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The Pacific Institute for the Mathematical 
Sciences (PIMS) sponsors and coordinates a wide 
assortment of educational activities for the K-12 
level, as well as for undergraduate and graduate 
students and members of underrepresented 
groups. PIMS is dedicated to increasing public 
awareness of the importance of mathematics 
in the world around us. We want young people 
to see that mathematics is a subject that opens 
doors to more than just careers in science. Many 
different and exciting fields in industry are eager 
to recruit people who are well prepared in this 
subject.

PIMS believes that training the next generation 
of mathematical scientists and promoting 
diversity within mathematics cannot begin too 
early. We believe numeracy is an integral part of 
development and learning.

The image on the cover comes from a research project of mine with Yitwah Cheung and Arek Goetz. We 
were studying a "piecewise isometry". The idea is that you define a transformation of the plane where 
you shift the bottom half plane left by 1 unit; the top half plane right by 1 unit; and then rotate the whole 
plane by a fixed angle. When you apply this transformation repeatedly, all pairs of points stay at the same 
distance from each other (this is what the word "isometry" means) unless they land on opposite sides of 
the fault line (the x-axis). The discs in the picture consist of regions of the plane that never end up on 
opposite sides of the fault line. The research project consisted of understanding the patterns of discs that 
show up, and computing what proportion of the plane was covered by those discs. 

There is also a movie of these patterns where the angle of rotation is gradually changed. That movie can be 
found at: https://www.math.uvic.ca/faculty/aquas/anim2.gif.
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So, what is a snark? 
We don't know what Lewis Carroll meant it to be because nobody ever found one (although the Oxford English 
Dictionary says it's an imaginary animal). In mathematics, a snark is a very special kind of graph. So, what is a 
graph? Forget plots. For our purposes, a graph consists of a collection (let's keep it finite) of dots, called vertices 
(the singular is "vertex"), and a collection of lines, called edges, and each edge joins a vertex to another vertex. 
Google "What is graph theory?" to find a formal definition.

If the collection of vertices is reasonably small, we can draw the graph to show how the edges connect the 
vertices. The sketch below shows a graph drawn in three different ways. Note that edges need not be straight 
lines and may cross one another; there is no vertex at such a crossing point and edges meeting at a vertex don't 
cross there.

How do we know that the three graphs are the same? Geometry plays no role. The next sketch shows the same 
drawings, but now the vertices are labelled 1, 2; ..., 6. All we need to do is check that the edges are labelled with 
the same pairs of numbers: the eight edges in the drawing on the left are 1-2 (which is the same as 2-1), 1-4, 1-6, 
3-2, 3-6, 5-2, 5-4 and 5-6. I'm sure you'll see that they are the same as the edges in the other drawings.

Snarks 
BY KIEKA MYNHARDT

Professor of Mathematics and Statistics, University of Victoria. 

"They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;

They threatened its life with a railway-share;
They charmed it with smiles and soap."

From: The Hunting of the Snark
by Lewis Carroll, circa 1876
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Wait! Did I say geometry plays no role? It does, to some extent. The two drawings on the left have crossing edges 
and the third does not. A graph that can be drawn on a flat surface with no crossing edges is called a planar 
graph. The graph above, in any of its forms, is therefore planar. A graph that cannot be drawn without crossing 
edges is called nonplanar. (Interestingly, some nonplanar graphs can be drawn on other surfaces, like the surface 
of a torus or doughnut, without crossing edges.)

Some graphs are important enough to have names: the famous Petersen graph is sketched below. You may 
wonder which of the two is the Petersen graph. Both are; they are just different drawings of the same graph. Try 
to prove this by labelling the 10 vertices of each graph with the labels 1, 2; ..., 10, and check that you get the 
same edges, as explained above. The drawing on the left is the most common drawing of the Petersen graph; 
there are several others.

The Petersen graph has many interesting properties. It is cubic: each vertex is the meeting point of three edges. 
Cubic graphs are quite common, but only occur when the graph has an even number of vertices. (Why?) Try to 
colour the edges so that the three edges meeting at any vertex all have different colours. Even your third cousin 
twice removed will tell you that you need at least three colours, but can you do it with three? I can't! I can do it 
with four colours, though. In fact, Vadim Vizing, a Russian mathematician, proved in 1964 that the edges of any
cubic graph can be coloured as described using either three or four colours. (He actually proved much more 
than this.) Because we need four colours to colour the edges of the Petersen graph, we say it has chromatic 
index 4. 

