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In Issue #11, we offered a prize of $100 each for the 
best solution, by a high school student, to four of our 
Challenge Problems (#4 - #7). We did not receive any 
solutions from students so we are extending the offer 
until February 28, 2009.  The four problems are not 
reprinted in this issue due to a lack of space, but can be 
found by searching at www.pims.math.ca/pi and going 
to Issue #11.

On the Cover
The pillars of intellectual achievement are earned through 
dedication and commitment to the journey of learning.

Editorial: David Leeming, Managing Editor, Pi in the Sky

On behalf of the Pi in the Sky Editorial Board, I wish to thank 
Ivar Ekeland for being Editor-in-Chief for Issues #7 to #11.  

Starting with this issue there will be no Editor-in-Chief for Pi in 
the Sky.
   In this issue, we continue our efforts to make the magazine 
more readable for mathematically oriented high school and col-
lege students. We have two articles (Fractal Dimension and From 
the Orthic Triangle) written by high school students, and another 
article (A Mathematical Fountain) co-authored by a high school 
student.  In addition, we have included three ‘Quickie’ problems 
which are intended to be solvable by most students.  The more 
challenging problems will continue to appear on our Challenge 
Problems page. Our thanks to Danesh Forouhari for providing the 
three Quickies for this issue.
    Pi in the Sky is now truly an international magazine. We now 
have over 6000 subscribers in fifty-seven countries, including high 
schools and universities.  You may obtain a free subscription to Pi 
in the Sky by going to our website and following the directions.
    The Editorial Board is grateful to those who contributed to this 
issue of Pi in the Sky.  We believe we have produced another very 
informative and entertaining issue of the magazine. However, we 
welcome and encourage new submissions to Pi in the Sky. More
information on how to submit an article can be found on page 32 
of this issue.
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By now, fractals are practically everywhere. Their 
popularity has exploded tremendously in the last 

decade or so. Literally hundreds of fractal websites 
have mushroomed all over the Internet, and it is not 
uncommon to come across popular fractals such as 
the Mandelbrot Set (pictured below) in publications 
completely unrelated to mathematics. 

                     Figure 1:  The Mandelbrot Set

This popularity can probably be attributed to the in-
credibly complex beauty of fractals. Also, unlike many 
other concepts, appreciating fractals does not require 
a thorough understanding of the math behind them. 
In fact, almost anyone with a grasp of basic algebra 
and the right computer program can easily create their 
own fractals.

However, fractals are  a mathematical concept, and so 
there is a logical system underlying even their seem-
ingly ridiculous complexity. This article will attempt to 
explore a key idea undelrying the mathematical study 
of fractals: that of fractal dimension.

Definition of a Fractal

The term fractal was coined by IBM mathematician 
Benoit Mandelbrot in the early 1970s from the Latin 
fractus  (literally, ‘fragmented’ or ‘broken’ and mean-
ing a set with fractional dimension ).  Mandelbrot, drawing 
on the work of earlier mathematicians, showed that 

once one has  a suitable definition of dimension, many 
interesting sets turn out to have dimensions that are 
not whole numbers.   A well-known example, the Koch 
Curve, is given below:

           

      

Figure 2:  Generation of the Koch Curve. 
The mathematically correct curve can only be  reached after an infi-
nite number of steps.

The Koch Curve is built in stages.  You start with a 
line segment (Stage 0).  In each stage after that, each 
line segment is replaced by four line segments (ar-
ranged as shown in Stage 1).  Hence, as the stages 
progress, the complexity of the curve will increase.  
The Koch Curve is what is left when this process is 
carried out infinitely many times.  If the curve in Stage 
0 has length 1 then the curve in Stage 1 is made up of 
four parts of length 1/3 and so has length 4/3.  At the 
next stage, the curve has sixteen parts of length 1/9 
so has length 16/9.  The final Koch curve being the 
limit of these stages has infinite length so that if one 
were to run along the perimeter of the Koch Curve at 
the speed of light, it would still take an infinite amount 
of time to finish.

Since fractals such as the Koch Curve fall outside 
the domain of Euclidean geometry (based on line seg-
ments, angles, circles, etc.), mathematicians have cre-
ated a new set of tools Fractal  Geometry to study the 
properties of fractals.

FRACTAL DIMENSION: MEASURING INFINITE 
COMPLEXITY

by Tejas Parasher
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Fractal Dimension*
Let us assume that we need N sets of size r each to 

cover bounded set A, where r is a positive real number 
(for example, we need 64 square tiles of size 1 m 2  to 
cover a square floor with a side-length of 8m). As the 
size r decreases, this number N increases.  (Thinking 
of tiling a bathroom floor: as the size of the tiles gets 
smaller and smaller, the number of them needed to 
cover the entire floor will get progressively larger).  In 
the case of a square of side 8m, the number of tiles 
of size r   is given by N� 64/r2.  In the case of a line 
segment of length 10m, the number of tiles of size r is 
approximately 10/r.  We notice that the denominator 
in these expressions for N is a power of r.  Also, for the 
two-dimensional set (the square), the denominator is 
r2 whereas for the one-dimensional set (the line seg-
ment), the denominator is r (otherwise known as r1). 
    Because of this we aim to define the fractal dimension 
(more technically the box dimension) to be the power oc-
curring in the denominator.  Starting with the set A, 
we cover it in tiles of size r and acount the number N 
that we  need.  In the case where 

               (1)
       

we say that the set has fractal dimension D

To actually calculate D, we use logarithms: taking logs 
of (1), we get

         log N � D log(1/r).                                      (2)

We use limits (letting r shrink towards 0) to obtain the 
actual value of D:

     D  =  lim r   →  0                                                             (3)   

Now we can apply (3) to find the fractal dimension of 
the Koch Curve mentioned earlier.  The limit curve fits 
inside a single square of side 1; or 4 squares of side 
1/3 (arranged to be centered around the line segments 
in Stage 1); or 16 squares of side 1/9 arranged to be 
centered around the line segements in Stage 2 etc.  In 
this way, the curve is covered by 4n squares of size 
1/3n.   In other words, if r = 1/3n, then N=4n.  We have 
log N / log (l/r) = log 4 / log 3.

Therefore, we obtain from (3) the fractal dimension 
of the Koch Curve is given by:

D  = lim r   →  0             (4)

*NOTE: Much of the mathematics in the above equation development has 
been borrowed from Michael Barnsley’s textbook on fractal geometry: Fractals 
Everywhere. (San Diego: Academic Press, 1988.)

Another Fractal
Another well-known fractal is the Mandelbrot set.  

This is obtained in a less direct way.  One starts with 
the map z  → z 2 + c, where z is a complex number 
of the form x + iy.

For a given value of c, we initially set z to 0 and then 
iterate the map.  That is, we plug in z = 0 to the equation 
to get the next value of z (simply c itself).  We then 
plug in the value to get the next value of z (that is c2 + 
c).  We keep going with this iteration process infinitely 
many times.  There are two kinds of behaviour that 
take place depending on the value of c: either the se-
quence diverges to infinity or it remains forever in a circle 
of radius 2 about the origin (this takes some proof).  
The Mandelbrot set consists of those values of c for 
which the iteration stays bounded.

With a computer program, you can colour-code 
these two types of sequences, and thus arrive at the 
following familiar figure:

                      

Figure 3: 
The Mandel-

brot Set. Black 
represents   con-
v e r g i n g       s e -
quences in the 
complex plane, 
while the other 
colours repre-
sent those going 
to infinity

Zooming in on  the Mandelbrot Set (shown below), one 
will find ‘mini-copies’ of the Mandelbrot set at a vari-
ety of scales.

       
              

Figure 4: Zooming into the Mandelbrot Set, one can see ‘mini-ver-
sions’ of the original set all along the perimeter.
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Conclusion

The above discussion on fractal dimension is just 
an inkling of the burgeoning field of fractal  geometry.  
Fractal geometry studies in detail various mathemati-
cal features of these fascinating shapes. But despite 
the abstract-seeming nature of fractal geometry, this 
field is anything but confined to pure mathematics. In 
fact, possibly the most remarkable thing about frac-
tals is their overwhelming number of applications. As 
pointed out by James Gleick in his popular book Chaos: 
Making a New Science, fractals offer “a way of seeing 
order and pattern where formerly only the random, the 
erratic, the unpredictable...had been observed”. Some 
common and wide-ranging applications of fractals are 
in computer graphic design, image compression, bio-
logical distribution, and both macro and micro-level 
natural structures.

In conclusion, then, a more thorough understanding 
of fractals and their properties could not only have 
unforeseen impacts in “pure” mathematics but also in 
many other fields.
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Figures 5 & 6: Two fractal landscapes.  The scene at left has been created completely mathematically using fractal software called ‘Mountain 
3d’.  Conversely, the photograph at right, of oak branches, can be called a naturally-occurring fractal.

(From Wikipedia, the free encyclopedia)

In fractal geometry, the fractal dimension, D, is a statistical quantity that gives an indication of how 
completely a fractal appears to fill space, as one zooms down to finer and finer scales. There are many 
specific definitions of fractal dimension and none of them should be treated as the universal one. From the 
theoretical point of view the most important are the Hausdorff dimension, the packing dimension and, 
more generally, the Rényi dimensions. On the other hand the box-counting dimension and correlation di-
mension are widely used in practice, partly due to their ease of implementation.

Although for some classical fractals all these dimensions do coincide, in general they are not equivalent. 
For example, what is the dimension of the Koch snowflake? It has topological dimension one, but it is by 
no means a curve-- the length of the curve between any two points on it is infinite. No small piece of it is 
line-like, but neither is it like a piece of the plane or any other. In some sense, we could say that it is too 
big to be thought of as a one-dimensional object, but too thin to be a two-dimensional object, leading to the 
question of whether its dimension might best be described in some sense by number between one and two. This 
is just one simple way of motivating the idea of fractal dimension.
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Cardinal Sins of the Infinite
by Keith F. Taylor,  Dalhousie University

                 PART IOnce there was a land where 
the laws of physics were 

not as stringent as they are in our 
unverse; however, mathematics is 
the same everywhere.

In this land there was a Genie 
who decided he needed a couple of 
pets for entertainment. He man-
aged to acquire an ape and a mon-
key from a shop in the magic mar-

ket. The shop owner pointed 
out that the ape was power-
ful, cranky, and greedy while 
the monkey, although small, 
was quite clever.

