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Solutions to the 2024 Math Quickies at the 
end of the issue will be published in Pi in the 
Sky Issue 24.

WIN $100!
PIMS is sponsoring a prize of $100 CAD to the
first high school student (from within the PIMS 
operating region: Alberta; British Columbia; 
Manitoba; Saskatchewan; Oregon; Washington) 
who submits the largest number of correct 
answers before June 1, 2025. Submit your 
answers to: s.demirbas@math.ubc.ca.
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Submission Information
For details on submitting articles for our 
next edition of Pi in the Sky, please visit 
www.pims.math.ca/resources/publica-
tions/pi-sky

Pi in the Sky is a publication of the Pacific 
Institute for the Mathematical Sciences 
(PIMS). PIMS is supported by the Natu-
ral Sciences and Engineering Research 
Council of Canada, the Province of Alber-
ta, the Province of British Columbia, the 
Province of Saskatchewan, Simon Fraser 
University, the University of Calgary, the 
University of Lethbridge, the University of 
Regina, the University of Saskatchewan, 
the University of Victoria, the University 
of Manitoba, and the University of 
Washington.

Pi in the Sky is aimed primarily at high 
school students and teachers, with the 
main goal of providing a cultural 
context/landscape for mathematics. 
It has a natural extension to junior high 
school students and undergraduates, 
and articles may also put curriculum
topics in a different perspective.

Our cover features an artwork titled "Majolica works" by Stephen Maxwell Campbell from Manchester, En-
gland. Hand-painted using handmade oil pants, the artist uses his interpretation of perspective similar to 
stereographic projection. 

On the work, Stephen notes: 
Networks and non-euclidean geometry were the first inducement for me to plunge into Mathematics. My 
paintings have always come about from wondering ‘what will happen if I apply this method?’ or ‘how can I 
make sense of this?’ In this way I use Mathematics as a framework for approaching a subject or as a tool to 
solve a problem, such as “what would this look like through the back of my head?”, “what if the surface of my 
eye was bigger than the thing I am looking at?” Being relatively new to the world of Mathematics I have to say 
my Mathematical tool box is rather meagre, but the more I learn the more I find myself asking “what would
this look like?” www.smcampbell.eu
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sin(a) = sin(L) sin() + cos(L) cos() cos(h)

sin(z) =
cos(δ) sin(h)

cos(↵)

provided that cos(h) > tan(   )/tan(L) (Kalogirou (2014)). 
Incidence angle,  : the angle between the sun’s rays 

and the normal on a surface. Fig. 1 depicts the basic an-
gles for the angle of incidence (Kalogirou (2014)): 

✓

cos✓

cos✓

NORTH-FACING SOLAR PANELS IN CALIFORNIA
Daeho J. Lee

Westview High School

Solar Energy is very popular. We often find some buildings with solar panels installed in the North-facing
roofs in the Northern Hemisphere. We want to provide a brief justification using 3D geometry.

Introduction
Using clean energy is a glob-

al movement toward sustain-
able cities and communities, 
one of the United Nations’ 17 
Sustainable Development Goals 
(United Nations (2015)). Among 
others, solar energy is quite 
popular, especially in areas with 
many days of sunshine, such as Southern California. 
In the Northern Hemisphere, many might intuitively 
believe that South-facing solar panels accumulate the 
most sunlight and, thus, in Southern California, they 
might expect that there are not very many North-fac-
ing solar panels. However, North-facing solar panels 
are easily found on Google Map. But why? Why in the 
Northern Hemisphere areas do they install solar pan-
els on North-facing roofs? We wanted to provide at 
least one justification to answer this question with the 
focus on the behaviour of the solar incidence angle, 
denoted by   , the angle between the Sun’s rays the 
normal vector of a  solar panel, using three-dimen-
sional (3D) geometry with some trigonometric prop-
erties. 

For a geographic coordinate in San Diego, Califor-
nia, we performed numerical examinations on            
accumulated over the day time (i.e., daily accumu-
lations for the respective 365 days) and their cumu-
lative behaviours for a one-year cycle (i.e., yearly 
accumulation) for West, East, South and North-facing 
panels, respectively, without consideration of other 
factors, such as weather. It is observed that the daily 
value of            for a North-facing panel is great-
er than that of a South-facing panel during the 65 
days around the summer solstice whereas the yearly 
accumulation obtained from a North-facing panel 
shows approximately 37.5% smaller than that from a 
South-facing panel. 

The Model
We address several angles that are necessary to 

model the solar incidence angel as follows. Note that 

we completely rely on the well-established study results 
regarding solar incidence angle   , by referring to some 
references (Kalogirou (2014); Duffe (2020); Kalogirou 
(2022)).

Declination,   : the angular position of the sun at 
solar noon (i.e., when the sun is on the local meridian, or 
simply speaking, when the sun is at its highest point that 
day) with respect to the plane of the equator. The decli-
nation    in degrees for any day of the year, say   , can be 
approximated by the following equation (refer to Kalogi-
rou (2014)):  





 = 23.45 · sin
⇢
360

365
(284 + n)

�

Using the simplifying assumption that each year has ex-
actly 365 days. 

Hour angle, h: the angular displacement of the sun 
east or west of the local meridian due to rotation of the 
earth on its axis at 15° per hour (h=0° at noon).

Solar altitude angle,    : the solar altitude angle 
is the angle between the sun’s rays and a horizontal 
plane, which is given by the following relation (Kalogirou 
(2014)):

↵

where L is local latitude, defined as the angle between a 
line from the center of the earth to the site of interest and 
the equatorial plane. 

Solar azimuth angle, z: the angle of the sun’s rays 
measured in the horizontal plane from due south for the 
Northern hemisphere. The solar azimuth angle is ex-
pressed as

n
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California. We considered    = 25° and calculated other 
related values accordingly. Other factors, such a sea-
sonal weather and daily weather conditions, were not 
considered.

As shown in Fig. 2, the daily value of          obtained 
from a South-facing solar panel is smaller than the oth-
er three scenarios during the 65 summer days around 
the summer solstice (i.e., between day 141 and day 205 
where day 1 is Jan. 1st). What we found interesting is 
the fact that with the tilt angle   = 25° the North-fac-
ing panel can see the sun longer than the South-fac-
ing panel for many summer days, which results in the 
North-facing scenario’s better performance.

The yearly cumulative values for the West, East, 
South and North-facing scenarios are approximately 
0.407, 0.407, 0.478 and 0.299, respectively. This shows 
that the North-facing scenario performs approximately 
37.5% worse than the South-facing scenario. Assuming 
that there are many winter days partly or fully cloudy 
and that           is approximately proportional to the 
solar energy generation rate, the difference will be-
come much smaller than 37.5%, which implies that the 
North-facing scenario could still be productive.

✓

Fig. 2: Numerical examples. Daily behaviours of cos   for a window of 365 days: daily and cumulative (normalized) for West, East, 
North and South-facing scenarios. East and West scenarios are equivalent for symmetry under our examination settings.

where   is the surface tilt angle from the horizontal and     
is the surface azimuth angle which is the angle between 
the normal to the surface and true south.

Numerical Examples and Conclusions
We performed numerical examinations for a geograph-

ic location (32.964479°, –117.150422°) in San Diego, 





cos✓



cos✓
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Fig. 1: Solar angle diagram for modeling the incidence angle   
for a solar panel.
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SQUARING THE CIRCLE LIKE A
MEDIEVAL MASTER MASON

Frédéric Beatrix*

Architect INSA Strasbourg

1 “Squaring the circle”
“Squaring the circle” is a classic math problem in geometry. It is part of the three great problems of antiq-
uity, with the trisection of the angle and the duplication of the cube. It is the challenge of constructing a 
square with the same area as a given circle. The rule is the following: use only a finite number of steps, with 
solely a compass and straightedge (so, no ruler with measurement gradients). It basically comes down to 
building a squre where each side is     .

In 1837, Pierre Wantzel [1] proved that only lengths which are algebraic numbers can be constructed 
with compass and straightedge. This is the reason why we can construct for example      which is the  
diagonal of a square 1x1, or      which is the diagonal of a “Quadratum Lungum”, a rectangle 1x2. 