A cycle in a graph is obtained as follows: begin at a vertex and follow an edge to a new vertex. Follow another 
edge to yet another new vertex, and continue (using only new vertices) until you reach the very  first vertex 
again. If a cycle has k vertices and therefore also k edges, where k ≥ 3, it is called a k-cycle. A 5-cycle and a 
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9-cycle of the Petersen graph are pictured below. A cycle that contains all the vertices of the graph is called a 
Hamilton cycle (after the Irish mathematician Sir William Rowan Hamilton, 1805-1865). The Petersen graph 
doesn't have a Hamilton cycle. Try to prove this by thinking about how many times such a cycle would have to 
cross the edges joining the exterior pentagonal 5-cycle to the interior star-shaped 5-cycle in the sketch on the 
left, and examining a few cases. The Petersen graph also doesn't have a 3-cycle, nor a 4-cycle.

Stare at the Petersen graph a little longer. How many edges do you need to remove to split the graph into two 
parts that can be pulled apart, with no edges between the two parts? Such parts are called the components of 
the resulting graph. Well, obviously it can be done by deleting three edges incident with the same vertex. Let's 
then phrase the question a little diferently: how many edges do you need to remove to split the graph into two 
components, each of which contains a cycle? If you have your wits about you, you will say right away that, since 
the Petersen graph doesn't have 3- or 4-cycles, it will have to be split into two 5-cycles, and in order to do this, 
you have to remove five edges. If k or more edges need to be removed to split a graph into two components, each 
of which has a cycle, we say the graph is cyclically k-edge connected. The Petersen graph, therefore, is cyclically 
5-edge connected.

Another thing you can try to do is to draw the Petersen graph without crossing edges. A good approach is to 
label the vertices of the 9-cycle in the figure with the numbers 1, 2,...,9. Naturally, this cycle can be drawn with 
no edges crossing - simply draw it as a nonagon. Add the tenth vertex (inside or outside the nonagon, it makes 
no diference) and join it to the appropriate vertices. Now try to add the rest of the edges... it won't work! The 
Petersen graph is nonplanar.

As you may have guessed by now, the Petersen graph is an example of a snark: a snark is, by definition, a 
• cyclically 4-edge connected
• cubic graph
• with chromatic index 4.

They were named snarks in 1975 by Martin Gardner, an American popular mathematics writer, because, like 
Lewis Carroll's snark, they were so hard to find. Snarks have no Hamilton cycles and are nonplanar. The former 
is easy to see: if a cubic graph has a Hamilton cycle, we can colour the edges of the cycle alternately with two 
colours (because it has an even number of edges), and then colour all the remaining edges with a third colour. 
The fact that snarks are nonplanar is a deep, difficult-to-prove result. It is a consequence of the Four Colour 
Theorem, and now we're back to the origin of snarks.

The Four Colour Theorem, in its modern form, states that the vertices of any planar graph can be coloured, 
using four or fewer colours, so that adjacent vertices (i.e., vertices joined by an edge) have diferent colours. The 
Four Colour Conjecture (4CC) was  first posted by Francis Guthrie (1831-1899) in 1852, and, to make a long 
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story short, eventually proved in 1976 by Appel and Haken, with much help from a computer and a program 
written by Appel's doctoral student Koch. In 1880, the Scottish mathematical physicist Peter Tait proved that
the Four Colour Theorem was equivalent to the statement that no snarks were planar. But  - in 1880, there 
were no known snarks! The Petersen graph was the first snark to be discovered. It was named after the Danish 
mathematician Julius Petersen, who presented it in the 1890's as counterexample to Tait's claim that all 
cubic graphs were 3-edge colourable. However, Alfred Bray Kempe, who also tried to prove the 4CC, already 
mentioned this graph in 1886.

Snarks number 2 and 3 were discovered by the Yugoslavian mathematician Danilo BlanuŠa in 1946, 60 years 
later. Each has 18 vertices (and how many edges?) and can be obtained from two copies of the Petersen graph 
by deleting two edges not sharing any vertices from one copy, two adjacent vertices from the other copy, and 
joining the two parts in two different ways.

Only two years later, the fourth snark was discovered by Blanche Descartes in 1948. It has 210 vertices and 
can be obtained from the Petersen graph by replacing each vertex with a nonagon and each edge with a graph 
obtained from the Petersen graph by deleting two nonadjacent vertices. (Blanche Descartes was the collective 
pseudonym of R. Leonard Brooks, Arthur Harold Stone, Cedric Smith and William Tutte.)