The Genie brought his 
new pets home and placed 
them in a large valley 
with steep walls. The val-
ley seemed ideal because it 
had lots of fruit available for 
food and his pets could not 
escape. He built himself a 
viewing platform jutting out 
over an edge of the valley 
and would come each day to enjoy observing his new 
possessions.

The ape’s life was completely focussed on food. 
He ate voraciously and resented the monkey eating 
anything. In the ape’s mind, each grape the monkey 
ate was one less for him. The ape located a large cave 
and started to hoard food in it. He settled down to 
a routine of spending much of his day stationed at 
the mouth of his cave eating and guarding his stash 
of food. He would make occasional high speed trips 
around the valley to gather any fruit that was ripe 
enough and bring it back to his cave.

Meanwhile the monkey was struggling to survive. 
Anytime she tried to climb a tree for a banana, the ape 
would see her and charge. With good luck, the monkey 
found a cave that had a small entrance and large inte-
rior. Most of the time the monkey hid in her cave and 
the ape could not follow through the small entrance. 
Her cave provided some security, but food was a prob-
lem. Foraging trips were very dangerous and the ape 
was taxing the productivity of the valley all by himself. 

In order to survive, the monkey would wait until the ape 
left his cave to gather up any new fruit and then she 
would slip into his cave and steal something. By mov-
ing quickly and just grabbing a single piece of fruit, 
the monkey found that she could get back to her own 
cave without the ape realizing he had been robbed.

The Genie was not happy with how things were 
going. It became clear that the ape’s greed was de-
stroying the little ecosystem in the valley. So the Ge-
nie went back to the magic market with the intention 

of buying so much food that the 
ape could never eat it all up. At 
a coconut shop, he found exactly 
what he wanted.

Soon he delivered a huge 
load of coconuts to the valley. 
For inventory purposes the coco-
nuts were individually numbered 
by positive integers and all the 
positive integers were used - it 
was a large load indeed! The Ge-
nie settled back onto his platform 
to enjoy watching his pets with 
more food than they could ever 
possibly use up. Unfortunately, 

he again underestimated the ape’s greed.
When the ape saw the new supply, he went to the 

pile and gathered up coconuts numbered 1 to 10 and 
carried them back to his cave. This took him 30 min-
utes. He went back for another load and realized he 
would need to become more efficient if he wanted to 
move such a large number of coconuts. This trip he 
gathered up the next hundred coconuts, numbered 
from 11 to 110, and carried them back to his cave in 
just 15 minutes. He was quite pleased with his im-
provements and resolved to gain similar efficiencies 
each trip. He did not notice that while he was getting 
his second load, the monkey had slipped into his cave 
and stole coconut number 1 and brought it back to her 
cave.

This process continued. On each trip, the ape car-
ried back 10 times as many coconuts, always num-
bered by the next integers in order, and made the trip 
in half of the time of the previous trip. Meanwhile, each 
time the ape went over to the pile for another load, 
the monkey slipped into his cave and took the coconut 
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with the smallest integer on it back to her cave.
The Genie was absolutely transfixed by the spec-

tacle. He stared without blinking as the ape carried 
larger and larger loads at higher and higher speeds. He 
noticed that the monkey was able to better her times 
as well, but this was nothing compared to the ape’s 
improvements in strength as well as speed. The Genie 
stared, motionless, 
for 59 minutes and 
59.99 seconds. Then 
he blinked. An hour 
had passed since the 
ape picked up the 
first load. The Genie 
was astonished with 
what had happened. 
Why?
(to be continued).

A differential equation is a mathematical equa-
tion for an unknown function of one or several 
variables that relates the values of the function 
itself and of its derivatives of various orders. Dif-
ferential equations play a prominent role in en-
gineering, physics, economics and other disciplines.  
Visualization of airflow into a duct modelled us-
ing the Navier-Stokes equations, a set of partial 
differential equations. 
  Differential equations arise in many areas of 
science and technology; whenever a deterministic 
relationship involving some continuously chang-
ing quantities (modeled by functions) and their 
rates of change (expressed as derivatives) is known 
or postulated. This is well illustrated by classical 
mechanics, where the motion of a body is described 
by its position and velocity as the time varies. 
Newton’s Laws allow one to relate the position, 
velocity, acceleration and various forces acting on 
the body and state this relation as a differential 
equation for the unknown position of the body as a 
function of time. In many cases, this differential 
equation may be solved explicitly, yielding the 
law of motion.
   Differential equations are mathematically stud-
ied from several different perspectives, mostly con-
cerned with their solutions, functions that make 
the equation hold true. Only the simplest differ-
ential equations admit solutions given by explicit 
formulas. Many properties of solutions of a given 
differential equation may be determined without 
finding their exact form. If a self-contained for-
mula for the solution is not available, the solution 
may be numerically approximated using comput-
ers. The theory of dynamical systems puts emphasis 
on qualitative analysis of systems described by dif-
ferential equations, while many numerical meth-
ods have been developed to determine solutions with 
a given degree of accuracy.
(From Wikipedia, the free encyclopedia)

  A Mathematical Joke: 
  http://www.math.ualberta.ca/~runde/jokes.html

There were three medieval kingdoms on the 
shores of a lake. There was an island in the mid-
dle of the lake, over which the kingdoms had been 
fighting for years. Finally, the three kings decided 
that they would send their knights out to do battle, 
and the winner would take the island.

The night before the battle, the knights and their 
squires pitched camp and readied themselves for 
the fight. The first kingdom had 12 knights, and 
each knight had five squires, all of whom were bus-
ily polishing armor, brushing horses, and cooking 
food. The second kingdom had twenty knights, and 
each knight had 10 squires. Everyone at that camp 
was also busy preparing for battle. At the camp of 
the third kingdom, there was only one knight, with 
his squire. This squire took a large pot and hung it 
from a looped rope in a tall tree. He busied himself 
preparing the meal, while the knight polished his 
own armor.

When the hour of the battle came, the three king-
doms sent their squires out to fight (this was too 
trivial a matter for the knights to join in).

The battle raged, and when the dust had cleared, 
the only person left was the lone squire from the 
third kingdom, having defeated the squires from the 
other two kingdoms, thus proving that the squire of 
the high pot and noose is equal to the sum of the 
squires of the other two sides.

Deferential Equations



8

FINDING A PARENT FOR AN ORTHIC ORPHAN
                                                                  

        By Klaus Hoechsmann

1. Introduction.
The purpose of this article to take a run at the next 

one, which begins with the words: “Since each triangle 
has a unique orthic triangle ... and vice versa ...”. We are 
going to look into the “vice versa”, wondering in par-
ticular (a) what it means, (b) why we should believe 
it, and (c) what it is good for. One would guess that 
“orthic” has to do with right angles, since “orthogonal” 
is one of the ways of saying “at right angles”, the other 
one being “perpendicular”. Since vice  versa means the 
the other way round, translation software might nonsen-
sically proclaim that every orthic triangle has a unique 
triangle. Uh? A human translator might try: “Every tri-
angle is orthic for a unique [other] triangle “, which 
is essentially right but awkward. To distinguish that 
other triangle verbally, we shall temporarily -- just for 
this article -- refer to it as an “orthogenic parent”.

It is usually said that ΔDEF is orthic for ΔABC, if D, E, 
and F are the feet of the 
altitudes of the latter. 
Recall that an altitude is 
a line segment orthogo-
nally connecting a vertex 
to a point on the oppo-
site side called its “foot”. 
Unfortunately, this would 
make ΔDEF -- as shown 
in Figure 1 -- orthic for 
both the acute ΔABC in 
the top diagram of that 
figure and the obtuse 
ΔBAC in the bottom one 
-- and there goes the 
uniqueness. One could 
safeguard it by careful 
rules of labelling, but it 
is easier to write acute-
ness into the definition. 
Thus, we shall say that ΔABC is an orthogenic parent of 
ΔDEF if its altitudes AD, BE, CF intersect its sides inside 
the segments BC, AC, AB, respectively. Forcing the feet 
of the altitudes of ΔABC to lie on its boundary bars ob-
tuse triangles from becoming orthogenic parents. 

Regarding (a), one could claim that any  triangle  has 
a unique orthogenic parent. More explicitly this statement 

asserts the solvability of the following problem: 

Given three points D, E, F, find an acute triangle ABC 
which has them as feet of its altitudes .

In fact, we shall construct a solution, and in the pro-
cess, its uniqueness will become apparent. This will 
answer Question (b) asked at the beginning, and will 
occupy the next two paragraphs. As for Question (c), 
we give the same example which you can find at the 
end of the next article, but we go more slowly. 

2. Cyclic Quadrilaterals
This paragraph will recall some elementary facts 

about angles and circles. Imagine four points M, P, N, 
Q (in that order) lying on a circle with center O. The 
four line segments MP, PN, NQ, QM going around the 
circle are the sides of what is called a cyclic quadrilateral 
(gray), because “cyclic” means “circular”. The segments 
PQ  and  MN  crossing  each  other  are  known  as the 
diagonals of this quadrilateral. Each of the six segments 
mentioned so far is also referred to as a chord of the 
circle. As Figure 2 shows, there are two cases depend-
ing on whether O lies in the gray zone or not. 
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The sides of the quadrilateral form the bases of four 
isosceles triangles, each with apex at O. At each of its 
vertices, the quadrilateral has an angle formed by the 
base angles of two neighbouring triangles. In the up-
per diagram, four different colours are used for those 
base angles, and it is clear that any two vertices on 
same diagonal have exactly one angle of each colour. 
Therefore, < M + < N = < P + < Q, and since all 
four angles  must  add up  to 360 degrees, each pair 
of opposite angles (such as < M + < N) must yield 180 
degrees. 

The equation < M + < N = < P + < Q (with its 
conclusion) also holds in the lower diagram, provided 
the angles are counted correctly. The problem is that 
ΔNOP (with red base angles in the upper diagram) now 
lies outside the quadrilateral, and must have its base 
angles subtracted instead of added at P and N. Thus < P 
consists of a full yellow angle (like the one at M) minus 
the base angle OPN, and < N consists of a full blue 
angle (like the one at Q) minus the base angle PNO. (If 
we allow negative angles, the two cases are not really 
different, since < MPO and < OPN “turn” in the same 
direction for one and opposite directions for the other.) 
In other words, opposite angles in a cyclic quadrilateral are 
supplementary  in every case. What we really want, how-
ever, is a criterion for deciding whether some point R 
lies on a given circle. Here is what we get: 

If points R and M are on opposite sides of a chord PQ , 
the circumcircle of ΔPMQ  will contain R  if  and  only if 
< PMQ and < QRP  are supplementary.........(2.1) 

Indeed, if R does lie on that circle, we can let it play 
the role of N in our previous considerations, and sup-
plementarity is assured. Suppose, then, that we know 
only that the angles PMQ and QRP are supplementary, 
but nothing about the position of R. Let N be the point 
of intersection of the line QR with the circle in ques-
tion. If N were not equal to R, the angles QRP (given) 
and QNP (from previous result) could not both be sup-
plementary to angle PMQ. 