In 1882, Ferdinand von Lindemann [2] proved that     is not an algebraic number since it is not the root 
of a non-zero polynomial of finite degree with rational coefficients (we call such number “transcendental”), 
therefore this problem is resolved negatively: we cannot construct      using solely a compass and straight-
edge.

From this date, mathematicians have endeavoured to provide geometric approximation which would 
shine with the three following quantities: to be a simple construction, with minimum steps, to provide a 
good approximation of     . Though so far all approximate constructions of      are borne from complex fig-
ures requiring tedious multiple steps. Mathematicians have forsaken simplicity and elegance for the sake of 
accuracy.

2 Definitions 

Definition 1. 

ACCURACY increases as the relative error of the constructed segment to      decreases.   
ELEGANCE reflects a subjective view on the overall elegance of the whole graphic design leading to 
the construction of the segment which approximates     .
SIMPLICITY reflects the number of simple geometric steps leading to the final length which approxi-
mates     .
0 step: a given figure
1 step: draw a line or an arc
3 steps: draw a perpendicular line, or find the middle of a given segment
5 steps: draw a parallel line
11 steps: draw the    fraction of a given segment

Draw a perpendicular line or find the middle of a given segment: 3 steps

* Frédéric Beatrix runs his own architectural firm blue.archi in Villefranche-Sur-Mer, France

p
⇡

p
2p

5

⇡

p
⇡

p
⇡

p
⇡

p
⇡

p
⇡

p
⇡

n

5
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Draw a parallel line: 5 steps

Get the n/5 fraction of a given segment: 11 steps

Figure 1: calculation of steps for basic geometry

3  Accuracy vs Elegance and Simplicity
In 1913 Ramanujan Srinivasan Ramanujan [4] proposed a pretty complex figure using       as an approximation 
of     correct to 6 decimal places. Then in 1914 he proposed yet another complicated construction, giving an 
approximation of     with               , correct to 8 decimal places (Fig. 2). Here are the 51 construction steps:   

355

113
⇡

⇡ 4

r
92 +

192

22

Figure 2: Construction by Ramanujan (1914), replicated from [3].
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1: We have the given circle centred on     radius                          with diameter
2: Bisect          at    (3 steps)
3: Created a 3-unit ruler from    (4 steps)
4: With the ruler trisect       at    (5 steps)
5: Join       (1 step)
6: Cut off from it          and          equal to        (2 steps)
7: Join       and       (2 steps)
8: Cut off       from       so that        =         (1 step)
9: Through    draw       parallel to        and meeting       at     (5 steps)
10: Join       and through     draw       , parallel to       , and meeting       at     (6 steps) 
11: Draw       perpendicular to       and        =         and join       (5 steps)
      We have built
12: We now create the mean proportional between        and         by defining    , intersection of       

and the circle (1 step)
13: We identify      middle of         and draw the circle radius         (4 step)
14: The perpendicular to      at     cuts this circle at     (3 steps)
15:               so we create     so that                            (3 steps)
16: We create    so that                             (1 step)
17: We build the half circle diameter         centred on     (4 STEPS) 
18: The intersection of      with this circle gives us    (1 step) then
                                                                                  

r = 1 = |OA| |AB|

|CM | |MN | |AT |

|AP | |AM |

|AS| |AR|

ACB C
A

AO T
BC

AM AN
AP AN

P PQ MN AM Q
OQ T TR OQ AQ R
AS AO OS

|OS| ⇡ ⇡2

9
|OS| |OB| V OS

O0 |SV | |O0S|
SV O W

|OW | ⇡ ⇡

3
X |OX| = 3|OW | ⇡ ⇡

Y |XY | = |OX|+ 1
|XY | O00

SV Z |OZ| ⇡
p
⇡

ACCURACY : ⌅⌅⌅⌅⌅ ELEGANCE : ⇤⇤⇤⇤⇤ SIMPLICITY : ⌅⇤⇤⇤⇤

The latest proposal dates from 3rd August 2019: Mr. Hung Viet Chu [5] proposed a construction providing an 
approximation of      with                               which is correct to 9 decimal places and requires at least 68 steps 
(Fig. 2). 

⇡
s

63

25
(1 +

5

2

15
p
5− 7

269
)

Figure 3: Construction by Mr. Hung Viet Chu (2019) from [5]

ACCURACY : ⌅⌅⌅⌅⌅ ELEGANCE : ⇤⇤⇤⇤⇤ SIMPLICITY : ⇤⇤⇤⇤⇤

In the same publication, Mr. Hung Viet Chu also proposed a construction base on the approximation that he 

attributes to Robert Dixon [6]:                  where                    . The beauty of this approximation is to connect             

with the “golden ratio”    .

6φ2

5
⇡ ⇡  =

p
5 + 1

2
⇡

O
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the golden ratio    (phi) is naturally found in nature for example in the spirals on the pineapple, the artichoke 
or the pine cone (13 spirals in one direction and 8 in the other), or the spiral of seeds of the sunflower (13 in one 
direction and 21 in the other direction). These numbers are part of the famous Fibonacci sequence where each 
new term is the sum of the two previous ones: 1,1,2,3,5,8,13,21,34,55,89,144,233... And indeed, the ratio of 
succesive Fibonacci terms are close to the golden ratio    . 

The proposed graphic by Hung Viet Chu in 2019 would adequately reflect the actual complexity of the con-
struction if it did display all the required steps and especially the geometric construction of      on       such as

            . Once again, the construction of         requires the creation of a 5-units-ruler (i.e. a line with 5 equal 
measurement gradients) and one could consider that it is a breach of the rule. Here are the proposed 29 steps: 

1: Let
2: Construct                  (4 steps)
3:                 (2 steps)
4: Draw the circle centered at    , radius       , which cuts the extended        at      (1 step)
5: Let      on        such that                      (11 steps)
6: Let      be such that                      (4 steps)
7: Draw the circle taking        to be one of its diameter (4 steps)   
8: Let      be on the circle such that                   (3 steps)

Then      
       





M AD
|DM | = 2

5
|AD| DM

|AB| = 1
BC ? AB

|BC| = 2
A AC AB D

M AD |DM | = 2

5
|AD|

N |ND| = 1

2
|DM |

NB
H H ? NB

|MH| =
r

62

5

Figure 4: Construction by Mr. Hung Viet Chu using the Dixon approximation (2019) from [5]

ACCURACY : ⌅⌅⌅⌅⇤ ELEGANCE : ⌅⌅⌅⇤⇤ SIMPLICITY : ⌅⌅⌅⇤⇤
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4  Golden Ratio and Architecture
I must mention that     has great relevance in architecture since antiquity as it can be measured in the Great 
Pyramid of Gizeh and the Parthenon for example. The apothem of the Great Pyramid at Gizeh has an angle of  
    which is an accurate approximation of      . The Parthenon is an important example since the “Golden Ratio”
     owes its Greek initial letter to its main sculptor and architect Phidias (              ). Actually the figure 5 is a hint 
on a whole new assessment of the place of geometry in antique Greek architecture, in a coming book* we will 
demonstrate the underlying geometrosophy of the Parthenon which does include    .

Another likely reason for the common use of     by antique architects is that    appears naturally in the simple 
construction of a Quadratum Lungum (double square) as shown in Figure 5. For architects, the simplicity and 
elegance of the geometry has at least the same value as accuracy.    

*"Le Tracé Primordial: la géométrie secrete des bâtisseurs", ed. DERVY-MEDICIS, 2024

φ✏◆δ◆↵⇣

A

B
= '

Figure 5: Golden Ratio     and Parthenon - source for background drawing [7]



14

11

p







https://amzn.eu/d/9YkHPBv
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5  Proposed Dating for the Approximation 6φ2

5
⇡ ⇡

Figure 6: Rose Window of the western façade of Chartres Cathedral, France - source: [8]

The approximation                may operatively date from medieval times since it is a geometric quality of the building 
units used by the French builders of gothic cathedrals. At the time, the unit is the “Ligne du Roi de France” and the 
standard set of French medieval units are the following:

34.lignes = 7.64cm is one Palmus minor 
55.lignes = 12.36cm is one Palmus major
89.lignes = 20cm =       is one Empan (span) 
144.lignes = 32.36cm is one pied (foot)
233.lignes = 52.36cm =     is one French medieval Coudée (Cubit)

They are all numbers of the Fibonacci sequence. More specifically if you consider the Coudée of 233.lignes and the 
Empan of 89.lignes, then we have             .