The years passed (as they are wont to do). Snark number 5 with 50 vertices was discovered in 1973 by the 
Hungarian-Australian mathematician George Szekeres. It is formed by deleting two edges from each of five 
copies of the Petersen graph and joining the resulting graphs in a specific way. Finally, in 1975, the American 
game theorist Rufus Isaacs discovered the  first infinite class of snarks, called the flower snarks. Even they 
have features similar to the Petersen graph, and so have all other snarks discovered since. 

William Tutte conjectured in 1966 that every snark contains the Petersen graph in some well-defined way; 
in mathematical terms, every snark has a Petersen minor. A proof of this conjecture was "announced" by 
Robertson, Sanders, Seymour, and Thomas in 1999, but they said it was too long to write up properly for 
scrutinizing by the mathematical community.

By 1981, there were eight known snarks having 30 or fewer vertices. Then computers entered the picture. 
Eventually, in 2013, Brinkmann, Goedgebeur, Hägglund & Markström generated all snarks up to 36 vertices. 
Amazingly, there are more than 64 million of them, as tabled below.

ORDER 10 18 20 22 24 26 28 30 32 34 36

# SNARKS 1 2 6 20 38 82 2,900 28,399 293,059 3,833,587 60,167,732

If the interest in snarks was sparked by the 4CC, which was solved over 40 years ago, why are people still 
looking for them? Of course, they are mathematically interesting, and mathematicians are interested in ... well, 
mathematically interesting objects! But snarks are more than just interesting; they are important for other 
reasons.
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One of the most important unsolved problems in graph theory is the Cycle Double Cover Conjecture, which 
states that every bridgeless graph has a cycle double cover:

• An edge of a graph is called a bridge if its removal results in a graph having more components than the 
original, as illustrated below.

• A cycle double cover of a graph is a collection of cycles (in which the same cycle may appear twice) such 
that each edge of the graph belongs to exactly two cycles in the collection. A cycle double cover of the 
Petersen graph is shown below.

There are a number of other related conjectures too. And each of these conjectures will be true for all bridgeless 
graphs if they prove to be true for snarks! Brinkmann et al. checked the Cycle Double Cover Conjecture and 
other related conjectures for all the snarks they generated, and all are true for those specific snarks. But no 
matter how many snarks people generate and check, there remain infinitely many of them that cannot be 
checked. Only a theoretical proof will work. 

References
[1] G. Brinkmann, J. Goedgebeur, J. Hägglund, K. Markström, Generation and properties of snarks. J. Combin. 
Theory Ser. B 103(4) (2013), 468-488.
[2] R. Isaaks, Infinite families of non-trivial trivalent graphs which are not Tait colorable. Am. Math. Mon. 82 
(1975), 221-239.
[3] A. B. Kempe, A memoir of the theory of mathematical form. Phil. Trans. R. SOC. London 177 (1886), 1-70.
[4]J. Petersen, Die Theorie der regulären graphs. Acta Math. 15(1) (1891), 193-220.
[5] P. G. Tait, Remarks on the colourings of maps. Proceedings of the Royal Society of Edinburgh 10 (1880), 729.
[6]V. G. Vizing, On an estimate of the chromatic class of a p-graph. (Russian) Diskret. Analiz. 3 (1964), 25-30.
[7] J. J. Watkins, Snarks. Annals of the New York Academy of Sciences 576(1) (1989), 606-622.

bridge



8

Issue 22, 2021

Figure 1 shows the first page of Al-Khwarizmi’s popular treatise on Algebra 
written in early 9th century ADi .

Al-Khwarizmi’s book (Al-Jabr) became famous for providing a systematic 
method to deal with linear and quadratic equations. It starts by providing a 
geometrical method to solve quadratic equations. This was partly known to 
some Indian mathematicians like Brahmagupta. Let me show you how he 
did it by solving a quadratic equation from the book.

Figure 2 shows a quadratic equation 
problem Al-Khwarizmi solves in his 
book, using the completion of squares 
or “balancing” method (you’ll see why 
it is called this, soon). Although the 
language used is entirely rhetorical 
(you won’t find any symbols or 
numbers), I’ll write the problem 
mathematically and show you how he 
solved it. 

         Consider:   x2 + 10x = 39 

To solve this, we start by drawing a rectangle with sides x and  x + 10. 
Evidently the area of the rectangle is the product of the length (x) and 
breadth (x + 10), so the area will be the left-hand side of the quadratic 
equation (x 2 + 10 x). We then divide the rectangle into a square of length 
x and rectangle with dimensions 10 and x.