Note that all points N on the circular arc on one side 
of the chord PQ must yield the same angle QNP, name-
ly the one which is supplementary to PMQ (imagine M 
fixed). Hence the criterion just derived can be refor-
mulated by substituting “equal” for “supplementary” as 
the last word, and placing R and M on the same side of 
PQ instead of opposite sides. Therefore

If points R and M are on the same side of a chord PQ , 
the circumcircle of ΔPMQ  will contain R  if  and  only if 
< PMQ and < QRP  are equal ........................(2.2)  

3. Orthogenic Construction.
A constellation resembling the one in Figure 1 will 

now be constructed from scratch. Given any ΔDEF, 
draw a line through each vertex at right angles to the 
respective angle bisector. Since the latter are pairwise 
non-parallel, so are these new lines. They will there-
fore intersect in pairs, giving us three new points, 
which we call A, B, and C in such a way that D, E, and 
F lie on BC, AC, and AB, respectively (check that this 
can be done!). 

Since points on an angle-bisector are equidistant 
from both legs of the angle, the intersection of two 
such bisectors in a triangle is equidistant from two 
pairs of legs, i.e., from all three sides. Hence all three 
bisectors meet at the same point P, and we get a pic-
ture as in Figure 3 -- but it is not clear that the bisectors DP, 
EP, and FP will align with the segments PA, PB, and PC. 

To investigate that missing link in our construction, 
we need to take a detour. Stepping back from bisec-
tors, we drop perpendiculars PD, PE, and PF from any 
point P inside an arbitrary ΔABC (possibly obtuse) onto 
its three sides BC, AC, and AB. The question is under 
what conditions these perpendiculars line up with PA, 
PB, and PC.   

In terms of Figure 3, such alignments clearly require 
that equal colours imply equal angles among the co-
loured sectors sorrounding P. Note that the equality of, 
say, the yellow sectors on either side of AP+PD does 
not suffice to force the straightening of this broken 
line: we need all three colours. To clarify this, let us 
take AP+PD as a reference and denote by x, y, z the 
blue, yellow and red angles to the right of it, while 
their same-colour analogues on the other side are la-
belled x’, y’, z’. Then AP+PD will be straightened by 
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the equality x+y+z = x ́+y ́+z ́ , while, 
  BP+PE will go with x ́+y +z  = x +y ́+z ́ , and 
          CP+PF with  x ́+y ́+z  = x +y +z ́ . 
Putting u = x - x ́, v = y - y ́ , w = z - z ́ , these three 

equations amount to u +v +w = 0, u -v -w = 0, u +v -
w = 0, whence u = v = w. In other words, the three 
alignments occur if and only if x = x ́, y =y ́ , z = z ́ . A 
fine criterion but somewhat useless -- so, let us con-
tinue the detour. 

 To transfer these sector equalities to the angles of 
ΔDEF, consider the decomposition shown in Figure 4. 
Having two opposite right angles, each of the three 
pieces is a cyclic quadrilateral, as a consequence of 
(2.1). Consider the top one AFPE. The angle of the red 
sector is complementary to the red-dotted angle at A, 
which in turn equals the red-dotted angle at E because 
they sit on a common “chord” FP, as required by (2.2). 
Likewise, the blue-dotted angle at F is complementary 
to the blue sector by the same reasoning around the 
“chord” EP. 

Exactly the same thing happens in the other two 
fragments: The foo-dotted angle at D, E, or F is com-
plementary to the foo-coloured sector in the same 
quadrilateral (check!). We can therefore say: 

If PD, PE, PF are perpendiculars dropped from a point P 
inside a ΔABC onto its sides, the triples APD, BPE, CPF 
are collinear if and only if AP, BP, CP are angle-bisec-
tors.   

Here ends the detour, and we can get back to our 
construction. Since we started it with bisectors, the cri-
terion just derived shows that the three segments AD, 
BE, and CF all go through P, and therefore meet the 

respective sides at right angles. In other words, DEF is 
the orthic triangle of ABC and P is the orthocentre, which is 
traditionally labelled H . Moreover, we have shown that 
these segments (ye olde altitudes) bisect the angles of 
DEF. Finally, ABC is necessarily acute, because all the 
altitudes have their “feet” inside the segments BC, AC, 
and AB. In other words, we have constructed an ortho-
genic parent ABC of the given DEF. Its uniqueness is 
fairly obvious, but we shall not need it and therefore 
omit its demonstration. 

4. Euler’s Formula
The main purpose of all this hue and cry is an ap-

parently modest fact involving not only the angle-bi-
sectors of the given ΔDEF but also its circumcircle (the 
one which contains all three vertices). In case any-
one has forgotten: its centre Q is the intersection of 
any two perpendicular bisectors, i.e., lines which cut 
the sides at right angles through their midpoints (all 
points on such a line are equidistant from the ends of 
the side in question).   This is where ΔDEF needs an 
orthogenic parent ABC, for which the circumcircle of 
DEF becomes the so-called Nine-Point or Feuerbach 
Circle. In the last issue of this magazine we had called 
it Euler’s Circle, though neither Euler nor Feuerbach 
(but the French geometerTerquem) proved the prop-
erty which is essential here, namely that it cuts AH ex-
actly through the middle. This makes N the mid-point 
of the hypotenuse of the right triangle HEA. Without 
reference to orthics, we can formulate the main con-
sequence as follows. 

Given ΔDEF, let ND be the chord of its circumcircle 
which bisects the angle at D. Then NE = NH.
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Of course the equality sign here means that the two 
segments are congruent, not literally identical (lest 
E=H). Furthermore, it is clear that NF and NA are in-
cluded in the same congruence; in fact, N is the centre 
of the circle which makes AFHE a cyclic quadrilateral. 

 A curious result indeed, but without the pizzazz 
we have come to expect from Euler. His problem was 
this: if you know the radii of the circumcircle and the 
incircle of a ΔDEF, can you figure out the distance be-
tween their centres? Since the incircle must touch all 
three sides, its centre is equidistant from them, hence 
equal to H. Thus, Euler wanted the distance d = |HQ| 
expressed in terms s = |QN| and r, the distance from 
H to any of the sides (such as ED). 
Once more (2.2) steps up to the plate and delivers the 
similarity of the light blue and green right triangles, 
bringing about the identity 2sr = |NE| |HD|, which the 
curious result from above turns into 2sr = |NH| |HD|. 
This apparently innocuous equation is crucial: putting 
p = |NH| and q = |HD| in the isosceles ΔNDQ as shown 
in the gray box under 
Figure 6, we imme-
diately obtain Euler’s 
Formula as expound-
ed at the end of Bill 
Pang’s article (pages 
12-14 of this issue). 
The little formula in 
gray comes from ap-
plying the Pythago-
rean Theorem twice 
and the identity x  2 
- y  2 = (x + y) (x - y) 
once -- and 
is left as an exercise (no trig, please). 

Of course, Bill assumes that the reader knows trig-
onometry, while the present warm-up tries to be as 
low-key as possible. The most subtle mathematical 
fact used here is the equality 2sr = |NE| |HD| deduced 
from a similarity of triangles. Usually ratios, in the form 
2s : |NE| = |HD| : r, are invoked at this stage -- but 
they are not the simple tools they are often thought to 
be, unless all quantities involved are mutually com-
mensurable (dream on!). Otherwise they require much 
faith or some insight into post-secondary notions like 
continuity or axiomatic geometry (as has been indi-
cated in earlier issues of this magazine: #4, p.16 and 
#5, p.25, as well as #7, pp. 17-19).    

      Find all integers 

  X, Y, & Z such that 
 

  X 2 + Y 2= √Z 2 + 12

Quickie Problem #1:

Typos 
in 

Pi In The Sky Issue #11

Thanks to several keen read-
ers who pointed out a 

couple of typos in Issue #11 
which apparently eluded the entire 

Editorial Board of Pi In The Sky at the 
time of proofing the issue.  We 
apologize for the errors.  We’ll try 

harder to make future issues error-free.

First, the Magic Square from Wikipedia 
on page 11 is to contain all the integers 
between 1-16, and only those integers, 
as it appears on Dürer’s engraving (see 

page 10).  Therefore, on the second line, 
replace 18 by 8.

Second, on page 4, line 3, the factori-
al function, famliar to all of us, should 

read (as Tom Archibald wrote it) 
n! = n x (n-1) x (n-2) ... 2 x 1.

We appreciate our readers 
drawing these to our 

attention.
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FROM THE ORTHIC TRIANGLE
   Bill Pang

Editing By: Gary Miller    
Bill Pang, Sir Winston Churchill Secondary, received the Canadian Mathematical 

Society Award at the Canada-Wide Science Fair 2007 and Gold Medal in his category.
Gary Miller is Associate Professor Emeritus, University of Victoria

Area Problem.  Since each triangle has a unique 
orthic triangle [Fig.1] and vice versa, a problem 

arises:   

Since the right triangles ∆HEC and ∆HDC share HC, 
we have H,D,C,E lie on a circle S which has HC as a 
chord. In other words, HDCE is a cyclic quadrilateral. 
∠EDH = ∠ECH since they subtend the same chord HE 
of circle S. Similarly, BFHD is a cyclic quadrilateral, and 
we have ∠FDH = ∠FBH. Since the right triangles ∆ABE 
and ∆ACF share a common angle at A, we have ∠FBH 
= ∠ECH.  In summary, ∠EDH = ∠ECH = ∠FDH = ∠FBH. 
Since AD bisects ∠FDE and, similarly, BE bisects ∠FDE, 
we conclude H is the incenter of ∆DEF, i.e., the
intersection of the angle bisectors of that triangle: 

As illustrated in [Fig.2], circumscribe ∆ABC, and let 
O be the center of the circumcircle of ∆ABC. Extend 
HD, HE, HF to meet that circumcircle at Aʹ, B′, and C′, 
respectively. Since the two chords BC and AA′ intersect 
within the circle,

Figure 1.The orthic triangle 
of ∆ABC is ∆DEF where 
D,E,F are the feet of the al-
titudes of ∆ABC. H is called 
the orthocenter of ∆ABC. 
The circumcircle K of the 
orthic triangle is also called 
the Feuerbach or nine point 
circle of ∆ABC. It turns out 
K amazingly passes through 
not only E,F,D but also the 
midpoints of AH, BH, CH and 
the midpoints the sides of 
∆ABC as illustrated.