Furthermore, a Master Mason at work will necessarily find out that a French Medieval Coudée measures 1/6 of the
perimeter of a circle diameter 5 Empan (that is      diameter). Indeed this property allows him to construct easily large-scale 
6-petals or 12-petals “rose window” as you commonly find in the axis of the west elevation of so many cathedrals. 
These operative qualities translate mathematically as            at 0.0015% which is near-perfect for operative masonry*. 
Comparatively the tolerance for concrete structures nowadays is around 2% in most countries.     

* In medieval times, "operative masonry" was roughly what we now call "architecture"

6φ2

5
⇡ ⇡

1

5
m

C

C ⇡ 2

5
m

1m

φ2

5
⇡ ⇡

6

6  Squaring the Circle Like a Medieval Master Mason
With the medieval approximation that we have presented, we propose a simple, elegant and accurate 

method for squaring the circle (Fig. 4). From the given circle radius 1.

1: We design Quadratum Lungum (double square)                where                   (10 steps)
2: We create the inner circle radius    centred on      (1 step)
3: The intersections of the diagonals with the inner circle generates     and     (3 steps)
4: We draw the arc centred at     , radius        , which cuts         at     (1 step)  
   
                             at 0.0007%  that is 7mm over one kilometre. Therefore, the yellow square has nearly the 
same area as a circle radius 1. The level of accuracy is the same as Figure 4 by Hung Viet Chu. Though our 
proposal requires only 15 steps and produces a very neat and elegant figure.         

ABCD |AD| = 1
1

2 G
E F

A AE AB H

FH =

s

φ2 + (
φp
5
)2 ⇡

p
⇡
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- Proof - 
The hypotenuse of           is                                             therefore,                                                             .

Since                then               . Therefore, the hypotenuse of           is                                         as desired.       

ADC AC =
p
AD2 +DC2 =

p
5 AH = AE = AG+GE =

p
5

2
+

1

2
=

AE

AC
=

AF

AD AF =
p
5

FAH FH =

s

φ2 + (
φp
5
)2 ⇡

p
⇡

7  Bonus: The Pentagram Hidden in the Quadratum Lungum
With the very same figure 5, we easily calculate that                       and                       (figure 6). These 
dimensions are respectively the isosceles side (      ) and the base (      ) of a “golden triangle” inscribed 
inside a circle radius 1. Therefore, you can immediately build a regular pentagon and pentagram.     

HD =
p

+ 2 HO =
p
3

HD HO

ACCURACY : ⌅⌅⌅⌅⇤ ELEGANCE : ⌅⌅⌅⌅⌅ SIMPLICITY : ⌅⌅⌅⌅⌅

Figure 7: Squaring the circle like a Master Mason

Figure 8: The pentagram hidden in the Quadratum Lungum



Issue 23 - Fall 2024

13

References
[1] L. Wantzel, Recherches sur les moyens de reconnaître si un problème de géométrie peut se résoudre avec 

la règle et le compas, [Investigations into means of knowing if a problem of geometry can be solved with a 
straightedge and compass], Journal de Mathématiques Pures et Appliquées 2 (1837), 366 - 372.

[2] F. Lindemann, Über die Zahl π, Mathematics Annalen 20 (1882), 213 - 225

[3] Wikimedia, https://commons.wikimedia.org/wiki/File:01-Squaring the circle-Ramanujan-1914.gif,

[4] S. Ramanujan, Squaring the cirlce, Journal of Indian Mathematical Society 5 (1913), 132.

[5] "Square the circle in one minute" by HÙNG VIÊT CHU https://arxiv.org/pdf/1908.01202.pdf,

[6] Robert Dixon, Mathographics, 1987, Blackwell Publishers, ISBN-10: 0631148272

[7] Background drawing: "Elevation of the portico restored" by Nicholas Revett (1721 - 1804)

[8] Wikimedia https://commons.wikimedia.org/wiki/File:Chartres_-_Cathédrale_12.JPG

ABOUT THE ILLUSTRATOR
Bella Cook is a Junior at Detroit Country Day School and loves to combine her artistic passion with the study 
of mathematics. 



Pi in the Sky

14

A PERFECT MATCH:
STABILITY AND THE GALE-SHAPLEY ALGORITHM

Kenneth Hou and Kimberly Hou

Kenneth Hou is a 
junior at Saratoga High 
School, California. He 
developed his love for 
cats, fencing, 
and mathematics in 
California, where he 
has lived his entire life.

Kimberly Hou is an 
undergraduate at 
Princeton University. 
She enjoys figure 
skating and 
horseback riding in 
her free time.

Introduction to Matchings

At first glance, man's irrational wants and needs 
seem like a foil to mathematics' rigorous proofs and 
clean definitions. However, Game Theory, an interdis-
ciplinary field of economics and math, aims to formal-
ize ways to meet these needs. the Prisoner's Dilemma 
is the most famous example of Game Theory. In this 
paper, we will be specifically looking at matchings 
and the Gale-Shapley algorithm.

In a matching problem, two different sets of agents 
act on their preferences to produce a matching be-
tween the two sets. Either one or both sets of agents 
has a set of preferences, or an ordered list in decreas-
ing rank of the opposite set. In our example, we'll 
focus on colleges and applicants. The formal model 
of our matching problem will look like this:

•  A set of n colleges, C, and a set of m applicants, 
A.

• Each applicant a will have a set of complete pref-
erences over the colleges,                                  . 
The       notation means preference, so applicant a 
would prefer college       to college      .

• Similarly, each college c will also have a set of 
complete preferences over the applicants.

For the above example, we will assume that there 
are the same number of applicants and colleges, and 
each college can accept a maximum of one appli-
cant, making the example a two-sided (because both      

C1  C2  · · ·  Cn
C1 C2

applicants and colleges have preferences over the 
other) one-to-one matching.
 

The two sided one-to-one matching problem was 
historically called the "marriage problem" with men 
proposing to women and women choosing whether or 
not to accept the men's proposals. However, this termi-
nology is outdated.

Other types of matching problems include one sided 
matching problems and many-to-one matching prob-
lems. In one sided matching problems, only one side 
has preferences over the other, but the other side is 
indifferent. Examples of this include matching tenants 
to apartments. In many-to-one matching problems, one 
side can accept multiple members of the other side, 
such as how each employer will accept many employ-
ees. We will not be focusing on one-sided matchings, 
and our definitions will not necessarily apply to them.

Stable Matching

Now that we have defined what a matching is, can 
we also formalize what it means for a participant to be 
happy with their matchings? It's clear that not everyone 
will be able to get their first choice, but can we maxi-
mize everyone's satisfaction? Or is there an easier way 
to determine whether a matching is "good"?

Let's look at a matching that wouldn't work. Suppose 
Albert prefers the University of British Columbia to Mc-
Gill and UBC prefers Albert to Nita. If Albert is matched 
to McGill and Nita is matched to UBC, then Albert and 
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UBC would gain more by leaving their current matches 
and matching with each other. It's clear that such a 
situation would result in an unfavourable matching.

Albert and UBC are known as a blocking pair. An appli-
cant a and a college c form a blocking pair for a matching 
M if a prefers c to her match in M and c prefers a to their 
match in M. A matching is stable if it has no blocking 
pairs. Stability is a good indication of whether or not a 
matching system is viable long term since no pair would 
benefit by leaving their current match for each other.

This concept of stable matchings was formalized in 
1962 by David Gale and Lloyd Shapley. In this paper, 
they proved that there always exists a stable matching 
and provided and proved their landmark algorithm for 
finding a stable matching. This algorithm became known 
as the Deferred Acceptance or Gale-Shapley algorithm. 
In 1984, using results from Gale and Shapley, Alvin Roth 
published a paper showing that the system that assigned 
medical school graduates to hospitals in the United 
States resulted in a stable matching. For their work on 
this problem, Shapley and Roth were awarded the 2012 
Nobel Memorial Prize in Economics.