We then cut the 10 x 
rectangle in half and move 
one half below the square 
of length x (Figure 4a). The 
area of this figure has to be 
39, since from the problem 
we are given that x 2 + 10 x 
= 39.

 

The Beauty of Quadratic Equations
BY SUHRID SAHA

Suhrid wrote this article when he was a high school student in Greenwood High, Bangalore, India. He is 
currently studying Mathematics and Computer Science at University of California at Berkeley . He has a 
deep interest in pure math and plans to become a professor someday. In his free time, he is an avid cinephile 
who loves sitcoms and superhero movies.
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However, now we are left with an incomplete portion of a square, 
two of its sides being x+5. The easiest way to complete it is to add 
a square of length 5 (shown in Figure 4b).

The area of the figure without the new square (with sides of 
dotted lines) is 39, so along with the new square it must be 
39 + 52 = 39 + 25 = 64. So, we now have the area of the full square 
to be 64 and side length to be x + 5, so we can write (x + 5)2 = 64

The idea above was to take the constant term to the right-hand side (x2 +10 x=39 is the same as writing 
x2 +10 x - 39 = 0, so here we take 39 to the right) and add a constant to both sides of the equation (25 in this 
case, hence the square with side length 5) such that the left hand side becomes the square of a linear polynomial  
(x2 +10 x + 25 = (x + 5)2 in this case). We can use this method to solve any quadratic- you can try using it to 
solve x2 +12 x = 45, 4 x2 +4 x = 3. Now we will move towards the general quadratic (finally!).

Consider the general form of a quadratic equation: a x2 + b x + c = 0 where a ≠ 0 & a, b, c are any real numbers. 
It is easily solvable using the completion of squares method as shown above.

1Al Khwarizmi however did not consider the negative solution of -13. If you think about it from the perspective 
of geometry, the negative solution is of no physical significance since the length of a side can’t be negative, but 
we know a quadratic must have two roots and hence it makes sense only if we write both solutions to cover all 
cases.
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And thus, we have derived the formula for solving the general 
quadratic and provided a standard method for solving all 
quadratic equations.

This technique is taught in high-schools around the world as the 
method of “completion of the square”.

If you really enjoyed these derivations, you should definitely learn 
ways of solving equations of higher degrees i.e. cubic (3rd degree) 

and quartic (4th degree) equations.

The most commonly known method to solve cubic equations is Cardan’s method . There are also other methods 
to solve a cubic equation- Lagrange’s resolvent, Viète’s trigonometric solution, Bombelli’s solution, etc.  Each of 
these involves amazing ideas, have interesting solutions, and yet fail in certain cases. 

References
 [1] John L. Esposito. The Oxford History of Islam. Oxford University Press. ISBN 0195107993.
 [2] UC Davis Math (2019). Cardano. https://www.math.ucdavis.edu/kkreith/tutorials/sample.lesson/cardano.
html
 [3] Derivation of the roots, Cubic function, Wikipedia, 5 August 2018, at 17:09 (UTC)
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The tale of two coins 
 

BY KAROL GRYSZKA

Karol Gryszka is an assistant professor at the Pedagogical University of Krakow in Poland. His research 
is the study of asymptotic behaviour in dynamical systems. He is particularly interested in popularizing 
mathematics with articles, lectures, workshops and school projects.

THE CASE OF COINS

Alice and Bob want to play a coin game. The main
requirement is that the coin has to be fair, that is

there is exactly 50% chance to obtain either side.
To test this they decide to roll the dice 250 times.
Their results are presented below:

heads 134
tails 116

Alice sees these numbers and begins to question the
fairness of the item. She thinks that if each side has 
the same probability, then the numbers should differ 
less. Bob, on the other hand, thinks that the heads 
side might have just been lucky and there is nothing 
unusual with the numbers. We could ask who was 
right, but that is difficult to answer, especially if we 
have no prior knowledge about the coin. Let us look 
more carefully at this problem.

Take any coin from your wallet and investigate it.
There are some markings on both sides, each one
is different and has a unique look. Then there are
dents at the edge and sometimes they are placed
irregularly. That combination makes the coin not
perfectly (mathematically) fair - it is not perfectly
symmetric, the weight is not equally distributed and
so on. However, we tend to call these coins fair and
we use them to randomize a simple situation with
50 : 50 chances. We do this because we are used to
selecting one of two outcomes using a coin flip, and we 
also think this is a convenient and fair way to do this.  