 

How can the area of the original triangle be expressed in 
terms of the side lengths (a,b,c) of the orthic triangle? 

Figure 2. The expanded orthic ∆A′B′C′of ∆ABC. Both have the same 
circumcircle with center O and radius R. The side lengths of the or-
thic triangle are denoted a = |EF|, b = |DF|, and c = |DE|.

the Chord–Chord theorem, used for the definition of 
“power of a point”, states |BD| • |DC|= |AD| • |DA′|. 
The right triangles ∆ABD and ∆CBF share an angle at 
B and are similar. Since, for the same reason, ∆CBF ∼ 
∆CDH, we have ∆ABD ∼ ∆CBF whence |BD| • |DC|= 
|AD| • |HD|. Thus, HD = DA′. For similar reasons, we 
have HE = EB′and HF = FC′.  Thus, A′B′= 2DE, B′C′= 
2FE, A′C′= 2FD.  Notice H is the incenter of both the 
orthic ∆DEF and the expanded orthic ∆A′B′C′. The side 
lengths of the expanded orthic ∆A′B′C′are twice that 
of the orthic ∆DEF, and the area, 4 times:

 
The expanded orthic and the orthic are homothetic with 
center of dilation H and factor of dilation = 2. 
 

Hexagon Method. Consider the hexagon AB′CA′BC′, 
[Fig.3]. Since DA′= DH and HA′=BC, we have ∆BA′C 
≅∆BHC. Similarly, we have ∆AB′C ≅ ∆AHC and ∆AC′B 
≅ ∆AHB. Therefore, area[AB′CA′BC] = area[∆AHB] 
+ area[∆CHA]+area[∆BHC] + area[∆ABC] = 2• 
area[∆ABC]:

 
H, the orthocenter of ∆ABC, is also the incenter of 

its orthic triangle ∆DEF. 
 

 
T he hex agon’s  area is  twice that of the original tr iangle 

∆ ABC .  
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 |ND|  
|NM|                                                       

               
                 =R′2 + |NH|2 - 2R′ . |NH| .

Since |NM| = 2R′,
              d2 = R′2+|NH|2-|NH|.|ND|
                  = R′2-|NH|.(|ND|-|NH|)
                  = R′2-|NH|.|HD|. 

Thus, we have obtained Euler’s relationship:
               d2 = R′2 - 2rR′

The Genie was 
stunned to see 

an exhausted ape 
collapsed in his cave 
with not a single co-
conut. Meanwhile, 
the monkey was a bit 

tired as well, but she was safely back in her cave with 
all of the coconuts. This certainly puzzled the Genie 
because, before he blinked, the ape had many times 
more coconuts than the monkey and seemed to be in-
creasing his lead each trip.

Had the monkey broken the laws of logic and math-
ematics? The Genie decided to investigate, the way 
a mathematically oriented Genie does, by thinking it 
through. What about the coconut with the number k  
on it - when did it arrive in the monkey’s cave? It was 
clear to the Genie that the monkey moved it on her 

hk t  trip and that trip occurred during the time period 
from time k

k

2
12 −  to time 1

1

2
12

+

+ −
k

k

 hours after the ape 
started with his first load. So the monkey did not sin 
in any way, nor did she use any magic. No matter what 
numbered coconut the Genie considered, he could fig-
ure out when she deposited it in her cave. Satisfied 
with this conclusion, he went to bed.

At 3:00am the Genie sat up. 
Something was nagging at him. 
The coconuts were all the same 
except for the numbers. What 
if the monkey stole the highest 
numbered coconut from the ape’s 
cave each trip? Then she would 
end up with those coconuts num-
bered as #1110,#110,#10,  etc. 

and the ape would 
end up with all the 
others (and probably 
not notice the missing 
ones). The Genie de-
cided that would have 
been a better strategy 
for the monkey. She 
would have ended up 
with just as many coconuts and would not have had to 
deal with a furious ape when he recovered. He laid his 
head back down contented that he would be able to 
figure out the result no matter what strategy the mon-
key could have used in selecting her coconuts.

At 4:00am he was awake again. Things were getting 
stranger the more he thought about it and he could 
not stop thinking. What if the monkey could not read 
numbers and she just grabbed a coconut at random 
from the ape’s cave on each trip? What would she have 
in the end? She certainly would have infinitely many 
coconuts, because she made infinitely many trips. 
What would the ape have? What if the coconuts had 
not been numbered at all? Could the ape actually move 
them all with his strategy then? Hmmmm.

The Genie decided thinking about the paradoxical 
properties of infinite processes was a lot more en-
tertaining than owning pets. He returned the ape and 
monkey to the magic market and devoted himself to 
illuminating the infinite using his deductive powers. 
Although he never ran out of 
questions to ponder and lived 
happily ever after, he was of-
ten plagued with popping 
awake in the wee hours of the 
night. 

Cardinal Sins of the Infinite
by Keith F. Taylor,  Dalhousie University

                                                            PART II  
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Figure  3: With a different 
set of shoe selections from 
the pile, the students form 
two distinct loops.

1  The Model
We will start by working out the average number of 

loops, which we’ll call L , that we can expect for a par-
ticular number of students, N . It is often a good idea 
to consider very simple cases first with the hope of 
recognizing a pattern which will apply to more compli-
cated cases. For example, suppose 1=N . In this case, 
our lonely student puts her shoes into an otherwise 
empty pile, picks her own shoes out of the pile, and 
finds that the shoe in her left hand matches the one in 
her right hand. She then touches the shoes together, 
thereby forming one very simple loop. In other words,  

 
                 L  ( N =1) =1                (1)  

Next, consider 2=N . No matter which shoe a stu-
dent chooses with her left hand, there is one chance 
in three that she will find a matching shoe in her right 
hand and two chances in three that the second shoe 
will belong to the other pair. If each student has cho-
sen a matching pair, they each touch the two shoes 
together to form two separate loops. If the students 
have each chosen mismatched shoes, they need to join 
together to link up the matching shoes, thereby form-
ing one loop. We therefore calculate the average num-
ber of loops to be  

   
.

3
4=1

3
22

3
1=(2) ⋅+⋅L

       
             (2)
 
Another way to think about this is that we will al-

ways have at least one loop and that there is a one in 
three chance of getting an additional loop by virtue of 
each student selecting a matching pair of shoes:  

         .
3
4=

3
11=(2) +L                      

              (3)

Interesting mathematics has a way of turning up in 
unexpected places. In September 2006, there was 

an orientation day for new students to the Augustana 
Campus of the University of Alberta. I was accompa-
nying a group of about forty students as they toured 
the campus, attended short information sessions, and 
participated in some fun activities. In one activity, 
the students were asked to remove their shoes and 
put them in a large pile at the center of a room. The 
pile was then mixed and each student was asked to 
take two shoes, randomly chosen, from the pile. Next, 
the students were directed to locate the shoes which 
matched the ones they had chosen so that they would 
“link together” into chains. Eventually, it was expected 
that the students would form one giant loop.

As a chaotic mingling began to unfold, I started to 
think about what was going to happen. Eventually I 
turned to the volunteer standing beside me and told 
him that I expected that there would probably be more 
than one loop of students at the end and that my pre-
diction was three loops. A few moments later, the stu-
dents finished the task of pairing up all the shoes and, 
sure enough, there were three 
separate loops. Is there a pre-
dictable structure to this phe-
nomenon or was I just lucky? As 
we’ll soon see, it was a little bit 
of both.

Figure  1: An illustra-
tion of the basic problem. 
On the left we start with five 
pairs of shoes. On the right, 
these shoes are mixed into 
one big pile.

Figure  2: On the left, five 
students have each select-
ed, at random, two shoes 
from the pile. On the right, 
the students link up into 
a single loop by matching 
shoes together.

           A Pile of Shoes           
                                by Ian Blokland
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Moving up to 3=N , we again focus on one par-
ticular student. Regardless of which shoe is in the stu-
dent’s left hand, only one of the remaining five shoes 
will match it. If the shoe in the student’s right hand 
produces such a match, this student forms a loop and 
the remaining two students will form either one or two 
loops according to the 2=N  case. If the original stu-
dent has two mismatched shoes, she can link the shoe 
in her left hand with the matching shoe for another 
student, in which case we will have one chain of two 
students and one isolated student. The chain has an 
unpaired shoe at each end, therefore it behaves just 
like one of the students in the 2=N  situation. We 
conclude that the 3=N  case is just like the 2=N  
case, except for the one-in-five chance that a specific 
student has chosen matching shoes in which case we 
will get an additional loop:  

                                                                 (4)
               

.
5
1

3
11=

5
1(2)=(3) +++LL

At this stage, we see a pattern beginning to 
emerge:  

                                 
                .

12
1

5
1

3
11=)(

−
++++

N
NL            (5)

 
We can justify it in the same way as the 3=N  case, 
namely by singling out a particular student and check-
ing if she selected a matching pair of shoes. If so, and 
this happens with a probability of 1/(2N - 1), we get an 
immediate loop along with a group of 1−N  students. 
If not, this student will have to link up with someone 
else, thereby producing one double-student chain that 
acts like one student in a group of 1−N  students. On 
average, we get 1/(2N - 1) more loops with N  stu-
dents than we would expect with 1−N  students.

2  An Approximation
 
The exact formula in (5) for the average number of 

loops )(NL  is quite cumbersome when N  is not a 
single-digit number. For example, for the forty stu-
dents I mentioned at the beginning, it takes quite a bit 
of time to compute the forty terms of (5) in order to 
determine that 2.826(40) ≅L . If only there was a but-
ton on a calculator that could add up lots of recipro-
cals in one step. It turns out that there already is such 
a button on most calculators: the  “ln” button which 
calculates natural logarithms.

