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The Pacific Institute for the Mathematical Sciences 
(PIMS) sponsors and coordinates a wide assortment 
of educational activities for the K-12 level, as well 
as for undergraduate and graduate students and 
members of underrepresented groups. PIMS is 
dedicated to increasing public awareness of the 
importance of mathematics in the world around us. 
We want young people to see that mathematics is a 
subject that opens doors to more than just careers 
in science. Many different and exciting fields in 
industry are eager to recruit people who are well 
prepared in this subject.

PIMS believes that training the next generation 
of mathematical scientists and promoting 
diversity within mathematics cannot begin too 
early. We believe numeracy is an integral part of 
development and learning.

For more information on our education programs, 
please contact one of our hardworking Education 
Coordinators.
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Welcome to Pi in the Sky!

Pi in the Sky is available online at  
www.pims.math.ca/resources/publications

Solutions to Math Challenges from Pi in the Sky 
Issue 16: http://media.pims.math.ca/pi_in_sky/
pi16solns.pdf

A NOTE ON THE  
COVER ART

The Green-Tao Theorem with 
Endre Szemeredi (acrylics 
and oil pastels on canvas, 
110X160cm, 2012, currently in 
MODESSQE Collection, Poland)

“Portrait of a mathematician as 
an equation written in chalk 
on a blackboard? They say that 
everything we create is a kind 
of self-portrait, so perhaps a 
perfect equation is, in fact, the 
most genuine portrait of its 
author.” Dominik Lejman, about 
the painting.

Oliver Šin is a Hungarian 
contemporary painter who 
combines Neo-expressionism, Street Art, Dadaism, Conceptual and Political Art with science. He has painted 
scientific formulas on a variety of surfaces including canvas, guitars, girlfriend’s shoes and more. When he 
doesn’t paint, he plays the guitar and/or travels his camera in hand.
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Prime numbers, those numbers greater than 1, like 
2; 3; 5; 7; 11; 13 etc., that have no positive integer 
divisors other than one and the number itself, have 
a long history. Indeed they were studied over 2000 
years ago by Euclid, and possibly before that. They 
can be seen as the ‘multiplicative building blocks of 
the integers’ because every integer greater than 1 can 
be written as a product of prime numbers in exactly 
one way, up to reordering (i.e. we don’t distinguish 
between writing 12 as 2x2x3 and 3x2x2). This fact 
is sometimes called the ‘fundamental theorem 
of arithmetic’ and was proved by Euclid. Euclid 
also showed that there are infinitely many prime 
numbers. 

You might think that, having been studied for so 
long, there wouldn’t be anything new to ask about 
prime numbers. In fact this is not the case and some 
of the best mathematicians in the world are still 
working on prime numbers. 

Here’s a well-known question which no one knows 
how to answer, it is called a conjecture because it’s 
widely believed to be true but hasn’t been proven. It 
is also attributed to Euclid. 

Conjecture. (Twin Prime Conjecture) There are 
infinitely many positive integers n such that both n 
and n + 2 are prime. 

It’s easy to find lots of examples: 3 and 5; 5 and 7; 11 
and 13; 17 and 19; 29 and 31 etc. The 100000th pair 
of twin primes is 18409199 and 18409201. Of course 
making a long list just shows that there are lots of 
twin primes, but to prove the conjecture, you’d need 
to show that the list goes on forever. 

A proven fact about prime numbers is the so-called 
‘Prime Number Theorem.’ This asks how many prime 
numbers are there up to a number n? The number of 
prime numbers up to n is sometimes written π(n) 
and the prime number theorem tells us roughly how 
big π(n) is. The Prime Number Theorem was proved 
(separately) by Hadamard and de la Vallée Poussin at 
the end of the 19th Century. 

Theorem. (Prime Number Theorem) The number of 
primes up to n, π (n), is approximately n/ log n. 

By approximately, I mean that as n gets larger, the 
accuracy of the approximation gets better and 
better (formally the relative error, (π (n)- n/ log n)/ 
π (n), approaches 0 as n approaches ∞). There are 
78498 primes up to 1,000,000, whereas 1000000/
log 1000000 is about 72382, a 7.7% error. Up to 
1,000,000,000 there’s a 5.1% error and up to 1012, 
there’s only a 3.8% error.

A consequence of the theorem is that the further 
along the integers you look, the fewer prime 
numbers you find. However, by the old result of 
Euclid, no matter where you start there are always 
more to be found. 

One remarkable feature of the Prime Number 
Theorem is the appearance of the logarithm. It’s 
more or less true that logarithms only show up when 
you’re doing calculus. That is, you’re working with 
continuous problems. But we’re talking about natural 
numbers, which are about as far from continuous 
objects as you can get. So where does the logarithm 
come from? 