John von Neumann (see [JvN]) created a simple
algorithm that, in practice, allows us to ignore any
possible bias (that is the deviation from equal
chances for either side) of the coin. The procedure
is very simple. Let us flip the coin twice and record
T for tails and H for heads. There are 4 possible
results, arranged in pairs: (T,T), (T,H), (H,T),
(H,H). We read the result using the following

table:

In other words: if the letters are different, we read
the first one and call it the final result. If the letters 
coincide, we repeat the procedure

Let us analyse why this procedure is correct. Assume 
that the probability of recording H is p, then  there  
is exactly p . (1 - p) chance to see the pair  (H, T ) 
and  (1 -p) . p  to  see  (T, H). So the chances are equal 
and therefore the algorithm produces H and T with 
equal probabilities. The repetitions make sure that we 
eventually finish with heads or tails. Even though one 
may think it is possible to "get stuck", that is to
continuously flip either only heads or only tails, this 
is impossible. The chance of always flipping the same 
side infinitely many times, is equal to zero. With this 
in mind, we can conclude that there are only two 
possible outcomes: heads or tails and they share the 
same chance, so the chance is exactly 50%. Thus the 
algorithm works as intended. And that’s it - You no 
longer have to delve into imperfect coins. All you need 
is to flip the coin twice and see what the first result was. 
The kind of coin does not matter either - Alice and Bob 
can switch coins between each pair of flips and they still 
have a perfect 50% chance to flip heads or tails.

IS IT HARDER FOR DICE?

Alice and Bob want to know if the idea presented 
above can be extended to more items that randomly 
assign one outcome. They now take a die and  look at 
it. We also look. The die may not be perfectly balanced 
(the distribution of material may not be uniform) and 
there are dots made of different material with different 
numbers on each face which make the dice even more 
non-symmetrical. On the other hand, the cube is a 
perfect shape to randomize one number from the set 
{1, 2, 3, 4, 5, 6} (or any other set having 6 elements) - 
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it is  symmetric,  all vertices, edges and faces are the 
same. It is the way dice are manufactured that makes 
them imperfect.

Bob thinks that what he has just learnt about the coin 
can be carried to dice. Here is how he does it. First, we 
need to know what a permutation is. A permutation 
is any arrangement of the given items (mugs on the 
table, students in the classroom, or abstract objects as 
well, such as numbers or letters).

In any permutation, each item occurs once. Two 
numbers 1 and 2 can be arranged in two permutations 
denoted by 12 and 21. Three numbers 1, 2 and 3 have 6 
permutations: 123; 132; 213; 231;312 and 321. On the 
other hand, the arrangement 133 is not a permutation 
- 3 appears twice, which is forbidden by the rules.

Bob should roll the dice six times and hope for 
different numbers - one of the 720 permutations of 
the set of numbers from 1 to 6. If he sees different 
numbers, he calls the final result the first rolled 
number, otherwise he repeats the algorithm. For 
example, if he sees 354162 (each number appears 
once), then the number 3 is chosen. But if he sees 
456314, he rejects the sequence (4 appears more than 
once and 2 does not appear at all), and repeats the 
algorithm.

Why does this idea work? Alice says only the 
permutations matter, since the rest is discarded. Then 
she notices that the order of numbers does not matter 
- the chance to obtain each specific permutation of 
six elements of biased dice is always the same. Why? 
Lets say chances for each side 1 to 6 are p1, p2, p3, 
p4, p5 and p6 respectively. If we see 354162,  then the 
chance for that is p3 p5 p4 p1 p6 p2. If we see 123456, 
the chance is p1 p2 p3 p4 p5  p6 - the same number with 
different order of components. Since the same rule 
applies to any permutation, all permutations have 
the same chance. Since there are the same number 
of permutations starting with each number, the 
algorithm works as intended.

Patience is a key word here. Even if the dice is a 
fair one (each side has 1/6 chance), then on average 
only 1 of 65 repetitions with 6 rolls each will result 
in a permutation. Things can get much  worse if the 
deviation from 1/6 is greater, but a priori one cannot 
expect to know what is the exact chance for each side 
and therefore what is the exact number of dice rolls.

The extension of von Neumann’s algorithm suggested 

by Bob has a major flaw as described above - lots of 
repetitions needed to obtain a permutation. Alice 
thinks about this and suggests the following idea (see 
[CPC]): she rolls the dice three times and tracks how 
the numbers change with the help of the following 
diagrams.