Examples of Gale-Shapley Algorithm

The steps of the Gale-Shapley Algorithm are as follows:

• Round 1: Each student proposes to his/her first-
choice residency program. Each college tentatively 
accepts the most preferred acceptable applicant up 
to its quota and rejects all others.

• Round             : Any student rejected at round          
applies to his/her next highest choice (if there are 
any). Each college considers both the new applicants 
and the students held at step          and tentative-
ly accepts the most preferred acceptable from the 
combined pool up to its quota, the other students 
are rejected. 

   
The algorithm terminates when there are no new 

proposals. In fact, the algorithm terminates in finite time 
because there are finitely many students and finitely 
many colleges, and each student proposes to each of the 
programs at most once.

Here is how the algorithm works in real life. We have 
five applicants: John, Susan, Herbert, Frank, and Gabri-
ella; three colleges: Pinewood, Saint Mary, and Good 
Samaritan. All the applicants and colleges have their own 
preferences listed in tables 1.1 and 1.2 respectively:

k  2 k  1

k  1

Table 1.1:

Table 1.2:

The algorithm begins with John. First, John proposes to his 
first choice, Pinewood, and Pinewood has not ranked any other 
student higher, or any student for that matter. The algorithm 
tentatively matches John with Pinewood.

Next, we move onto Susan, Susan ranks Pinewood first, but 
Pinewood did not rank Susan. Hence, at this step, Susan is not 
matched with any college.

Now Herbert ranks Pinewood first, and because Herbert is 
ranked higher than the lowest rated accepted student, John, 
Herbert is matched with Pinewood, leaving John unmatched. 

Frank proposes to his first choice, Pinewood. Pinewood 
ranked Frank as number one, higher than the current match, 
Herbert, who is number two. Thus, the algorithm rejects Her-
bert and matches Frank to Pinewood. 

Gabriella ranked Good Samaritan first, and Good Samaritan 
ranked her too. Gabriella is now tentatively matched with Good 
Samaritan.

This concludes the first round. We have John, Susan, and 
Herbert in our unmatched list. Now the algorithm starts the 
second round. We consider the applicants in the unmatched 
list for their second choice.

John ranked Saint Mary second and Saint Mary also ranked 
him. So, he is now matched with Saint Mary.

Susan proposes to her second choice, Good Samaritan. 
Good Samaritan also ranked her and has remaining positions, 
so Susan is now tentatively matched to Good Samaritan.

Herbert proposes to his second choice: Saint Mary. Saint 
Mary ranked John and has remaining positions so Herbert is 
now tentatively matched to Saint Mary. 

The algorithm has stopped because every student is matched 
and there are no new proposals. The final matching results are 
listed in table 2.1:
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ANTONELLA PERUCCA

A Warm-Up Logic Riddle

In the movie Labyrinth, the main character, Sarah, has to solve a logic riddle. She is facing two 
doors, one leading to a castle and one leading to certain death. There are two guards, and she 
can ask one yes-no question to them. Sarah also knows that one of the guards always tells the truth 
and the other always lies, but doesn't know who is the truth-teller and who is the liar. What question 
can she ask to know the door which she has to open?

Here is the question that Sarah asks: "Would he [pointing at the opposite guard] tell me that this door 
leads to the castle?" In both cases the answer that Sarah gets is a lie: the truth-teller has to relate the lie that 
the opposite guard would tell, while the liar would negate the truth that the opposite guard would tell. So if the 
answer is "yes" the door leads to certain death, and if the answer is "no", the door leads to the castle.

The Hardest Logic Puzzle Ever

The so-called "Hardest Logic Puzzle Ever" is the following riddle [1]:

Three gods A, B, and C are called, in no particular order, True, False, and Random. True always 
speaks truly, False always speaks falsely, but whether Random speaks truly or falsely is a 
completely random matter. Your task is to determine the identities of A, B, and C by asking three 
yes-no questions; each question must be put to exactly one god. The gods understand English, but 
will answer all questions in their own language, in which the words for "yes" and "no" are "da" and 
"ja", in some order. You do not know which word means which. 

Some clarifications [3]: a single god may be asked more than one question; the questions and to which god they 
are asked may depend on the answers to earlier questions. Random acts as either a truth-teller or a liar. You can 
imagine that he flips a fair coin in his head: if the coin comes down heads, he speaks truly; if tails, falsely. Final-
ly, the gods are very intelligent beings, and can understand even very complicated logical questions in English. 
Moreoever, they know all their identities, plus common knowledge such as 1 + 1 = 2.

Notice that the riddle is very complicated mostly because of the presence of the Random god (whose answers 
convey no information), and because of the language barrier.

The Riddle Without the Language Barrier

For the moment, we suppose that we can understand the gods's language, so that - by translating - the answers 
to our questions are either yes or no. We start with some preliminary remarks.

• If you know that a god is either True or False (in other words, which is not Random), how can you 
determine his identity? This is very easy, you ask him a question for which you know the answer 
already, and you check if he tells the truth or not. One possible question is "Is 1 + 1 = 2?". 
True would answer "yes" and False would answer "no". 

• If you know that a god is True, you can determine the identity of the other two gods by 
asking him (pointing at one of the other two gods), "Is this god Random?" If the answer is "yes", 

the god is indeed Random and the remaining god is False. If the answer is "no", the god is False and the 

THE HARDEST 
LOGIC PUZZLE EVER
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remaining god is Random.
• If you know that a god is False, you can determine the identity of the other two gods by asking him 

(pointing at one of the other two gods) "Is this god Random?" If the answer is "no", the god is in-
deed Random and the remaining god is True. If the answer is "yes", the god is True and the remain-
ing god is Random.

By the above, it suffices to ask one first question to find a god which is not Random. Indeed, we can address 
that god our second question "Is 1 + 1 = 2?" to determine whether he is True or False. Then we inquire again by 
him whether "Is this god Random?", by pointing at one of the other two gods.

The question to find a god which is not Random is slightly more complicated. We can ask any of the gods, 
pointing towards one of the two other gods: "Are you True if and only if this god is Random?" The "if and only 
if" is a logical way to put together two assertions: the global assertion is true either when both assertions are 
true or when both assertions are false. Let us analyze the possible answers. According to the answers, we are 
going to determine one god which is not Random.

• If we are asking True, then an affirmative answer confirms that we are pointing at Random, while a 
negative answer means that we are pointing at False.

• If we are asking False (which lies), then the affirmative answer confirms that we are pointing at  
Random, while a negative answer means that we are pointing at True.

• If we are asking Random, then the answer does not carry any information. However, the god we are 
pointing at is not Random, and the same holds for the third god (neither the one we are interrogat-
ing, neither the one we are pointing at).

In any case, if we receive an affirmative answer, then the third god (neither the one we are interrogating, 
neither the one we are pointing at) is surely not Random. If we receive a negative answer, then the god we are 
pointing at is surely not Random.

The General Riddle

Now we consider the true riddle in which the gods answer "da" and "ja" and we have no clue what that 
means. We keep the same strategy as above, by varying the questions a bit. Namely, we start each question by 
adding  "The word 'da' means 'yes' if and only if...". The dots stand for the questions as above, and in any case 
the dots stand for an assertion. 

• We get an answer "da" to the modified question if the god would have replied "yes" in  
English to the original question.

• We get an answer "ja" to the modified question if the god would have replied "no" in  
English to the original question.

These modified questions then allow to know the English answer to the original questions. This trick 
allows us to solve the general riddle. Notice that this solution is basically the one given in [2].

For variations of the riddle, we direct the reader to the English Wikipedia page [3].