The specific connection between sums of recipro-
cals and the natural logarithm is the formula  

  
                                                                           (6)

The symbol γ  refers to the Euler-Mascheroni con-
stant and it has a numerical value of  

  
                            .490.57721566= γ   0.5772156649...         (7)
 
Euler discovered this constant in 1735 and was able to 
compute it to 16 decimal places. He correctly anticipated 
its significance, as we now know that γ  shows up in all 
sorts of different branches of mathematics. The ≅  in 
(6) indicates that the equation is only an approximation, 
but it is an approximation that gets better and better 
as the number of terms in the series, n , increases. 
Since it is much faster to compute the right-hand 
side of (6) than the left, we will be able to simplify 
our previous expression for )(NL . There is one minor 
problem, though: the approximation (6) computes the 
reciprocals  of  all  whole  numbers  between  1  and 
n , whereas in (5), we only want the reciprocals of the 
odd numbers between 1 and 12 −N . With a little bit of 
ingenuity, we can connect the two:  

 

12
1

3
11=)(

−
+++

N
NL 

 
 
 
 
 

 

    
    

        
                        

                                                     (8)

Since we are already approximating and since 

                                           
 

we might as well round this to one and write  
                                                               
                                                               (9)

 Unlike the exact expression in (5), this approxima-
tion can be computed quickly on a calculator and, per-
haps for some, estimated mentally. When applied to 
the  N = 40 case, we obtain 2.844(40) ≅L , less than 
one percent away from the exact result. This compu-
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tation explains why I was able to guess that the forty 
students in front of me might settle into three loops.

Dr. Ian Blokland is an Assistant Professor in the 
Physics and Mathematics Department of Science 

at the Augustana Campus of the University of Alberta.

The Euler–Mascheroni constant (also called 
the Euler constant) is a mathematical con-
stant recurring in analysis and number the-
ory, usually denoted by the lowercase Greek 
letter γ (gamma). It is defined as the limiting 
difference between the harmonic series and 
the natural logarithm.  The constant first 
appeared in a 1735 paper by the Swiss mathe-
matician Leonhard Euler, titled De Progres-
sionibus harmonicis observationes (Eneström 
Index 43). Euler used the notation C and O 
for the constant. In 1790, Italian mathema-
tician Lorenzo Mascheroni introduced the 
notation A for the constant. The notation  
A appears nowhere in 
the writings of either 
Euler or Mascheroni, 
and was chosen at a 
later time because 
of the constant’s connection to the gamma 
function.
(From Wikipedia, the free encyclopedia)

Prove X < 3

Quickie Problem 2

1

Euler-Mascheroni Constant

1= lim ln ( )
n

n k
n

k
γ

→∞ =

 
− 

  
∑

         Given X as

From Our Readers
                  
             by David Leeming             

An Inequality for Cyclic Quadrilaterals

In Issue # 10 of Pi in the Sky, it was shown that for any triangle, the inequality                            holds,  where 
A is the area and P is the perimeter of the triangle.   The              constant is also the best possible in the sense 
that it cannot be replaced by  a smaller constant.  

Two of our readers, Danesh Forouhari and Paddy Ganti observed that this inequality can be extended to cy-
clic quadrilaterals, that is, quadrilaterals whose four vertices lie on a circle.  To do this we need Brahmagupta’s 
formula for cyclic quadrilaterals.  A good reference for this formula is Wikipedia.  

1 2
12 3

A P≤
1

12 3

Let  and  be the area and perimeter of a cyclic quadralteral (with sides ,  ,  , and ) respectively.
Brahmagupta's formula states: 

                             ( )( )( )( )   where =
2

A P a b c d

P aA s a s b s c s d s +
= − − − − =

1
4

2 2

so
2

 using the Arithmetic-Geometric Inequality we have

( ) ( ) ( ) ( ) 4 2 2 [( - )( - )( - )( - )] .
4 4 4 2 2

Squaring both sides, we have

(1)
4 16

Note that equality holds in 

b c d

s a s b s c s d s s s s Ps a s b s c s d

P PA

+ +

− + − + − + − −
≤ = = = =

 ≤ = 
 

(1) if and only if . a b c d= = =
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A MATHEMATICAL FOUNTAIN
                                                                                         By  A. Clausing & T. Melkert

_________________________________________________________
  1The authors would like to thank Walter Aue for his kind permission to include his translation

 The Roman Fountain 
 
High climbs the jet and, falling, fills 
up to the brim the marble round 
which overflows in veils and frills, 
into a second basin’s ground; 
the second, now too rich, forsakes 
its waves and on the third one spills and 
equally it gives and takes 
and stir and stills. 
 
 
 
Conrad Ferinand Meyer (1825-1898) 
Translation by Walter A. Aue1 
 
 

A curious observation

Even if you have no faible for poetry, please bear 
with us.  This article is about a about a simple property 
of numbers.  So simple that it could have been found 
a long time ago, but apparently it has been overlooked 
so far.

Here is a fairly typical example:
To make the calculation easier, you may replace a 

by the sum s = x + y + z + u and then continue with the 
numbers |4x - s|, |4y - s|, |4z - s|, |4u - s| as your next 
line.  That way, if you start with four integers, you do 
not leave the set of integers.  Obviously, you may mul-
tiply each line with any constant c >0 without altering 
the number of steps it takes to reach the zero tuple.

It is, however, not very helpful to stick to the in-
tegers.  The phenomenon holds for all real numbers.  
Look at the following example, it is chosen more or 
less arbitrarily:  (see next page) 
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Sometimes, it takes a little longer to reach zero:

But in general, the number of steps is between three 
and six:  We ran a simple computer program to see 
how many steps a random tuple of numbers in  [0,1] 
would need to reach zero. On average, only about 4.5 
steps were needed.  And it is particularly remarkable 
that this holds independently of the size of the num-
bers we start with - we could as well choose them in 
[0,106] or in whatever range we like.

There is one notable exception to our obversation: 
If three,  but not all four, of the numbers we start 
with are equal, then  you never reach zero.   Let us 
assume  x = y = z ≠ u.  Then s =3x + u, so we have 
|4x - s| = |x - u| and |4u - s| = 3|u - x|.  Thus the next 
line is, up to the constant c = |x - u| > 0, equal to

                      1    1    1    3 
and these four numbers are now repeated forever.
Ducci sequences

Before we proceed, let us say a few words about the 
origin of this topic. Some of the older readers perhaps 
will remember that in 2004 there was an article by one 
of us in this magazine about a similar phenomenon 
dating back to the 1930s:  If, instead of considering 
the map   (x,y,z,u) ↦(|x – a|, |y – a|, |z – a|, |u – a|)  
discussed   in   this   article,   one    considers 
(x, y, z, u) ↦(|x - y|, |y - z|, |z - u|, |u - x|), then 
essentially the same phenomenon holds: After finitely 
many steps, usually very few, the zero tuple appears.

The sequence of quadruples that is created by re-
peatedly applying this latter map is known as a Ducci 
sequence, after the Italian mathematician Enrico Ducci 
who first noticed this phenomenon. Apparently, he 

did not publish his discovery. Nevertheless, Ducci se-
quences have, in the 70 years since their appearance 
in the literature, found a considerable amount of at-
tention. A complete bibliography of the subject would 
probably contain close to 100 papers.

Let ℝ 4
+  denote the set of all quadruples of nonnega-

tive numbers, and let f : ℝ 4
+ →ℝ 4

+  be the map taking 
t = (x,y,z,u) to   (|x – a|, |y – a|, |z – a|, |u – a|) , with 
  a = (x+y+z+u)/4 . Also, we use the notation f  2 (t)    
for ))(( tff , etc., for the iterated application of f.

We are interested in the sequence t, f (t), f 2 (t), 

f 3 (t), ... which we call the Fontana sequence of t, after 
the nonexisting Italian mathematician Felice Fontana. 
We call the length of the Fontana sequence of t  up to, 
but excluding, the first zero tuple the height h(t) of t. 
For example:          ,
                                            if

                 if         , then                         
The Fontana and Ducci sequences of t  are defined 

in a very similar way, but there is one clear difference: 
The length of the Ducci sequence of t in general de-
pends on the order of the elements of t , whereas the 
length of the Fontana sequence is the same for every 
ordering of the tuple   as the arithmetic mean does not 
depend on this order.

There are two different kinds of tuples t ε ℝ 4
+ : For 

some, two of the numbers lie on either side of their 
arithmetic mean a.  Let us call the set of these tuples   
B (for  balanced). The other kind is the tuples where 
three of the numbers lie on one side of a and one on 
the other side.  We let A (for apart) be the set of these.
A  and  B  are not disjoint, since some of the numbers   
x, y, z or u  may be equal to their average a, as for 
example in the tuple (1,3,4,8), where a = z = 4.

Balanced tuples cannot have a height greater than 4:

Let us see why. In a balanced tuple ),,,(= uzyxt   
with uzayx ≤≤≤≤ , we have ),,,(==)( uzyxttf ′′′′′   
with x′ = a - x, y′ = a - y and z′ = z - a, u′ = u - 

a.   Hence (x′+y′)-(z′+u′)= 2a-(x + y) +2a-(z + u) 

= 4a-(x + y + z + u)= 0 that is, xʹ+yʹ=zʹ+uʹ.    Let 
now   aʹ = ¼ (xʹ + yʹ + zʹ + uʹ) be the arithmetic mean 
of tʹ, then.   Hence aʹ is between xʹ and yʹ and likewise 
between zʹ and uʹ.   We may assume xʹ ≤ aʹ ≤ yʹ and 
zʹ ≤ aʹ ≤ uʹ.

∞=),,,( yxxxhyx =/

0=/x1=),,,( xxxxh
0=(0,0,0,0)h5=,3)(1,7,πh
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Then for 

                            we find   
       x″ = a′ - x′, y″ = y′ - a′, z″ = a′ - z′

and u″ = u′ - a′.   Hence x″ - y″ = 2a′ - (x′ + y′) 
= 0  or x″ = y″  and, similarly, z″ = u″.  Thus t″ = 
(x″, x″, z″, z″).  It is now easy to see that t‴ = f (t″)  
is a constant tuple and f (t‴) = f  4(t) = (0,0,0,0).          

Here is an example:

Almost all unbalanced tuples have finite height:

Let Auzyxt ∈),,,(=  and                                 .
We assume uazyx <≤≤≤  (hence also ax <  ) and 
not zyx == .  Then 

Clearly, the height of t  is not altered, and the resulting 
tuple is still in A , if we add an arbitrary constant c  to 
every component of t. 

Thus by adding                      we  can  assume that        
                       which  implies uzyxa

2
1=)(

2
1= ++ .

Let 3
= uxdx − , 3

= uyd y − , and 3
= uzdz − . Note 

that   zyx ddd ≤≤  and 0== uzyxddd zyx −++++        
Hence 0≤xd   and 0≥zd .  