She explains it using these examples: if you receive (1, 
4, 5), then the second number is greater than the first 
and the third is greater than the first and the second. 
This is illustrated by diagram labelled by 1, so we 
assign 1 as the final result. If you receive (1, 5, 4), then 
the second number is greater than the first and the 
third is between the two. This is illustrated by diagram 
2, so we assign 2 as the final result. If you receive (4, 
5, 1), then the second number is greater than the first 
and the third is smaller than both the first and the 
second number. This is illustrated by diagram 3, so we 
assign 3 as the final result. The same principle applies 
to the remaining diagrams which correspond to: (5, 
4, 1) (diagram 4), (5, 1, 4) (diagram 5) and (4, 1, 5) 
(diagram 6).

To sum up - we check the relative ordering of all 
numbers and see which diagram it matches. Should 
the same number occur twice, all three rolls should be 
discarded, and the process should be started over until 
three distinct numbers are rolled.

The idea presented by Alice works due to a clever 
division of all 3-dice roll arrangements into 6 patterns 
and the patterns which are discarded. If the dice aren’t 
fair, the different ways to achieve each pattern may 
have different probabilities (for example 123 may be 
more likely than 234), but any choice of three different 
numbers can be permuted to match one of 6 diagrams. 
For example if the numbers rolled are 1, 2 and 3 in 
some order, the table below describes all possibilities 
and their corresponding diagrams.
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So from the numbers 1, 2 and 3, each of the six 
patterns is equally likely to occur; and it is the same 
with any other three numbers. This means  that each 
pattern is equally likely to occur.

The rejection rate for Bob’s algorithm is quite high- we 
have already mentioned that in 6 rolls, there is roughly 
a 1 in 65 chance of obtaining a permutation,  which 
gives                          rejection rate for a perfectly fair 
dice. This is awful. Alice’s algorithm is much better - 
the rejection rate is                      .  Not only does it have 
a 30 times higher acceptance rate, but it also requires 
fewer rolls per attempt. An outstanding improvement, 
indeed. You can make even better assignments, but we 
won’t go into details.

EXTENDING TO ANY NUMBER OF 
EQUAL OUTCOMES

Alice now looks at the coin again and she starts 
thinking about the following problem: can we use  a 
coin to obtain one number from the set {1, 2, 3 }? This 
shouldn’t be hard, she says.

Is Alice right? Let’s think for a moment - we have 
already seen coin flips that provided three outcomes: 
heads, tails and repeat. However these were imperfect 
for Alice’s problem: repeat can have a different chance 
than the other two have. At the same time, these 
outcomes were assigned to a different problem - 
removing the bias from the coin.

We shall assume that the coin we  are about to  flip 
is fair. It is a valid assumption to make as we have 
already solved that issue earlier. If the coin is fair, we 
can again flip it twice and read the result according to 
the table:

Alice was right! All we needed was a proper approach 
and a simple correction of what we have already 
learned.

What if Bob asked the same problem but for the set {1, 

2, 3, 4, 5}? Easy! Look at the table:

What if Bob asked for the set {1, 2,...,22}? Things
get a little more complicated, but we can still do
it. We use the same principle again and toss the coin 5 
times:

How were these assignments created? Look at the 
5-digit numbers composed of zeros and ones and write 
them down in increasing order: 00000, 00001, 00010, 
. . ., 11101, 11110 and 11111. Then just replace 0 
with H and 1 with T  and assign with  each sequence 
of letters a number, starting from 1 until 22. The 
remaining sequences receive repeat values.

And that’s it. Alice and Bob can select any number 
from any set provided each number has equal chances.   
And it doesn’t matter if the coin is fair or biased.

THE CLOSURE

Alice and Bob can take the coin game even further.
There is one problem related to the one above,
which includes irrational probabilities (for instance 
                                    chance for one number). It turns 
out there exists an algorithm based on the binary 
representation of a number, which allows Alice to 
select any number of outcomes with any probabilities. 
You can read more about this in [AI].
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1 INTRODUCING THE GAME

Suppose we have two players, A and B, and we have 
told them two consecutive positive integers. While 

A and B know their numbers are consecutive, each of 
them only knows his/her own number. For instance, if 
A has the number 4, she knows that B has either 3 or 5. 
The game is that they have to guess the other number by 
repeatedly asking the same question of their opponent, 
and the question is "Do you know my number?". This is 
the only question that they can ask each other and the 
answer should be either "No" or "Yes" (and they answer 
truthfully). The game is to be the first to learn the 
other persons number.

THE STRATEGY

Since the numbers are consecutive, if A is given the 
number k then the only thing to worry about is whether 
B's number is k +1 or k - 1. Now let us go through the 
following dialogue and find out what they are actually 
thinking, supposing that they speak aloud.