[1] George Boolos, The Hardest Logic Puzzle Ever. The Harvard Review of Philosophy, Volume 6 (1996),  
pp.62 -65 https://doi.org/10.5840/harvardreview1996615

[2] T.S. Roberts, Some Thoughts About the Hardest Logic Puzzle Ever. In: Journal of Philosophical Logic,  
30:609-612(4), December 2001

[3] Wikipedia contributors, "The Hardest Logic Puzzle Ever," Wikipedia, The Free Encyclopedia, https://en.wiki-
pedia.org/w/index.php?title=The_Hardest_Logic_Puzzle_Ever&oldid=906163668 (accessed August 15, 2019)
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Samuel Baltz* | March 1, 2023

THE CLOCK GAME

Many bored students who have watched the minutes tick by on a classroom clock will recognize the follow-
ing game. Consider any sequence S of digits, together with a set O of allowable binary operations. Using 

the allowable operations any number of times, placing only one equals sign between any two digits, and always 
separating the digits with either an operation or an equals sign, the challenge is to create as many true state-
ments as possible. Under appropriate constraints, S represents the sequence on the face of a digital clock, which 
every new minute provides a fresh opportunity to kill time.

For example, suppose we have allowed ourselves the set O = {+,–}, and somehow obtained  S=123. Ideally, 
this sequence should appear in the wild. It might be the page you were on when you put down your book, or a 
Toronto commuter might read it off the Sherway bus at Kipling Station. Then the set of all possible attempts at 
equalities is as follows:

EQUALITY     TRUTH VALUE

1 = 2 + 3  0
1 = 2 – 3                  0      
1 + 2 = 3  1
1 – 2 = 3  0

* Massachusetts Institute of Technology, sbaltz@umich.edu. I am very grateful to Rutger Campbell for detailed feedback that 
made this piece much better, to Neil Warnock for independently inventing this game and playing it with me when we were kids, 
and to Elaine Koppelman Eugster and Michael Thompson-Brusstar for very helpful conversations.

THE CLOCK GAME: 
PHRASING A VALID
EQUALITY FROM AN
ARBITRARY SEQUENCE 
OF DIGITS
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To make sure we are clear on the rules of the game, consider an example of what is not allowed. Suppose we find the 
sequence S = 1110, and we offer the attempted solution 1 = 1 = 01. This idea breaks three important rules: 

1. We are only permitted to use one equals sign
2. We cannot reorder the ditigs of the sequence
3. We cannot combine digits to create a new number

If the set O of allowed operations can be used to translate some sequence S into a valid equality, then we might call S  
phraseable under O. If O cannot be used to translate S into a valid equality, then S is not phraseable under O.

Which sequences are phraseable, and what are the characteristics of phraseable sequences? To answer these ques-
tions, I show results from brute force solutions of all sequences of length 4 that have integer digits from 0 to 9. We might 
very often encounter sequences that can appear on 24 hour clocks. Let's start by considering the four traditional binary 
operations of arithmetic: addition (+), subtraction (–), multiplication (*), and division (÷), and I first show results from the 
simplified game in which these operations can only be applied to the number sequence in order from left-to-right. I then 
also consider the arithmetical operators with any order of operations, as well as exponentiation (^) in addition to the op-
erations of arithmetic.

WHAT SEQUENCES 
ARE PHRASEABLE?

Let’s first pretend that we found a  
sequence S on the face of a 24 hour 

clock. So, consider a sequence S of length 
4, where the first pair of digits represents an 
hour and the second pair of digits represents 
a minute; S can appear on a 24 hour clock-
face if the first pair of digits does not exceed 
23, and the second pair of digits does not 
exceed 59. The natural question is: which 
times can be translated into valid equalities 
under the default set of arithmetical oper-
ators? Placing the equals sign between any 
two digits, and applying any combination 
of the four standard arithmetical operations 
(+, −, *, ÷) from left to right, is it possible to 
translate a given time into a valid equality in 
at least one way? 

Figure 1 shows which times are phraseable 
on a standard 24 hour clockface. To make the 
figure, I wrote a Python program that checks 
every combination of hours and minutes to 
see whether or not some solution exists, and 
saves the results in a SQL database. Then, I 
read them into the programming language 
R. There I generated a matrix that has a 1 in 
every index that corresponds to a phraseable 

time, and a 0 otherwise. Finally, I replaced every 1 with the hexadecimal code for a dark colour, and 0 with 
a light colour. Then I used the rect() command in R to add a rectangle to the plot for every hour and minute, 
and coloured them according to the corresponding colour value in the matrix.

photo: @iseeghoststoo
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The local regularities in Figure 1 combined with its chaotic overall impresions make it reminiscent of certain 
cellular automata [1], or some almost-regular images of Mandelbrot [2]. However, an enterprising player – say, 
someone who finishes their dinner and retires to the living room at 19:00 to play our game, only to discover that 
most of the time they cannot make any valid equalities – might wish to find a way to make Figure 1 less sparse. 
This inspires two complications: considering the order of operations, and expanding the set of allowed  
operations.

Permitting operations to be applied in an order other than left to right gives a very natural avenue for increas-
ing the possibility of success in the game. To see why this is appropriate, notice first that the impossibility of 
some times in this figure appears quite natural, while the impossibility of other times is more surprising. For ex-
ample, it is likely not surprising that the sequence S = 1911 does not give rise to any valid expression using only 
arithmetical operators. But what about the sequence S = 1222? By the strict left-to-right order of operations, 
there are 48 ways of attempting to form a valid equality from this sequence, and every one of them is false. It 
would be natural to try to form the statement 1 + 2 ÷ 2 = 2, but this is not valid if we are restricted to applying 
operations from left to right: 1+ 2 = 3, and       2. Instead, we wish to compute 1+ (2÷2) = 2. So, there are good 
reasons to relax the requirement that operations are applied in order from left to right. To similarly motivate the 
inclusion of exponentiation, notice two visible patterns in which sequences are not phraseable under the basic 
left-to-right arithmetical setup. First, numbers with only one zero (mostly those in the bottom-right of Figure 1) 
are rarely phraseable. Second, numbers which include a mix of small digits and large digits are also rarely phra-
seable. One operation can conveniently bridge both of these gaps: the binary operation of exponentiation will 
allow zeroes to be used more often in constructing valid equalities, and can frequently connect small numbers to 
big numbers in order to make the game more interesting.

Figure 2 shows the phraseable times when any order of operations is permitted.

Figure 1

Figure 1: Phraseable times, operations evaluated Left-to-Right, using O = {+, –, *, ÷}. Each cell is a combination 
of an hour and a minute on a 24 hour clock. Times which are phraseable (at least one valid equality can be 
constructed) are blue, and times which are not phraseable are grey. The results are obtained by applying any 
combination of the operators {+, –, *, ÷} to a sequence and placing an equals sign anywhere, and evaluating the 
operations from left to right.

3

2
6=
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Figure 1

Figure 2 only very slightly increases the number of phraseable times (but note that differences do exist; the 
motivating example, S = 1222, is now phraseable). More successful is Figure 3, which shows phraseable times 
with a left-to-right order of operations and the expanded operation set {+, –, *, ÷, ^}. If you're curious about 
why not use exponentiation with any order of operations, consider the difference between explicitly computing 
2^3^5^9 from left to right and computing it with any order of operations.

Figure 2: Phraseable times on a 24 hour clockface, operations evaluated in any order, using O = {+, –, *, ÷}.

Figure 3: Phraseable times on a 24 hour clockface, operations evaluated Left-to-Right, using O = {+, –, *, ÷, ^}. 
Each cell is a combination of an hour and a minute on a 24 hour clock. Times which are phraseable (at least one 
valid equality can be constructed) are blue, and times which are not phraseable are grey. The results are obtained
by applying any combination of the operators {+, –, *, ÷, ^} to a sequence and placing an equals sign anywhere, 
and evaluating the operations from left to right.
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So far, all of these figures have used the full set of permitted operations. But a player might wonder which  
operations are most likely to yield many phraseable sequences. Figure 4 splits the image into the usefulness of 
each permitted operation individually, so it considers the cases where the operation set is, respectively,  
O = {+}, O = {−}, O = {*}, O = {÷}, and O = {^}. 