It’s an amazing fact that even though prime numbers 
are ‘discrete’ objects (that is they have gaps between 
them), they can be studied using the techniques 
of calculus. These ideas go back to the Swiss and 
German mathematicians Euler (18th Century, 
pronounced ‘Oiler’ not ‘Yewler’), Dirichlet and 
Riemann (19th Century), who pioneered the field 
of what is now called analytic number theory (that is 
the study of discrete objects such as integers using 
calculus-like techniques).

Another very well-known unsolved question about 
prime numbers is the following: 

Conjecture. (Goldbach’s Conjecture) Any even 
number greater than 2 can be written as the sum of 
two prime numbers. 

Editorial
	 PRIME TIME NEWS 
	 BY ANTHONY QUAS 
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Again, it’s known to be true (using computers) for all 
even numbers up to 4 x 1017, but no one knows how 
to prove it for all n at once. 

So far, everything I’ve mentioned (apart from the 
computer experiments) was done over a century 
ago. But real progress is being made on these ancient 
questions. I will point out three recent developments. 

First, a definition: an arithmetic progression is a 
sequence of numbers such as a, a+d, a+2d, … , 
a+kd, where a is the first term and d is the common 
difference. This is a (k + 1)-term arithmetic 
progression. For example 59, 83, 107, 131 is a four-
term arithmetic progression with a=59 and d=24. 
Notice that all of the terms in this progression are 
prime numbers. They are not consecutive primes 
(61 is prime for example) – but we’ve found an 
arithmetic progression, all of whose terms are 
prime numbers. It has been conjectured since at 
least the early 20th Century that the primes contain 
arithmetic progressions of all lengths. 

This is now an ex-conjecture as it was shown to 
be true in 2004 by Ben Green (who was a PIMS 
postdoctoral fellow at the time) and Terence Tao, 
mathematicians at the University of Oxford and the 
University of California at Los Angeles respectively. 
The result was noted by the committee that awarded 
Tao the 2006 Fields Medal (the mathematical 
equivalent of the Nobel Prize). The Green-Tao 
theorem is depicted on the cover of this issue of Pi 
in the Sky (a work by the contemporary artist Oliver 
Šin). In fact the scary-looking formula is the last line 
of Green and Tao’s paper.
 
Even more recently, just this year, there have been 
a number of remarkable developments in analytic 
number theory. 

Theorem. (Odd Goldbach Conjecture)  
Every odd number n > 5 can be written as the sum of 
three prime numbers. 

Notice that the Goldbach conjecture above implies 
this: if you take an odd number greater than 5 
and subtract the prime 3, you’re left with an even 
number greater than 2, which is itself the sum of two 
primes. Putting it all together, the odd number is the 
sum of three primes. This theorem had previously 
been established to be true for all ‘sufficiently large’ 
numbers n, which means that it was known to be 
true for numbers greater than some integer. However 

that integer was 2 x 101346, an enormous number. 
The proof that it holds for all n > 5 is due to the 
Peruvian mathematician, Harald Helfgott and was 
circulated earlier this year. 

As I mentioned above, one of the best known 
problems in analytic number theory is the twin 
prime conjecture. This was, until recently, considered 
to be far out of reach. This year, the Chinese 
mathematician, Yitang Zhang, announced the 
following partial result that has been received with 
great excitement.

Theorem. (Bounded gaps in primes) If the primes 
are numbered p1 = 2, p2 = 3, p3 = 5 etc, then there exist 
infinitely many n’s such that gap between the nth and 
(n+1)st primes, pn+1-pn, is less than 70,000,000.

As a corollary of this, the following statement can be 
obtained. 

Theorem. (Repeating gap between primes) There 
exists a number g less than 70,000,000 such that there 
are infinitely many primes p where p and p + g are 
both prime and have no primes in between. 

You can prove this as follows: list all possible gaps 
2,4,6,8,…, 6999998 (you only have to list even gaps 
because since all but one prime number is odd, so  
all but one gap is even). Then either there are 
infinitely many gaps between primes of size 2 or not. 
If yes you’re done (and the twin prime conjecture 
is true). If not look at gaps of size 4. If there are 
infinitely many of size 4, you’re done. If not, try 
gaps of size 6 etc. By Zhang’s theorem, since there 
are infinitely many gaps of size less than 70,000,000 
the number of gaps of size 2 plus the number of 
gaps of size 4, and so on up to the number of gaps 
of size 6,999,998 adds up to infinity. So one of these 
numbers must be infinite! 

Starting from Zhang’s theorem, Terence Tao 
(mentioned above) has initiated a Polymath project, 
a project where a large number of mathematicians 
work collaboratively on a problem to try and reduce 
the number 70,000,000 as much as possible. As I 
write this, they have reduced the maximum gap 
between primes to 4,680, but this is an ongoing 
project, so watch this space!  



5

The Worst Election Ever: A Look at 
The Mathematics Of Democracy
BY RACHEL HONG
Rachel Hong wrote this article while she was a high school student at Leland High School, and is currently studying at the  
University of Pennsylvania.