A: "Do you know my number?"
B: "No. Do you?"
A: "No. If B had 1, then obviously he could have guessed 
my number as 2, since they are positive integers. So, B 
has his number greater than or equal to 2. Do you know 
my number?"
B: "No. A knows my number is greater than or equal to 
2. If A had 2, then he would have guessed my number 
as 3 correctly. So, A's number is greater than or equal to 
3. Now do you know my number?"
A: "No. But B knows my number is greater than or 
equal to 3. So, if B's number had been 3, he would have 
correctly guessed my number as 4. So, B's number must 
be greater than or equal to 4. Now do you know my 
number?"

They continue in this way, at every stage concluding 
their opponent's number 1 bigger than what they 
already knew. Now suppose A had his number as k 
and B had k + 1. Then, in the course of the game, as 
soon as A concludes B's number is greater than or 
equal to k, the game is over since he now answers B's 
question positively and says B's number is k + 1. And 
interestingly, B also concludes from this answer that 
A's number was k. So, the game has a nice strategy!

2 PROPERTIES OF THE GAME RULE

Before we start generalizing, we note a few very 
important observations which made the strategy work, 
and this is the key to all generalizations.

• For the strategy to start working we need a lower 
bound, which was 1 in our case, since we are 
dealing with positive integers. Without this, A 
could not start thinking what B might have or not.

• Both A and B know the rule that the numbers are 
consecutive. This is extremely important because 
if someone's number is 1, they know the other 
number. So given the lowest number, the other 
number is easy to determine.

• The person who has the smaller number, first gets 
to know the other number. After they answer the 
opponent's question truthfully, the other one gets 
to know the missing number too. (So if the person 
with lower number lies, then they will always win 
and their opponent will keep searching, but we do 
not consider situations like that in this article.)

• Even if A and B do not think aloud and do those 
calculations mentally, after every time B says "no" 
to A's question, A knows exactly what calculation B 
has made and same for the other way.

• The last and most interesting question is: 
Suppose a third person is present while A and B 
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are playing the game. This person knows that 
the numbers are consecutive, and suppose A 
and B do not think aloud i.e. they only answer 
"yes" or "no" unlike the dialogue we saw above. 
Then, as soon as A and B know their numbers, 
does the third person also know their numbers? 

The answer to the question is. If we consider both A 
and B each giving an answer as a round, then after 
the first round the third person knows that both of 
them have number greater than or equal to 2. He keeps 
track of the number of rounds and as soon as someone 
answers positively, he knows the number and also 
knows the one who answers first has the lower number. 
But now, we change this rule a bit to make things hard 
for the third person.

3 NUMBER GUESSING WITH A 
DIFFERENT RULE

Suppose we have two players, A and B, and we have 
told them two integers which are sufficiently large, and 
that one is double of the other. The game is that they 
have to guess  the other number, by asking repeatedly 
the same question to the opponent, and the question is, 
"Do you know my number?". This is the only question 
that they can ask each other, and the answer should be 
either "No" or "Yes" (and they answer truthfully). Then 
they ask in return again, "Do you know my number?". 
The puzzle is whether they will be the first to learn the 
other persons number.

THE STRATEGY

The interesting thing to note here is that the strategy is 
nothing new and the actual underlying problem is the 
same. For example, lets say the two numbers are A = 
20000002 and B = 40000004. 
A says to B: "Do you know my number?" (at this point B 
thinks A=2000002 or 8000008). 
B says to A: "No. Do you know my number?" (A knows 
that B has 1000001 or 4000004; when A hears the 
"no", she realizes that B does not have 1000001, so that 
B must have 4000004).  The answer, then, is "Yes - it's 
4000004".

4 CONCLUSION

As an exercise, the interested reader can try to extend 
this game to 3 or more players with the same rules. 
The same strategy works with very little variation in 
reasoning, though we have to take into account the 
extra players in this case. This game also has interesting
applications in secret sharing, a method used in 
cryptography. Here again, the interested reader can 
find out if the last property (involving the third person 
who is eavesdropping) of section 2, still holds when the 
game involves more than 2 players, and also when the 
rule is changed slightly as in section 3.
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INTRODUCTION

Infinity is a concept which has mesmerized 
mathematicians for centuries.  A concept which 

seems straightforward when first taught, but becomes 
progressively more complex through a deeper 
understanding. Yet more than four thousand years 
ago, the concept of infinity had been succinctly 
explained in Indian Vedic literature. The word Vedas 
translates to “knowledge” and is a collection of hymns, 
poetry, and Hindu ceremonial formulae. Interestingly, 
the knowledge of mathematics was deemed to be so 
important that it was formulated into mantras recited 
daily. [1] Here we look specifically into mentions of 
infinity in the Isha Upanishad, and how it connects to 
the overall paradox of infinity discovered in modern 
times.  