            (In fact, 0<xd  since ax < ).  

                 Then  

)(
2
1= zyxuc −−−

),
3

,
3

,
3

( udududu
zyx +++

is mapped to 

=)
2

,
2

,
2

,
2

(=)( uzuyuxutf −−−

)
2

,
6

,
6

,
6

( udududu
zyx −−−

The arithmetic mean of this tuple is 4
u

 . If 46
udu

x ≤−   
this tuple is again in A, otherwise it is in B. If it is in  
A, then it is mapped by f to

                   u + d
x
 ,  u + d

y
 ,  u + d

z  
,  u 

           12        12       12        4  

If                    this is again in A.   As long as the 
Fontana sequence of t remains in A, we have
f  k (t) =    u + (-1)kd

x  
, u + (-1) kd

y  
, u + (-1) kd

z  
, u 

          3.2k               3.2k              3.2k               2k

 
812
udu

z ≤+

 

with the arithmetic mean 12 +k
u

 by the same ar-
gument. The condition for this tuple to be in A is 

kkkx
uuud
26

=
232 1 ⋅⋅

−≤− +  for even k and kz
ud
26 ⋅

≤   
for odd k.   If k is large enough, then this condition is 
certainly violated since 0<xd .          

Note that this argument only works since not x = y 
= z and hence not d

x 
= d

y 
=0.    Otherwise the Fon-

tana sequence of t indeed remains in A as we have 
seen.

The Fountain

There  is a nice geometric interpretation of our 
sequences.   For  this,  we  note  that  we  can 
confine ourselves   to  tuples  t = (x, y, z, u)   
with u = x + y + z.   If t  is not a constant tuple, 
we have u > 0, hence by dividing with u  we can 
also assume  u = 1 without altering the height of the 
tuples.

For   (x, y, z, 1)   with  x ≥ 0, y ≥0, z ≥0   and 
x + y + z = 1 we write [x, y, z].  The set of all 
tuples of this form can be visualized as a triangle T:

                  

In this representation, if x, y, z  are the corners of 
T (somewhere in ℝ2), then [x, y, z] corresponds to 
the point 

                p = x . x + y . y + z .z.                   
In particular, the exceptional tuple (1,1,1,3)  is rep-

resented by ]
3
1,

3
1,

3
1[ , corresponding to the center point 

of T.

),,,(==)( uzyxttf ′′′′′′′′′′′

uzyx =++

=),,,(= uzyxt

( (

( (

aʹ = ¼ (xʹ + yʹ + zʹ + uʹ)

),,,(=)( auzayaxatf −−−−
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All tuples ],,[=,1),,( zyxzyx  in the triangle have 
the arithmetic mean 2

1=a , thus the red triangle in the 
center contains the points [x, y, z] for which x ≤ a, y 
≤ a, z ≤ a holds, that is, the points in the set A. The 
blue triangles contain the balanced points.

The Fontana map f  maps the corners a,b,c of A  to 
the corners x, y, z  of T, and is affine on A. Explicitly, 
[x, y, z] ∈ A is mapped to [1 - 2x, 1-2y, 1-2z],  in the 
preceding section we had shown that:
f  (x, y, z,1)= 1-x, 1-y, 1-z, 1  =1(1-2x, 1-2y, 1-2z, 1)
                    2     2      2     2     2

It just turns A around and stretches it by a factor 
of 2.

If you trace the map f backwards, you see that the 
red triangle A = A0 contains a smaller copy A1  of 
itself, which again contains a smaller copy A2  of itself, 
and so on. These copies converge to the center point 

]
3
1,

3
1,

3
1[  .

A point in A
k
 (k > 0) is mapped by f  to a point in  

A
k - 1. Thus with increasing k , the heights of the points 

in A
k increase. The points with really large height are 

found close to ]
3
1,

3
1,

3
1[  .

If you imagine the A
k
 as the basins of a fountain 

similar to the one pictured at the beginning of this ar-
ticle, then you can see the Fontana sequence of a point 
in A

k
 : The point “flows down” to the basins with lower 

heights until it reaches the lowest basin consisting of 
the blue corner triangles of T .

What happens then? From the previous section you 
can easily deduce that points in the interior of the blue 
basin are mapped to it’s boundary, from here to one 

of the corners of T, and finally to a constant tuple 
(which has no representing point in T ). It sort of van-
ishes into the ground.

We hope that you now can see the fountain: The 
basins are triangular, and there are infinitely many of 
them, but we find that this even underlines the spe-
cial beauty of this structure. Carl Friedrich Gauss once 
wrote: “You have no idea how much poetry there is in 
the calculation of logarithms” -- and likewise, as he 
certainly would have agreed to, in the calculation of 
some sequences.
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To make this representation of quadruples as points in ℝ2 explicit, one 
has to choose vectors x, y and z.   For example, let x = (0.0), y = (2.0) 
and z = (1.2).   Which  tuple corresponds to, say,  p = (2/3, 1/4)?   We  
have  to  solve (2/3, 1/4) = x  (0.0) + y (2.0) + z (1.2), subject to x + y + z 
= 1.  This means 2/3 = 2y + z, 1/4 = 2z, x = 1 - (y + z), with the solution 
t = [29/48, 13/48, 1/8] = 1/48(29,13,6,48).  Note that the arithmetic mean of 
(29,13,6,48) is 24, hence t lies in B.  Experimenting with a few other tuples 
quickly gives a feeling for the ‘two-dimensional view’ to quadruples.

Challenge for our readers:
Students are encouraged to write a program that, for a positive 

integer n produces a 4-tuple whose Fontana sequence is n steps 
long.  The programming involved would not be difficult, and the 
basic idea for a solution is contained in the paper.
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Beg, Steal or Borrow?  
Making Better Decisions in the Library

By Jon Warwick, London South Bank University

If you have ever wandered into your college library to 
look for a particular book only to discover that the 

book is not on the shelf as it has been borrowed, then 
you’ll know that this can be an exasperating experi-
ence.  Having discovered that there isn’t a copy of the 
book in the library you have, perhaps, five possible ac-
tions open to you.  First, you could look for a substitute 
book among the shelves in the local vicinity hoping that 
you will come across one that covers the material you 
wanted; second, you could just shrug your shoulders 
and make a mental note to come back again in a cou-
ple of weeks and check again; third, you could make 
your way to the service counter (or nearest computer 
terminal in many cases) and place a reservation for the 
book; fourth, you could just give up and resolve to 
try getting the book from another 
source (another library, sub-lend 
from a colleague, photocopy rel-
evant parts from somebody else’s 
copy,  or just buy it yourself); fifth, 
you could just give up altogether!

These actions are not mutual-
ly exclusive in the sense that you 
might try again next week and if 
still unsuccessful then place a res-
ervation or just give up.  Whatever 
your sequence of actions is, though, it is likely that it 
will be influenced by your expectation as to what will 
happen in response to your actions otherwise (and as-
suming that you are not acting totally irrationally!) you 
would have no basis for choosing the ‘best’ action.  You 
would need to ask yourself questions such as “Is the 
book likely to be available next week if I come back?” 
or “How long would I wait if I make a reservation for 
the book?”  Since making a reservation simply places 
you in a queue to receive the book, this last question 
is akin to asking “How long can I expect to wait in a 
queue before I can be served?” where service here cor-
responds to borrowing the book.

Since the 1960’s mathematical modellers have been 
using this analogy with queuing theory to try and an-
swer questions just such as these and we will take a 
brief look at some models that will, perhaps, help you 
answer some of these questions for yourself.  Details 

of the classic text by Phillip Morse describing the use 
of queuing theory in libraries are given in the short 
bibliography.

A Context for Queuing Theory
Let us consider a simple example of a single copy 

of a title in demand by customers.  In queuing theory 
models, it is assumed that customers arrive at a facility 
requiring a particular service (perhaps at a check-out 
to pay for grocery shopping or at a bank to withdraw 
money from a cash machine) and if the server (the 
checkout person or the cash machine) is already busy, 
then an orderly queue forms.  The customers are as-
sumed to be arriving individually and at random but at 
a known average rate of  λ  per unit time.  Similarly the 

average service rate of customers 
per unit time is denoted by µ  but 
the amount of time serving each 
customer varies according to some 
statistical distribution with a known 
mean of µ

1 . The standard deviation 
of service times is σ and measures 
how variable service times are 
from one customer to the next so 
that, for example, low values of σ  

would indicate that all customers get roughly the same 
service time.  For the purposes of our discussion, the 
customers will be students arriving at the library to try 
and borrow the book, and the service time will be the 
time a successful borrower actually has the book in his 
or her possession.  Once the service is complete (the 
book is returned) then the next student in the queue 
may borrow it.  The queue corresponds to those stu-
dents who have placed a reservation for the book or, if 
the queue is empty, a student coming in to borrow it.

There is a variety of queuing situations that have 
been well studied by mathematical modellers and most 
management science textbooks will have sections re-
lating to queues or waiting lines.  Many will deal with 
well behaved first-in-first-out queues and the differ-
ent models are generated by considering different ar-
rival and service time patterns.  We shall assume for 
our discussion that arrivals are random (with an aver-
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age rate λ ) but we will consider three different treat-
ments of the service process since this relates to the 
loan period which is an important parameter in deter-
mining the effectiveness of any library service.  In each 
case, though, the average service rate is denoted as µ  
and the standard deviation of service times as .σ  

First, though, we need to note some formulae that 
have been derived in the theoretical analysis of queues 
(for a good treatment of basic theory see Quantitative 
Analysis for Business Decisions listed in the bibliog-
raphy).  First, we denote the traffic intensity,   ρ  = µ

λ   
and for a stable queue we need ρ  < 1.  This means 
that on average customers are served at a faster rate 
than the rate at which they arrive.  If this is not the case 
then the queue would just grow without bound over 
time and attempting to calculate other queue statistics 
is meaningless.

Second, the probability of the queue being empty 
and the server idle (we call this an empty system and 
denote it as P0) is 1 - ρ  .
Thirdly, the expected queuing time , Ǭ , is given by:

                             Ǭ = 
)1(2

)1( 22

ρµ
σµρ

−
+           (1)

and this denotes the average time that customers 
spend waiting in the queue before their service can 
start.

