just how out
of balance these budgets are. Statistical analyses
also help us understand how different parts of
the climate system are related - for example, how
variability in the Eastern Pacific sea surface temper-
ature is related to large scale pressure distributions
in the El Niño - Southern Oscillation phenomenon.
Understanding these relationships in observations
helps us both build and assess our mechanistic
models. Furthermore, all of these mathematical
representations of sources, sinks, and fluxes in
mechanistic models have various parameters that
need to be set. Some of these - the speed of light,
for example, or the acceleration of gravity - are
well known. Others, such as the dependence of soil
respiration rate on soil temperature and moisture,
are not so well constrained. Inverse modelling
provides a systematic framework for estimating
these parameters so as to bring mechanistic models
into closest accord with observations – and thereby
to make better predictions.



20 21

Conclusions

While the Earth’s climate system is intimidatingly
complex, the reality of climate change compels us
to build models for understanding the system and
predicting its future behaviour. These models,
expressed in the language of mathematics, range
across a hierarchy of complexity. At one end
of this hierarchy are idealised conceptual models
that are useful for developing understanding but
cannot be expected to be quantitatively accurate.
At the other end of the hierarchy are the fully
complex Global Climate Models which represent
the physics, chemistry, and biology of the climate
system - but which are so complicated that they can
only be studied numerically using computers. The
world’s most powerful computers require several
months of computational time to perform 1000-year
simulations with these complex models; increases
in computer power are generally consumed by in-
creases in model complexity or resolution. In fact,
models from across the entire range of this hierarchy
play important roles in understanding and predic-
tion, and mathematics provides the fundamental
framework by which these models are constructed,
studied, and refined.

Further Reading

The climate literature is extensive and can be
intimidating to the uninitiated. An comprehensive
overview of the state of the art of climate science
is given in the most recent report of Working
Group I of the Intergovernmental Panel on Climate
Change, available as a book (Solomon et al., 2007)
or online at http://www.ipcc.ch. A more succinct
introduction to climate modelling is presented by
Thorpe (2005), while Weaver (2008) provides a
non-technical discussion of climate change (with
a particular focus on Canada). There too many
good books on the physics of the climate to provide
an exhaustive list here; an excellent introductory
text is Hartmann (1994), while a more quantita-
tively detailed treatment is provided in Peixoto
and Oort (1992). Colling (2001) and Wallace and
Hobbs (2006) are good introductions to physical
oceanography and meteorology, respectively; deeper
treatments of modern geophysical fluid mechan-
ics are given in Holton (2004) and Vallis (2006).

Sarmiento and Gruber (2006) present a detailed
discussion of the ocean’s role in the global carbon
cycle from a modelling perspective, and an excellent
introduction to statistical analyses of climate data
is provided in Wilks (2005). Unfortunately out
of print, Haltiner and Williams (1980) is a classic
introductory text on numerical methods for meteo-
rological modelling.
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Pi in the Sky Math Challenges
Solutions to the problems published in the 13th Issue of Pi in the Sky

Problem 1: Find all positive integers n such that log2008 n = log2009 n+ log2010 n.

Solution:
A solution for the above equation is n = 1. Let us prove that there are no other solutions.

For any positive integers k > 2, n > 1 we have

logk+2 n+ logk+1 n− logk n =
1

logn (k + 2)
+

1

logn (k + 1)
− 1

logn k

=
logn (k + 1) (logn k

2 − logn (k + 2)) + logn (k + 2) (logn k
2 − logn (k + 1))

2 logn (k + 2) logn (k + 1) logn k
> 0

since k2 > k + 1. Hence, if we take k = 2008 we get log2009 n+ log2010 n > log2008 n.

Problem 2: Find the smallest value of the positive integer n such that (x2 + y2 + z2)
2 ≤

n (x4 + y4 + z4) for any real numbers x, y, z.

Solution: The given inequality can be transformed into an equivalent useful format:

(n− 3)
(
x4 + y4 + z4

)
+
(
x2 − y2

)2
+
(
y2 − z2

)2
+
(
z2 − x2

)2 ≥ 0.

Since the minimum value of (x2 − y2)
2
+ (y2 − z2)

2
+ (z2 − x2)

2
is 0 , we must have

(n− 3) (x4 + y4 + z4) ≥ 0, hence n ≥ 3.

An alternative solution, using a geometric argument was given by Carlo Del Noce, Gen-
ova, Italy.

Problem 3: Let a be a positive real number. Find f(a) = maxx∈R{a+ sin x, a+ cosx}.

Solution:
This problem is trivial. Since maxx∈R{a+sin x, a+cosx} is clear a+1 then f(a) = a+1.

Problem 4: Prove that the equation x2 − x+ 1 = p(x+ y) where p is a prime number, has
integral solutions (x, y) for infinitely many values of p.

Pi in the Sky Math Challenges
Solutions to the problems published  

in the 13th issue of Pi in the Sky
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Solution:
This problem is trivial. Since maxx∈R{a+sin x, a+cosx} is clear a+1 then f(a) = a+1.

Problem 4: Prove that the equation x2 − x+ 1 = p(x+ y) where p is a prime number, has
integral solutions (x, y) for infinitely many values of p.