POORNAM AND INFINITY 
 
The Upanishads are parts of the Vedas that contain 
central concepts and ideas of Hinduism [2]. The Isha 
Upanishad is one of the shortest Upanishads, embedded 
as the last chapter of the Shukla Yajurveda. [3] It starts 
with the following famous verse: 

Om  
Purnamadah Purnamidam 
Purnat Purnamudachyate 
Purnasya Purnamadaya 
Purnameva Vashishyate 
Om Shanti, Shanti, Shanti 
 
The line by line translation of this is as 
follows: 
 
Om.  
That is infinite, this is infinite; 
From That infinite, this infinite comes. 
From That infinite, this infinite removed 
or added; 
Infinite remains infinite. 
Om. Peace! Peace! Peace! [4]  

 
The lines from this verse show something interesting. 
The conception that when infinity is taken from 
infinity, the infinite is remaining. This is perplexing 
because it contradicts common arithmetic. This is 
because we have always been taught that when a 
quantity x, is subtracted from itself, the result always 
results in zero. However, the Upanishad says otherwise 
when it comes to the concept of infinity. Rather, when 
the infinite is taken away from the infinite, the infinite 
is not reduced in any way. That is simply because 
taking away from the infinite is not possible. In Indian 
Vedas, this concept applied more to the creation and 
the absolute, to show that when the infinite of the 
origin is taken for a new creation, the full is never 
affected. [5] However, it is quite remarkable to see how 
this conceptualization of infinity is still applicable to 
modern mathematics.  

THE INFINITE HOTEL PARADOX 

A German mathematician by the name of David Hilbert 
(1862-1943) proposed a thought experiment known as 
the Infinite Hotel. The experiment shows the problems 
that occur when infinity is used as a number rather 
than a concept. The experiment starts with a hotel 
with an infinite number of rooms which are all full. 
These rooms have each been numbered with the set of 
natural numbers (1,2,3...) However, when a new guest 
arrives each existing guest simply moves down a room, 
making space for the new guest. When twenty guests 
arrive, each previous person moves down twenty room 
positions. This can also be done if an infinite busload 
of new guests arrives: each previous guest goes to the 
room number double theirs (i.e. the person in room 
number two moves to room number four) This allows 
half the rooms to be emptied and the infinite bus of 
people are all accommodated [6]. This experiment 
showed that it was possible for an operation to be 
performed on infinity, by accommodating more guests 
and still resulting in infinity. This is essentially the same 
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conclusion that is shown in the Isha Upanishad stating 
that even when infinite is removed or added, the result 
is infinite.  
 
INFINITY THROUGH CARDINALITY

By understanding how cardinality (roughly the 
number of elements in a set) applies to infinite sets, 
we will see how a set of natural numbers can have 
the same cardinality as two distinct copies of the 
natural numbers. Two sets are said to be of the same 
cardinality, if there is a one-to-one correspondence 
between them. For example, the even natural numbers 
have the same cardinality as the set of natural numbers, 
because we can pair each even number 2n with the 
natural number n. (This gives a way of matching up 
the even natural numbers with the natural numbers 
where each even number is paired with one natural 
number; and each natural number is paired with one 
even number). Similarly, the odd natural numbers have 
the same cardinality as the natural numbers: we can 
pair the odd number 2n-1 with the natural number 
n. But now, the natural numbers are made up of two 
subsets, each of the same "size" as the natural numbers 
themselves. 
 
The parallel with the verses in the Isha Upanishad is 
inescapable.
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Solutions will be published in the next issue of PI IN THE SKY

1  
If     find the sum of       2021 

 

2On an 8 x 8 checkerboard, how many rectangles (and squares) are there, that are made 

up of a number of whole squares of the board?

3 Find the numbers of integers x between 10 and 99 (inclusive) which have the property 

that the reminder of x3 divided by 100 is equal to the cube of the unit digit of x.

 

 

4 A number M  has the property that if x and y are any positive numbers such that           

      then           Find the maximum possible value of M.   

 

5  
  Is there any integer n such that            ?

 

6  

Find all pairs of integers (x, y) such that x 2 + y 2 = 35(x + y).
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