These three parameters are useful in our library 
context because they tell us whether the queue is in a 
stable situation ( ρ ) and if so then P0 gives the likeli-
hood of finding the book on the shelf if we return at 
a later date and Ǭ gives us the likely waiting time if 
we make a reservation.  It is worth noting here that P0 
and ρ  depend only on the average arrival and service 
rate. The variation in service times, σ , only alters Ǭ.  
From equation 1 we see that the more variation there 
is in service times (larger values of σ ) then the longer 
waiting times are likely to be.  It is the variation in the 
arrival and service patterns that causes queues to grow 
and shrink.

Now, the most difficult modelling decision is that 
of how we assume students who have the book will 
behave.  In other words, will they observe the correct 
loan period, return the book early or be tempted to 
keep it out overdue?  To examine this, we will look at 
three cases.

Case 1
Let us assume that every student borrows the book 

for exactly the duration of the loan period, no less and 

no longer.  In this case, the average service time, µ
1  will 

be equal to the loan period and as there is no variation 
in service times    then σ = 0.  This gives    from (1):

                   
                          Ǭ  =  

)1(2 ρµ
ρ
−

                (2) 

                with ρ  and P0 just as before.

Case 2
It is unlikely that every student will return their book 

exactly in accordance to the loan period so to make 
things more realistic we allow some variability in the 
return of the book by assuming that the service pro-
cess is also random, just like the arrival process.  In 
this case, the average service time (the loan period) will 
be, as before,    but we will have σ =      also.  This is 
the classic queuing model1  and although the formulae 
for ρ  and P0 remain the same, we now have from (1):

                
                     Ǭ  = 

)1( ρµ
ρ
−

                  (3)

Although better than case 1, this case is also some-
what unrealistic.  Even though there is now variability 
in the return process (which is realistic), some students 
will return the book early and some will keep the book 
out way past the loan period since we have only as-
sumed the average service time equals the loan period.  
This is not realistic if, as is the case in many libraries, a 
firm policy is in place to deter late returns using fines 
or restricting further borrowing etc.

Case 3
Finally, let us make the return process even more 

realistic by borrowing an idea from project planning.  
Very often, project planners need to estimate how long 
particular activities will take to run.  They make use of 
a probability distribution known as the Beta distribu-
tion which is useful because it has two parameters that 
can alter its shape, 
and we can also 
specify limits on 
the variable, x.  Be-
low we have given 
two examples with 
different values of 
the two shape pa-
rameters a and b, 
and allowing x to 
range from zero to 
four.  

µ
1

µ
1

  1 Often referred to in text books as the M/M/1 model

µ
1

µ
1
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The horizontal scale denotes the variable (in our case 
the time a book is kept on loan) and the vertical scale 
the probability density.  In the second case we can see 
that this is useful because it allows us to specify a book 
return pattern whereby students are more likely to re-
turn the book as the loan period nears its end (a four 
week loan period in the illustration) and if the library 
operates strong penalties for overdue books, nobody 
keeps the book out once the loan period has expired.

Project planners use the Beta distribution in the 
following way.  They first estimate the minimum and 
maximum time that an activity will take and then spec-
ify the most likely time (these are sometimes called the 
optimistic, pessimistic and most likely times).  These 
figures define the range of values for x and the ap-
proximate position of the distribution mode which is 
the highest point on the density function.  Then the 
average activity time is 
estimated as:

and the standard deviation of activity time is estimated 
as:

 
To give an example, if the loan period is 4 weeks 

and there is a fine system in operation then we might 
choose TMin = 1, TMax = 5 and assuming the book has 
been strongly recommended students will want to keep 
it out so TLikely = 4.5.  The formulae above then give us 
the following:
         Mean service time, µ

1 , is now 
                                   
                                  =   24 = 4 weeks.
                                         6
The standard deviation of service times,σ , is      
                         
                        = 4 = 0.67 weeks.
                            6

An Illustrative Example
Let us now take an illustrative example to compare 

all three cases.  Let us suppose that the book attracts 
one demand every 5 weeks on average from students 
who are willing to place a reservation, and that the loan 
period in operation is 4 weeks.  Let us also assume 
that the library operates a fairly harsh fine system for 
overdue books.  The table on the next page gives the 
results for all three cases described above and we have 
used a week as the basic unit of time.

From the information presented above, we can see 
that the chance of finding a book on the shelf is the 
same for each case (P0 = 0.2) since λ  and µ  remain 
the same. Under case 2 (the standard queuing model 
with purely random service times) the expected wait-
ing time for a reserved book is an unreasonably long 
and unrealistic 16 weeks!

Note that the expected waiting time between cases 
1 and 2 are quite different.  As we mentioned earlier, it 
is the variation in arrival and service times that cause 
queues to grow and reduce and in case 1 we had (un-
realistically) no variability at all in service times.

Finally it is worth pointing out that in case 3 we have 
the added modelling effect of the library fines policy 
which helps to govern TMax.  Selection of values for TMin 
and TLikely would depend on the perceived popular-
ity of the book, whether students had been strongly 
recommended to read it, how much course material it 
covered etc.   The model presented is relatively easy 
to use in a spreadsheet and you could play with the 6

4 MaxLikelyMin TTT ++

6
MinMax TT −

6
15 −

6
55.441 +×+
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parameters of case 3 to get a feel for the variation in 
output values.

We have looked at a simple queuing model under 
different assumptions about service times.  Modellers 
would also be concerned about the arrival process 
(which we have not considered in detail here).  For ex-
ample, we have assumed that students arrive at ran-
dom and individually, whereas in reality recommend-
ing a book to students would probably result in several 
students trying to borrow the book immediately and 
probably arriving together!  Queuing theory does take 
account of cases where arrivals are grouped together 
(or ‘batched’ in queuing terminology) and also where   
λ changes over time (perhaps high initially and then 
reducing) but this is beyond the scope of this article.  

Faced with a waiting time of a little over 8 weeks 
what would I do?  I’d probably make a reservation for 
the book but whilst waiting I’d certainly investigate 
borrowing a copy from another library or beg a friend 
to lend me their copy.  I might even consider buying it 
- but stealing it would be out of the question!
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Prove

Definition: Queueing theory 
  is the mathematical study of waiting lines (or 
queues). The theory enables mathematical anal-
ysis of several related processes, including arriving 
at the (back of the) queue, waiting in the queue 
(essentially a storage process), and being served by 
the server(s) at the front of the queue. The theory 
permits the derivation and calculation of several 
performance measures including the average wait-
ing time in the queue or the system, the expected 
number waiting or receiving service and the proba-
bility of encountering the system in certain states, 
such as empty, full, having an available server or 
having to wait a certain time to be served.

(From Wikipedia, the free encyclopedia)

Quickie Problem 3
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In his book “Impossible?” Julian Havil grabs the talented grade 12 stu-
dent and recreational mathematician and bustles them through some 
counter-intuitive mathematics. He is not gentle, in that he uses a lot of 
equations, but the frequency that this book delivers those “Aha!” moments 
is unsurpassed by any book I’ve read. 

Topic selection is brilliant. In the 18 chapters, Julian deals with both rec-
reational mathematical topics like card tricks and hard core mathematics 
topics like the Banach-Tarski paradox. No self-respecting mathematician 
would even think of bundling such diverse topics into one book, but Julian 
pulls it off so effectively that the reader is not even conscious how unusual 
and inspired the choices are. 

“Impossible?” also consistently targets the same audience. Julian accom-
plishes this by increasing the difficulty of the easier topics by exploring 
their extensions. For example, the Monty Hall three-door problem is a great 
venture into conditional probability, but it is too simple to base a chapter on, so Julian explores extensions in 
different directions – including what might unpoetically be called the Monty Hall four-door, two-option problem. 
That’s refreshing.

The Monty Hall four-door, two-option problem: Behind three of the doors are goats, but behind the last door 
is a brand new car! Choose a door. Now Monty Hall opens one of the other three 
doors and shows you that it contains a goat. He then gives you your first option: 
“Do you want to stay with your initial choice – or switch to one of the other closed 
doors?” He then repeats the procedure – opening one of the other doors – reveal-
ing a goat – and giving you your second option: “Do you want to stay with your 
choice – or switch to the other closed door?” What is the best way to play this game 
so that you are most likely to drive away in a new car?

The chapters are not all equally long – two of the shortest are on Gamow-Stern 
Elevators and Wild-Card Poker. The behaviour of the elevators was the 
one part of the book that I found unconvincing, so I’ve written a mini 
article about them (to appear in the next issue). The Wild-Card Poker 
chapter is fun, and will give you a good flavour for the book as a 
whole, so I’m going to reproduce its essence – declaring a *spoiler 
alert* before I proceed.

Julian begins by calculating the frequency of the poker hands – in a 
deck without any wild cards:

This table matches our sense of justice.  We know that the Straight 
flush beats four of a kind which beats a full house which beats a Flush 
which beats a Straight...and it is not a coincidence that the frequency 

Impossible? Surprising Solutions to 
Counterintuitive Conundrums 
(Hardback - 264 pages (2008); Princeton University Press: ISBN 13:978-0691131313)

                                              A book review by Gordon Hamilton

 Poker Hand Frequency Probability 
Straight flush 40 0.0000154 
Four of a kind 624 0.000240 
Full house 3 744 0.00144 
Flush 5 108 0.00197 
Straight 10 200 0.00392 
Three of a kind 54 912 0.0211 
Two pairs 123 552 0.0475 
One pair 1 098 240 0.423 
Odd card 1 302 540 0.501 
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of the poker hands decreases as one ascends this hierarchy.
Surely it is a simple matter to construct such a table after a wild card     is added   to the deck - well let’s do it:

Oh no! Our sense of justice is outraged to see that Three of a 
kind actually has a higher frequency than the lower ranked Two 
pairs. Now think about how to solve this problem. Think care-
fully.

It seems to be an easily solved problem – the Three of a kind 
has become more popular than Two pairs – so let’s just swap 
them:

 Two pairs 205 920 0.04783 
Three of a kind 54 912 0.04305 
 

Unfortunately, when the Two pair is made more valuable than 
the Three of a kind, all of the poker hands with a wild card, 
which we previously chose to elevate to Three of a kind, we now 

choose to elevate to Two pairs. Justice is impossibly elusive. Isn’t that irritating! 

**A final couple of points that indirectly reveal how much this book is valued by those who have read it:
1) When I received this book from Pi in the Sky’s managing editor, David Leeming, it came with a curt little sticky note 

pasted to the front cover: “please return after reviewing”.