(a) O = {+} (b) O = {−}

(c) O = {*} (d) O = {÷}

(e) O = {^}

Figure 4: Phraseable times on a 24 hour clockface, operations evaluated Left-to-Right, by each operation. Each  
cell is a combination of an hour and a minute on a 24 hour clock. Times which are phraseable (at least one valid 
equality can be constructed) are blue, and times which are not phraseable are grey. The results are obtained by  
applying only one of the operators {+, −, *, ÷,^} to a sequence and placing an equals sign anywhere, and  
evaluating the operations from left to right.
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Note that the preceding images are more than the sum of their parts: times can be phraseable under a large 
operation set like O = {+, −, *, ÷,^ } which are not phraseable under any one of the sets O = {+}, O = {−}, O = {*}, O 
= {÷}, or O = {^}. One such example is S = 2258, which requires a combination of these operations in order to be 
phraseable: The unique valid equality for S = 2258 under O = {+,−,*, ÷,^} is 2 = 2 * 5 − 8, and the operations must 
be evaluated from left to right. However, any time which is phraseable under one operation must be phraseable 
under any set O which includes that operation, since we could simply pick that operation repeatedly from O.

In Figure 4, we begin to see how the chaotic patterns in the previous figures have arisen, although clearly the 
combination of all operations is far more than the composite of the subfigures in Figure 4. Most notably, many  
sequences of large numbers (in the top-right of Figure 3) become phraseable only when a combination of  
operators are permitted. One notable high-level pattern is that, with few exceptions, the operations + and −  
enable long diagonal stripes of phraseable sequences where the differences or sums of numbers can be made 
equal, whereas the operations *, ÷, and ^ provide either vertical or horizontal stripes of solutions, or large  
contiguous blocks of them.

FURTHER IDEAS
• What are the best binary operations to add? Is there a common binary operation not included here that 

makes all sequences containing a particular combination of numbers phraseable?
• Can you modify the game to include other types of operations? For example, what happens if I am allowed 

to take the limit of a sequence in which I apply a unary operation to one digit     times, as              ?
• What if instead of insisting on exact equalities, we take a sequence, place an inequality between any two 

digits, and attempt to obtain the smallest difference possible? Or, try to obtain a disastrously immense  
difference?

• This problem is similar to Crazy Sequential Representations [3, 4]. Take a look at those papers. How are Crazy 
Sequential Representations different from the clock game?

• If you liked this game, you’ll like the calculations that Rachel Riley does on the television program  
Countdown.

REFERENCES
[1] Gardner, M. (1970). The fantastic combinations of john conway's new solitare game "life". Scientific American, 
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[3] Taneja, I.J. (2014). Crazy sequential represenation: Numbers from 0 to 11111 in terms of increasing and  

decreasing orders of 1 to 9. https://arxiv.org/pdf/1302.1479.pdf
[4] Wylie, T. (2020). Crazy sequential representations of numbers for small bases. Recreational Mathematics  
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Smarties® Sandwiches
Lukas Beyerlein, Dot Crumlish, Rezza Hadian, Albert Lu, Luca Nijim, Maximilian Niebur, Aiden Novick, 

A. Gwinn Royal, Amanda Serenevy, Samvar Harshil Shah, Shlomo Sloman, Jasmine Zhang, Stephen Zhang

Introduction
The problem below is quoted from an email from 

Shoshana Sloman, sent on October 26, 2020.

It has been observed that packs of Smarties® candies 
can always be evenly divided into five “sandwiches”, 
where a sandwich consists of two same-coloured Smart-
ies® with one different-coloured candy for the filling. 
When I say “always”, I mean that people who have 
been playing this “game” for many years have never 
encountered a roll which couldn’t be so divided. 

I did some research and discovered that there are six 
possible colours/flavours of Smarties® (orange, green, 
red, purple, white, and yellow), and that there are 15 
per roll. Assuming they were evenly distributed, it 
makes sense that it would always be possible to create 
five sandwiches.

But further research revealed that the six different 
colours are mixed up in one huge vat before being 
randomly placed into individual rolls. So, practically 
speaking, they end up fairly evenly distributed, but it’s 
theoretically possible to end up with combinations that 

could NOT be divided into sandwiches, such as 15 
of one colour.

My thought was that the chances of ending up with 
an unsandwichable roll would be vanishingly small, 
and that is why people never observe it. In order to 
figure this out, I wanted to know the number of 
sandwichable versus unsandwichable combinations.

Can you tell me how this problem should be 
approached?

Terminology  
and Examples

As mentioned in the e-mail above, a Smarties® roll 
comprises 15 candies randomly selected from the 
following six colours: red (R), orange (O), yellow (Y), 
green (G), purple (P), and white (W). Incidentally, the red 
tablet appears pink and is sometimes described as such; 
however, we will refer to it as red (R) to avoid confusion 
with purple (P). A roll can be classified as sandwichable 
or unsandwichable, depending on whether it can form 
five sandwiches. A sandwich is a group of three candies 

Photo: @
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consisting of a pair of candies of the same colour called 
a bun and one filling of a differing color from the color of 
the bun.

A roll with six green, five yellow, one red, and three 
purple Smarties® is an example of a sandwichable roll. 
We could arrange the candies into five triplets, each 
a sandwich. For example, the arrangement GRG, YPY, 
GYG, PYP, GYG shows that this roll is sandwichable. A 
roll with three yellow candies and the rest orange can-
not be made into five sandwiches, as there are not five 
non-orange candies to be the fillings. This is an example 
of an unsandwichable Smarties® roll. As we will show 
later (Corollary 1), having more than ten candies of a 
single colour is the necessary and sufficient condition for 
unsandwichability. We will use this condition to count 
unsandwichable rolls in the following sections.

Ordered Versus 
Unordered Rolls

There are two ways to count the total number of 
possible Smarties® rolls. At first, it might seem reason-
able to count rolls without regard to order since we 
disassemble the rolls to form sandwiches anyway. In 
other words, we might count PPPPPPPPPPPPPPW and 
WPPPPPPPPPPPPPP as the same case given their same 
colour profile.

However, it turns out that this approach is incorrect. We 
actually need to count ordered rolls to find the correct 
probabilities. This is because while all ordered rolls are 
equally likely to occur, not every color profile is equally 
likely. To make this clear, suppose there were only two 
colours, Green and Purple, and that there were only 4 
candies in the roll. There would then be     = 16 different 
possible ordered rolls, but there are 5 possible rolls if we 
count each colour profile once. One of the ordered rolls 
has 4 Green tablets (GGGG), 4 of them have 3 Green 
and 1 Purple (GGGP, GGPG, GPGG, PGGG), 6 of them 
have 2 Green and 2 Purple (GGPP, GPGP, GPPG, PGGP, 
PGPG, PPGG), 4 of them have 1 Green and 3 Purple 
(GPPP, PGPP, PPGP, PPPG), and one of them has 4  
Purple (PPPP). Because colour profiles are not equally 
likely, we must count ordered Smarties® rolls to obtain 
the correct probability that a given colour combination is 
manufactured.

Counting 
Unsandwichable Rolls

We will prove below that, if a Smarties® roll contains 15 
candies in at most 6 distinct colours, it is unsandwichable 
if and only if there are more than 10 candies of any one 
colour. To count the number of rolls that have    candies 
of one colour, we can first count the number of ways to 
place those     candies into the ordered slots of the roll, 
then multiply by 6 for the colour options for the domi-
nant colour, then count the ways we can fill the remaining  
            slots in the roll. This gives us the following ex-
pression for each case:
 

This approach will work as long as          . Below that 
value, this expression would over count cases where 
there are other colours which also have    candies. How-
ever, because we are only counting cases with           , 
this approach poses no such difficulties.

We will work out each case separately and then add 
them to find the total number of ordered rolls which are 
unsandwichable.

Cases With 15
Candies of One Colour

It is easy to see that there are 6 rolls made up of a  
single colour, even without using the expression above.

Cases with 14 candies of one colour

Cases with 13 candies of one colour
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 Cases with 12 candies of one colour

Cases with 11 candies of one colour

Overall Probability
As we will show in the next section, every Smarties®  

roll with at most 10 candies of any one colour is sand-
wichable. Therefore, the total number of unsandwichable 
rolls can be calculated by summing the above. The result 
is 6 + 450 + 15, 750 + 341, 250 + 5, 118, 750 = 5,476, 
206. The total number of all possible ordered rolls is 615 
=470,184,984,576.

Dividing the unsandwichable rolls by the total possible 
rolls, we find that the probability of finding an unsand-
wichable roll is about 0.0000116, or .00116%. The Smart-
ies® company sells around 2 billion rolls a year*, so they 
should produce about 23,000 unsandwichable rolls every 
year.