Solution:
Let us assume by contradiction that the equation has integral solutions (x, y) only for

a finite number of prime numbers, among which the greatest is denoted by P. If we take
x = 2 · 3 · 5 · .... · P then x2 − x + 1 = x(x − 1) + 1 is not divisible by any of the prime
numbers which are ≤ P. Hence x2 − x+ 1 = Qm, where m is an integer and Q is a prime,
Q > P. So, if we take y = m − x, then (x, y) would be an integral solution of the equation
x2 − x+ 1 = Q(x+ y), which is a contradiction.

This problem was also solved by Carlo Del Noce,Genova, Italy.

Problem 5: Find all functions f : Z −→ Z such that 3f(n)− 2f(n+ 1) = n− 1, for every
n ∈ Z. (Here Z denotes the set of all integers).

Solution:
It is clear that f(n) = n + 1 is a solution of the problem. Let us prove that there is

no other solution. If we set g(n) = f(n) − n − 1 and using the given equation one obtains
3g(n) = 2g(n + 1) for every integer n. Assume by contradiction that there is an integer m
such that g(m) �= 0. Then

2g(m) = 3g(m− 1) = 32g(m− 2) = ... = 3kg(m− k)

for any positive integer k. Hence 3k|g(m) for any positive integer k and therefore we must
have g(n) = 0 for any integer n.

A correct solution was received from Carlo Del Noce,Genova, Italy.

Problem 6: In ∆ABC, we have AB = AC and B̂AC = 100◦. Let D be on the extended

line trough A and C such that C is between A and D and AD = BC. Find D̂BC.

Solution:
Ahmet Arduç from Turkey, submitted five solutions to this problem. The following is his

first solution.

Let α = m(ĈBD). Draw the equilateral triangle AED.

Since ∆ACB ≡ ∆BAE(SAS) we get AB = BE,m(B̂AE) = m(B̂EA) = 40◦,m(ÂBE) =
100◦. As AB = BE and AD = DE, ABED is a deltoid with BD the axis of symmetry.

Hence m(D̂BE) = m(D̂BA) = 50◦ = 40◦ + α. Thus α = 10◦.

Carlo Del Noce also solved this problem.
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In ∆ABC, we have AB = AC and BAC = 100°. Let D be 
on the extended line through A and C such that C is 
between A and D and AD = BC. Find DBC. 
 
 
 
Solution – 1: 

 
i) Draw equilateral triangle AED, 
ii) ACB ≌ BAE (SAS congruency) 

a. |AB| = |BE| 
b. m(BAE) = m(BEA) = 40° 
c. m(ABE) = 100° 

iii) Let m(CBD) = α. 
iv) Since |AB| = |BE| and |AD| = |DE| 

a. ABED is a deltoid, 
b. [BD] is the symmetry axis of the deltoid 

ABED 
c. m(DBE) = m(DBA) = 50° = 40° + α 

⟹ α = 10°. 

Solution – 2: 

 
i) Draw equilateral triangle AEC. 
ii) Draw [BE] and get the isosceles triangle ABE. 
iii) m(BAE) = 100° + 60° = 160° 

⟹ m(ABE) = m(AEB) = 10° 
⟹ m(EBC) = 30° and m(BEC) = 50°. 

iv) ECB ≌ BAD ⟹ m(BEC) = m(DBA) 
⟹ 50° = 40° + α 
⟹ α = 10°. 

 
 
 
Solution – 3: 

 
i) Draw equilateral triangle ABE. 
ii) We get m(EAD) = 40°. 
iii) Draw [ED]. 
iv) EAD ≌ ABC (SAS congruency) 

a. |ED| = |AC| 
b. m(BAC) = m(AED) = 100° 

v) Since |ED| = |EB|, m(BED) = 60° + 100° = 
160° 

vi) m(EDB) = m(EBD) = (180° – 160°)/2 = 10° 
vii) m(CBD)  = m(ABE) – m(ABC) – m(EBD) 

= 60° – 40° – 10° 
= 10° 

\It is proven that the celebration of birthdays is healthy. Statistics 

show that those people who celebrate the most birthdays become 

the oldest."

  S. den Hartog, Phd Thesis, University of gronigen
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Math Challenges

PRoBLEM 1: 

Find all the real pairs (x, y) such that 

log3 x + logx 3 ≤ 2 cos πy. 

PRoBLEM 2: 

Determine all the triples (a, b, c) of integers such that 

a3 + b3 + c3 = 2011. 

PRoBLEM 3: 

In decimal representation the number 22010 has m digits while 
52010 has n digits. Find m + n. 

PRoBLEM 4: 

Find all the polynomials P(x) with real coefficients such that

sin P(x) = P(sin x), for all x ∈ R. 

PRoBLEM 5: 

The interior of an equilateral triangle of side length 1 is 
covered by eight circles of the same radius r. 

Prove that r ≥ 1–
7
 . 

PRoBLEM 6: 

Prove that in a convex hexagon of area S there exist three 
consecutive vertices A, B and C such that 

Area (ABC ) ≤ S
                     6 
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