 Poker Hand Frequency Probability 
Five of a kind 13 0.0000045 
Straight flush 204 0.000071 
Four of a kind 3 120 0.001087 
Full house 6 552 0.002283 
Flush 7 804 0.00272 
Straight 20 532 0.00715 
Three of a kind 137 280 0.04783 
Two pairs 123 552 0.04305 
One pair 1 268 088 0.44189 
Odd card 1 302 540 0.45390 

 

FLATLAND:  A JOURNEY OF MANY 
DIMENSIONS: DVD  
A REVIEW OF THE SPECIAL  EDUCATION EDITION

                      Review By Sharon Friesen, PhD

Flatland: A Journey of Many Dimensions is based 
on the extraordinary book by Edwin A. Abbott 
(1884).  The Special Educational Edition DVD con-
tains the movie (35 minutes), a copy in pdf for-
mat, an interview with Dr. Thomas Banchoff of 
Brown University and four math lesson samples.  

There are two movie versions of Flatland, one by 
independent filmmaker Ladd Ehlinger Jr. and the 
other by Jeffrey Travis.  This is a review of the Tra-
vis film to which actors such as Martin Sheen, 
Kristen Bell and Michael York lend their voices.  

Travis has created strong visual effects.  He has ad-
dressed many of the social issues that reading Ab-
bott’s book in today’s classrooms raises.  The film 
plot unfolds about two central characters a square, 
Arthur and his granddaughter, a hexagon named 
Hex.  This film plays fairly loose with the book, but 
it holds together well.  It has a compelling emotion-
al component which resonates with today’s youth.  

This film is weak in its ability to remain true to 
the ideas of a 2-dimensional universe.  The central 
characters are human-like in appearance.  Things 

such as eye movement, toys, opening a briefcase do 
not make sense in a 2-dimensional universe.  They 
only make sense within a 3-dimensional universe.  
Far too many of these instances cause me to won-
der whether the animators caught on to the im-
plications of living in a 2-dimensional universe.  

This is an engaging film to be shown to middle and 
high school students but it really lacks the mathemat-
ical depth contained in Abbott’s masterpiece; there-
fore, I would not recommend it for university math 
majors.  That said, it is socially inoffensive and makes 
available geometrical ideas and concepts that occur 
to few nonmathematicians.  It was a rare treat to be 
able to watch a film that entertained mathematical 
ideas.  In that, it has the potential to inspire a new 
generation of students, teachers and the public to 
engage with and be fascinated by geometrical ideas. 

The interview with Dr. Tom Banchoff of Brown Univer-
sity is excellent.  Dr. Banchoff makes 
many ideas related to dimensionality 
explicit through various animations 
and related commentary.  His mod-
els of 4-dimensions are particularly 
good and he puts forward a challenge 
to the viewer, “What if we were visit-
ed by a sphere of the 4th-dimension?”.

Program content, artwork & design © 2007, Flat World Produc-
tions LLC., www.flatlandthemovie.com, ISBN 978-1-60402-469-2
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Dawson’s Chess  (Board Game)  
Equipment:  A 3 x n chessboard, n white pawns (or counters) and n black pawns (or counters)
Number of players: 2

The Set-up:
Players decide on the size of board. Our examples use a 3x8 board i.e. three rows of a chess board. 
The set up is as follows:

 

A Move:
At your turn you move one of your pawns forward one square. However if you are in a position to capture
one of your opponents pawns (one square diagonally forward to left or right as in normal chess) then you 
must capture that pawn. Capturing is mandatory in this game! White always moves first in a game.

A Win:

The last player to move wins. If you have no legal move then you lose.
Notes: In Dawson’s Chess sequences of moves can occur where there is no choice for either player. 
For example:  suppose White on his first move moves one of his edge pawns:
 
Then Black is forced to capture this pawn:

 

White in reply is forced to capture this Black pawn:
 
The Black and White pawns at the right of the board cannot    
now make any further moves in the game. Who wins, if they 
play their best move at each turn, in a 3 x 3 game, in a 4 x 3 
game and in a 5 x 3 game, White or Black?

MATHEMATICAL 

GAMES!!!
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Sprouts (a paper & pencil game)
The Game of Sprouts was invented in 1967 by Princeton mathematician John H. Conway and by Michael S.
Paterson, when both were at the University of Cambridge in the UK. Here is a quote from Conway:
“The day after sprouts sprouted, it seemed that everyone was playing it, at coffee or tea times, there were 

 little groups of people peering over ridiculous to fantastic sprout positions.”
Equipment:
Paper and pencil
Number of players: 2
The Set-up:  A smallish number of spots are drawn.
Your move:  Join two spots, or one spot to itself, with a curve which cannot touch or cross any other curve 
or spot. Now place a new spot on this new curve. No spot can have more than three curves attached to it.
You win:  If your opponent has no valid move.
Comments: Here is a complete sample game starting with 2 spots: 

For these and other interesting mathematical games go to: http://www.madras.fife.sch.uk/maths/games

Other mathematical games available:
Dvonn Awards:
2002 International Gamers Award Winner
Mensa Select Mind Games 2002

YINSH Awards:
Board Game Award: Mensa Select Mind Game 2004

http://www.boardgameratings.com/award_winners.php?award_type=MS

For grades 1 through 5, “For Sale” by Stefan Dorra, www.boardgamegeek.com/game/172, and ThinkFun 
puzzles like Rush Hour and Hot Spot.  These and other games are found at http://www.thinkfun.com.
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Pi in the Sky Math Challenges

:
Prove that the equation x 5 + y 5 + 2 = ( x  + 1)5 + (y + 2)5 does not have integral solutions

Prove that p
n
 > 2n for every n >5, where p

n
 denotes the n th prime number ( p1 = 2).

Inside a square with side length 1 there are 201 points.  Prove that there exists a circle of radius 0.1 which 
contains at least three of these points.

: 
Let a, b, c be positive numbers such that abc = 18.  Prove that
                  a 3 + b 3 + c 3 > a√ b + c + b√ a + c + c√a + b
                         3

Let ABCD be a convex quadrilateral, M the midpoint of BC and N the midpoint of CD.  If AM + AN = 1 then 
the area of the quadrilateral is less than 1/2.

:
There are given five line segments having the property that any three of them can be the sides of a triangle.  
Prove that at least one of these triangles must be acute.

Solutions to the problems published in the Spring 2008 Issue of PI In The Sky

:
Find all four digits numbers abcd such that abcd - a 4 - b 4 -c 4 - d 4 has a maximum value.
Solution by Henry Ricardo, Medgar Evers College, New York:
We have
             f  (a,b,c,d) = abcd - a 4 - b  4 - c  4 - d  4 = a (10 3 - a 3) + b (10 2 - b 3) + d (1-d 3)
Since each term of the last sum is nonnegative, the maximum value of f(a,b,c,d) is attained when each sum-
mance is maximized.  It is an elementary calculus exercise to determine that for each k ε {0,1,2,3} the func-
tion f  (x) = a (10 k - x 3)  attains  its  maximum  value  when x = 3√10k/4.   Taking  the  nearest  integer value of 
x for k = 0,1,2, and 3 yields a =6, b=3, c=1 and d=1.  It is clear that d = 0 results in the same maximum.  
Thus the numbers we seek are 6310 and 6311, leading to a maximum value of 
f  (6, 3, 1,1) = f  (6,3,1,0)  = 4932.

:
Let {a 1...a n} ∪ {b 1...b n} = {1,2...2n} such that a 1 < ... < a  n , b 1 > ... >b n.  Prove that 
                                      |a 1 - b 1| + |a 2 - b 2| +...+ |a n - b n| = n 2

Solution:
For each i ε {1,2, ... , n} one of the two numbers a 

i 
, b 

i
 is less than or equal to n and the other is greater than 

n.  Indeed, if by contradiction a 
i
 < n  and b 

i
 < n, then a1 < ... < a 

i
 < n and b 

n
 < ... < b 

i
 < n.  Hence we have 

found n + 1 distinct positive integers which are less then or equal to n, a contradiction.  Similarily, we can 
not have a 

i
 > n and b 

i
 > n.  Thus:

                                    |a 1 - b 1| + |a 2 - b 2| +...+ |a n - b n| = (n + 1)+...+(n + n)-1-2-...-n = n 2

:
Let A be a set of postive integers such that for every m, n, ε A, |m - n| > 1/20 (m + 1)(n + 1).  What is the 
maximal number of elements that A could have?
Solution: Since |m - n| > 1/20 (m + 1)(n + 1) we must have      1     -    1      >   1  (*)
            m + 1   n + 1         20
By the Pigeonhole Principle, we conclude that at most one element of A is greater than 19 and that the inter-
val (0, 1 /5) contains at most 4 numbers of the form     1     , a , ε A.  
                                                                                  n + 1
Hence A contains at most 4 elements which are are  greater than 4.  Since {1,2,3,4} verifies (*), the largest 
set A whose elements satisfy (*) could be A = {1, 2, 3, 4, a,b,c,d } where 4 < a < b < c <d are integers, with 
at most one greater than 19.



Call For Papers
Submissions are now open for the next issue of Pi in the Sky, Spring 2009

Pi in the Sky is aimed primarily at high school students and teachers, with 
the main goal of providing a cultural context-landscape for mathemat-
ics.  It has a natural extension to junior high school students and undergradu-
ates, and articles may also put curriculum topics in a different perspective.

Guidelines:
Papers should have a scientific content of original, unpublished material. Submissions 

should be no more than 5,000 words.  Submissions can be sent in Latex, Adobe pdf, or 
Word format.  If including graphics, please submit all graphics in either png or tif format.  
Contents should contain material suitable for students of high school.

   Pi in the Sky accepts materials on any subject related to mathematics and its appli-
cations, including articles, problems, cartoons, statements, and jokes. Copyright of ma-
terial submitted to the publisher and accepted for publication remains with the author, 
with the understanding that the publisher may reproduce it without royalty in print and 
electronic forms. Submissions are subject to editorial review and revision. We also wel-
come Letters to the Editor from teachers, students, parents, and  anybody interested in 
math education (be sure to include your full name, phone number and e-mail address).

          Deadline for submissions of articles for review is January 15, 2009.

For further information on the content and style of the journal please view previous 
issues on the following website: 

                   http://www.pims.math.ca/media/publications/pi-sky

                Submissions can be sent either by email: pi@math.uvic.ca
                                                       
                                                                 or
                                      
                                              By mail if sending a disk:  

            Editorial Coordinator, Pi In The Sky
            University of Victoria
            PIMS Office
            PO Box 3060 STN CSC
            Victoria BC  V8W 3R4
            Canada

     Telephone: (250) 472-4271                                      Fax:  (250) 721-8958