Sandwichability 
Conditions

Instead of discussing only the case of a roll of Smart-
ies® with 15 candies and 6 colours, in this section we 
characterize sandwichability for rolls of various lengths 
and numbers of colours.

Theorem 1 (General Sandwichability Theorem)

Given a roll of Smarties® of length      for some           , 
the roll is sandwichable if and only if the following two 
conditions are fulfilled:

* https://money.cnn.com/2015/10/04/investing/ smarties-candy-compa-
ny-millennial-women/ 

1. There are no more than       Smarties® of any given 
colour. 
2. There are no more than     colours containing an odd 
number of Smarties®.

Proof
Showing that the roll is unsandwichable if the two 

conditions above are not met is straightforward. Imag-
ine beginning with zero of each colour and building the 
Smarties® roll sandwich by sandwich. Each of the     sand-
wiches can use at most two of a single colour, so we can 
have at most       of any given colour. Adding a bun to a 
colour cannot change its parity. Therefore, a sandwich 
can only change the parity of one colour with its filling, 
and since we started with all even colours, we will end up 
with at most     odd colours. Thus, any roll that does not 
meet the two conditions above will be unsandwichable.

Next, we will prove that these two conditions are 
sufficient to guarantee sandwichability. First, we need to 
show that we can produce     buns. We take away one 
candy from each odd colour. The conditions above guar-
antee that we will be left with at least       candies com-
prised of even colours, so these candies can be formed 
into     buns.

Next, we will take     arbitrary buns and assign fillings 
to them arbitrarily. If all of the sandwiches that we have 
made are legal, we are done. Suppose, then, that there is 
some illegal sandwich whose filling and bun are the same 
colour, say, orange. Not all of the buns are orange, be-
cause if they were and the filling of the illegal sandwich 
was also orange, there would be at least              orange 
candies. This contradicts our assumptions.

So let us take some sandwich whose bun is some 
colour besides orange, say, red. There are two cases. In 
Case 1, the filling of the red bun is some colour besides  
orange, say, green. Then we will put the green filling in 
the orange bun and the orange filling in the red bun. 
In Case 2, the filling of the red bun is orange. Then we 
have four orange candies and two red candies in the two 
sandwiches, so we will make these into two sandwiches, 
each with an orange bun and a red filling.

✓
15
12

◆
· 6 · 53 = 341, 250

✓
15
11

◆
· 6 · 54 = 5, 118, 750
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Using the procedure above, we can always reduce the 
number of illegal sandwiches by one. We will do this for 
each illegal sandwich until all of the sandwiches are legal 
and the roll is sandwiched.

Thus, any roll of length 3n that meets these two  
conditions is sandwichable. 

Corollary 1 
If and only if a standard roll of 15 Smarties® has no more 
than 10 candies of a single colour, it is sandwichable.

Proof: 
Recall that a standard roll of Smarties® can have up to 
six colours. There cannot be six odd colours, for then 
there would be an even number of Smarties® in the roll. 
The very thing is absurd because 15 is not even. There-
fore, there are at most five odd colours. The condition 
that there are no more than 10 candies of a single colour 
is the other condition of the General Sandwichability 
Theorem. Therefore, a standard Smarties® roll is unsand-
wichable if and only if there are more than 10 candies of 
a single color. 

Trivia
• Smarties® are known as Rockets in Canada because 
Canada already had a different candy by the same name

• Classic Smarties® flavours:
Red (listed as pink on the Smarties® website) = Cherry
Orange = Orange
Yellow = Pineapple
Green = Strawberry
Purple = Grape
White = Orange−Cream

• Smarties® were invented in 1949 when pellet machines 
from the war were purchased by the Ce De Candy 
company and used to make candy

• Smarties® webpage: https://www.smarties.com/

• Video of how Smarties® are made inside a Smarties® 
factory: 
https://www.youtube.com/watch?v= PhDux1hdLOY 
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There are many ways to express numbers. In our usual base 10 place system, integers are 
expressed in the form a+ bx10 + cx100 etc., e.g. 1532 = 2 + 3x10 + 5x100 + 1x1000. a, b, 

c etc. have to be integers drawn from the set N={0,1,2,3,4,5,6,7,8,9}. Every positive integer can be 
expressed uniquely in this way, provided we exclude leading 0’s, e.g. we would not write 01532 be-
cause the 0 would add no information. 

One variation on our usual notation is to use a different base, for example 8 instead of 10. In base 8 1532 
would become  2774,  meaning 4+7x8 + 7x64 + 2x512. It looks different, but is still the same number. 
The base 10 system is not any better or worse than a base 8 system. They both work fine. We just happen to 
use 10. 

In this paper I will look at another variation of the base 10 place system, inspired by the use of subtraction in 
the Nigerian language Yoruba. A Yoruba speaker will express 15 as 20 – 5, 16 as 20 – 4, and so on, up to 19 as 
20 – 1. Yoruba does this quite extensively for numbers larger than 15. Roman numerals do something similar 
by expressing 4 as IV = 5 – 1, 9 as IX, i.e. 10 take 1, 90 as XC, 100 – 10.  In English we express the clock time 
12:45 as “a quarter to one”, i.e. 1:00 – :15.  

We could express the Yoruba version of 15 as 25’, where 5’ means negative 5, i.e. as 2x10 + 5’x1. We could 
regard the Yoruba language as using the set  Y= {0,1,2,3,4,5’,4’.3’,2’,1’} instead of N above. (This oversimpli-
fies Yoruba considerably, since it uses a base 20 system and doesn’t use subtraction for numbers less than 15). 
We can express any number using Y. For example the number 93816 becomes 11’42’24’ in Y.  We can check 
that by separating the positive and negative digits : 11’42’24’= 104020 – 10204 = 93816.

HYBRID
NUMERALS
JOHN WINKELMAN, PHD
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Y is not the only possible mixed set of 10 positive and negative digits. We can ask what are the necessary and 
sufficient conditions for a mixed set S of 10 integers to work, i.e. to give a unique representation for any positive 
integer. For example, could we use X={0,1,2,3,4,5,5’,7,8,1’}? No, because 5 has two representations, as 5 and 
15’, and there is no way to represent 6. We can also ask further questions about these “hybrid” numerals:  how 
do negative numbers work, how do we perform ordinary arithmetic, how do we compare numbers, and how do 
we represent fractions as decimals. 

We will call a set of 10 digits “adequate” if and only if it contains 0,1, and exactly one of each of 2,8’; 3,7’; 4,6’; 
5,5’; 6,4’; 7,3’; 8,2’; and 9,1’, in other words one each of n or (n – 10) for n=2 to 9. N and Y were adequate. 
X={0,1,2,3,4,5,5’,7,8,9} is not because it contains both 5 and 5’, and also lacks both of 6 and 4’. 

Theorem 1
For a set S of 10 integers to represent all positive integers uniquely, it is necessary and sufficient for S to be 

adequate. 

In the proof we will assume that all positive integers can be represented uniquely by N. 

We will prove theorem 1 by induction, a very useful proof method known by all mathematicians. For those not 
familiar with it, it goes like this. 

We want to prove a proposition about positive integers. Call it P(n). We first prove that P(1) is true. We then 
show that if P(k) is true, P(k+1) must also be true. This means that P(1) implies P(2) implies P(3) and so on. P(n) 
has been then shown to be true for all n.  

We will use an equivalent version in which we prove P(1), and then show that if P(1), P(2)…,P(k) are assumed, 
then P(k+1) must be true. Again, P(1) will imply P(2); together they imply P(3), and so on. 

In our proof P(k) will mean that theorem 1 is true for all integers less than 10k, including 0.  

P(1): For S to represent the integers 0 to 9 uniquely, it is necessary and sufficient for S to be adequate.  

Necessary. If S is not adequate, it cannot represent the integers 0 to 9. Suppose S lacks 0 or 1. If it lacks 0, it 
cannot represent 0, likewise if it lacks 1 it cannot represent 1 (e.g. 1 could be 19’, but then S must contain 1). If 
S lacks any of the pairs n,(n – 10), then it cannot represent n. If it has both of them, its representation of n is not 
unique. 

Sufficient. If S is adequate, it can represent all of 0 to 9 uniquely. It can represent 0 and 1 uniquely. Any other n 
from 2 to 9 must be one of n or 10 + (n – 10). For example 3 must be one of 3 or 17’.  It can’t be 1x’ for another 
x’ since 10+y=3 has only y=7’ as a solution. 

We next assume that P(1), P(2),...P(k) are true and show that this implies P(k+1). In other words, we assume any 
n<10k can be represented in an adequate S, and need to prove this is also true for all n < 10(k+1).

Let  n<10(k+1) . then n  = 10A + B, where A<10k and B<10. (For example, 1328= 10 x 132 + 8). For convenience 
we will represent A as R(A) when we convert A from N to S. For example if S=Y, then R(3558) = 44’4’2’.  If we 
write R(A) R(B) we mean the concatenation of R(A) then R(B). For example R(35584)= R(3558)R(4). 

By the induction assumption we can represent A and B in S, so we can represent 10A and B in S. We will call 
these representations in S R(10A) and R(B). R(10A)= R(A)0.  R(B) is of the form  x or 1y’, where x or y is one of N. 
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If B is in S then n is represented in S as R(A)R(B) (there is no carry). 

If B is of the form 1y’=10 + y’,  n= 10A + 10 + y’, where y’ is in S. 10A + 10 =10 (A+1). By our induction 
hypothesis, we can represent (A+1) in S if A+1 <10k, i.e. A<10k-1. 

If A<10k-1, we can represent n in S as R(A+1)R(B).

If A= 10k -1, then A+1=10k. We can represent this A in S as well, as 1 followed by k 0’s, since 0 and 1 must 
be in S. Therefore we can represent n as R(A+1)R(B). 

Thus if S is adequate, it can represent any positive integer uniquely. If S is not adequate, it cannot even 
represent all integers <10 uniquely. 

Converting n to a hybrid representation
The fact that any positive integer in N can be represented in a hybrid set S does not tell us how to do it. We 

can start with n represented  in N, i.e. with the usual positive digits. We can then convert this representation 
from right to left, to end up with a representation in S. 

For example, we wish to express n= 152928 using Y. This is n=(15292) x 10 + 8.  8  is 12’ in Y, i.e. 10 + 2’. n be-
comes (15292+1) x10+2’.We use the same method on (15293) = 1529 x 10 + 3.  The end result is 25’31’32’.  
To convert in the other direction, from S to N, we simply divide the S representation into the difference of two  
positive integers in N and subtract. Thus 25’31’32’= (203030 – 50102)= 152928 in N. 

The number of adequate sets 
A little reflection shows that there are 28 = 256 adequate sets. Only one of them, N, consists solely of  

positive integers, the other 255 have at least one negative integer. N lies at one extreme, while the set 
Z={0,1,2’,3’,4’,5’,6’,7’,8’,1’} lies at the other.  

Z would represent the digits 2 to 9 as 18’,17’,…,11’., and the number 1492 as 18’5’08’. 

Negative integers 
Can an adequate S represent negative integers without an initial minus sign? It turns out it can, but only if S 

has 1’. This excludes half of the adequate sets S, namely those which have a 9. 

Theorem 2
S can represent all negative integers uniquely, without a minus sign, if and only if S is adequate and 

contains 1’. 

We borrow from the method of proof used in Theorem 1. First, we show that an adequate S can represent the 
negative integers -1,-2,..-9 if and only if S contains 1’. We then show that S can represent all negative integers, 
using an inductive proof. 

First, it is necessary for S to contain 1’, otherwise it cannot represent -1. 

To do so 1’ would have to be 2’x, but no x will work. We show it is sufficient. Consider – n, where n is 2 to 9. If n’ 
is in S, we are done. If n’ is not in S, then d= 10 – n is in S, and 1’d represents –n. For example, if 6’ is not in S, 
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then 4 is, and – 6 = 1’4. 
 
Next we show that being able to represent -1 to -9 is necessary and sufficient to represent all negative integers. 
The method is the same as in the proof of P1, so we omit it in the interest of brevity. 

For example, we convert -3816 to hybrid Y, which includes 1’.
-3816= 3’8’1’6’ . We then convert 6’=1’4 and 8’=1’2 in Y. 
3’8’1’6’= 3’8’2’4=4’22’4. 

Arithmetic operations
Can we perform the ordinary arithmetic operations using hybrid representations? Yes, and we use the same 

algorithms as for conducting the operations in N. It will be cumbersome using hybrid numerals since we are not 
used to them. I will illustrate with examples using Y as the adequate set. 

Addition. To add m + n, we represent m as 10A+B and n as 10C+D, i.e. we separate the final digits B,C and the 
leading groups of digits A,C.  Schematically, we add 10A+B + 10C+D as 10(A+C)+ (B+D), which is what we do 
in ordinary arithmetic. B+D may give a carry of 1 or 1’ or no carry. We next evaluate 10(A+C+x) where x=0,1,or 
1’, using the same procedure. At each step we have fewer digits, so the procedure will terminate.  

Example: X= 15’2’01’5’ + 34’12’3’
A=15’2’01’, B= 5’, C= 34’12’ , D=3’
X= 10x (A+C)+ B+D
A+C= (15’2’01’+34’12’) =13’413’ (details omitted)
B+D = 5’+3’ =1’2 so we carry 1’
(A+C+1’) = 13’414’
Thus X= 13’414’2 
(47985+26077= 74062)

Summary:  
The use of subtraction in number representation in Yoruba and in Roman numerals suggests the possibility of  

using some negative integers in a base 10 place system. We found that this works only if the representing set S 
is “adequate”. We also found that we can represent negative numbers without using a minus sign if S is ade-
quate and contains 1’ (negative one). We briefly showed how to translate decimals in N to a hybrid set. 

The addition and multiplication tables can be reduced by using properties of negative numbers; e.g. in Y we 
only need rows and columns for 0,1,2,3,4,5’. Others, such as 13’x15’ can be deduced using arithmetic opera-
tions. However, this savings is offset by the greater computational effort if there are many negative digits. 
Hybrid systems which include only 1’ as the negative digits integrate negative integers into the whole set of 
integers. A system including only 1’, in place of 9, would simplify numbers such as 999, which would become 
1001’. The 9’s tables are simplified as well: 5 x 9 = 5 x 11’ = 55’, 9 x 9= 11’ x 11’=12’1. Symmetries between 9 
and 11 become evident. 

Hybrid systems might have some use in disguising numbers by adding another level of encryption. Having said 
this the main point of interest of hybrid representations is not their practical use, which remains to be deter-
mined, but their existence as a natural extension of N. As in nature, most innovations are inferior to the original, 
but some survive and proliferate, perhaps in a niche. 
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WIN $100!
Solutions to these 2024 Math Quickies will be published in Pi in the Sky Issue 24. 

PIMS is sponsoring a prize of $100 CAD to the first high school student (from within the PIMS operating 
region: Alberta; British Columbia; Manitoba; Saskatchewan; Oregon; Washington) who submits the largest 
number of correct answers before June 1, 2025. Submit your answers to: s.demirbas@math.ubc.ca.

2024 MATH QUICKIES
1. A jacket was originally priced $200. The price was reduced 20% three times and increased 10% 

two times in some order. To the nearest cent, find the final price of the jacket.

2. In a right prism, the base is a right-angled triangle having one leg equal to the height of the prism.
The sum of the lengths of the other leg and the hypotenuse is 10. Find the maximum possible 
volume of the prism.

3. The reflection of the point A - (-1, 1) across line 2x + y = 1 is A' = (a,b). Find a and b.

4. If                                       denote the sequence of real numbers such that              an          .
Find the value of          . 

5. Find all the points (x,y) with x, y integers, which are inside the circle                         and such that 
           .

6. Find the number of integers m, such that                        and the solution of the equation
                            are integers. 

7. Find the 101st positive integer that cannot be written as a difference of squares.

a0, a1, . . . , an, . . . a1 = 3 an+1 =
an

1 + ana199

x2 + y2 = 1000
|3x+ 1|+ |x 1| = y

0  m  1000
x2 + 3xm = 0
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