The debates, platforms and campaigns that come with 
elections are confusing, but the elections themselves 
can be almost as hard to understand!  Many thanks 
to Alfonso Gracia-Saz for introducing me to voting 
theory and to Adam Hesterberg for giving the project 
idea that led to this article.

The year is 1951. The citizens of Mathematician 
Nation are electing a new leader and the population’s 
preferences are as follows (Figure 1). These numbers 
mean that 29 percent of voters have Archimedes as 
their first choice, Descartes as their second, Cauchy 
as their third, Euclid as their fourth, Babbage as their 
fifth and so on.

Let’s assume that Mathematician Nation uses the 
plurality voting system. With this system, everyone 
casts a vote for their first choice and whoever 
receives the most votes wins. So, Archimedes wins 
the office.

This seems fair; after all, Canada, the United 
Kingdom and Mexico, along with many other 
nations in the world, use this voting system to 
choose their officials. It turns out, however, that 
there are a number of unfair problems with using 
plurality.

1. Why Archimedes shouldn’t have won
In this election, what would have happened if 
Archimedes had been placed in a head-to-head race 
with each other of the other candidates one by one?
 
The supporters of Babbage, Descartes, Euclid and 
Cauchy, who together made up 71 percent of the 
voters, all preferred Babbage over Archimedes. 
This group also preferred Cauchy and Euclid over 
Archimedes. If Archimedes ran against any one of 
Babbage, Cauchy or Euclid, he would have had only 
29 percent of the population’s votes and would have 
lost. If Archimedes ran against Descartes in a head-
to-head race, the supporters of Babbage and Cauchy 
as well as Descartes’ supporters would have voted 
against him and he would have lost, with the support 
of just 37 percent of the population.

In voting theory, Archimedes is known as the 
Condorcet loser. When put in a two-way election 
against each of the other four candidates he will 
always lose. Yet, with the plurality voting system 
Archimedes would win. So, this system fails the 
Condorcet Loser Criterion, which states that the 
Condorcet loser must not win. This fairness criterion 
makes sense, since it seems that while Archimedes 
had the largest number of people list him as their 
first choice, many voters greatly disliked him. The 
part of the population which did not support him 
(71 percent) ranked him as either fourth or last. 
If a candidate can win even with 71 percent of the 
citizens’ disapproval there must be a problem.

Fig. 1: Based on a hypothetical distribution created by Alfonso Gracia-Saz.

29%   Archimedes Descartes      Cauchy            Euclid          Babbage

18%   Euclid  Cauchy      Babbage            Archimedes         Descartes
19%   Descartes  Cauchy      Euclid            Babbage         Archimedes
20%   Babbage  Descartes      Cauchy            Euclid          Archimedes

14%   Cauchy  Euclid      Descartes         Babbage         Archimedes

1st 2nd 3rd 4th 5th
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2. Why Descartes should have won
This was unfair for the voters, but particularly so 
for Descartes and his supporters. After figuring out 
that the Condorcet loser criterion was violated in 
this election, they knew that the Condorcet winner 
criterion—that the Condorcet winner must win for 
the system to be fair—must have also been broken. 
If we look closer at the population’s preferences, it 
becomes clear why Descartes’ supporters were upset.

Forty-nine percent of the population, the people who 
support Archimedes and the people who support 
Babbage, listed Descartes as their second choice. 
Nineteen percent of voters listed Descartes as their 
first choice. Clearly, Descartes was quite popular. 
What would happen if he were placed in a two-way 
election with each of the other candidates?

Babbage’s supporters, Descartes’ supporters and 
Cauchy’s supporters, who comprise 53 percent of the 
population, preferred Descartes over Archimedes. 
Archimedes’ supporters, Descartes’ supporters and 
Cauchy’s supporters, who comprise 62 percent of 
the population, preferred Descartes over Babbage. 
Archimedes’ supporters, Babbage’s supporters 
and Descartes’ supporters preferred Descartes to 
Cauchy and Descartes to Euclid. Against each of the 
other four candidates, Descartes would have won 
an absolute majority, making him the Condorcet 
winner. Because Descartes lost the election despite 
being the Condorcet winner, the plurality voting 
system also failed the Condorcet winner criterion.

So far, the 71 percent of voters who did not vote 
for Archimedes are upset because they ranked him 
either fourth or last and Descartes’ supporters are 
unhappy because their candidate should have won 
for being the Condorcet winner. Archimedes is 
worried about this unrest, but his problems are about 
to get even worse.

3. The problem with Euclid and why 
Cauchy should have won
The supporters of Cauchy were suspicious when 
Euclid decided, at the last minute, to run for office 
as well. It wasn’t that they had a problem with 
Euclid—in fact, they rather liked him!  Cauchy and 
Euclid had similar beliefs and plans for the future 
of Mathematician Nation. Unfortunately for their 
supporters, Cauchy and Euclid were too similar 
politically and ended up splitting the vote. All 
voters either liked Cauchy only slightly more than 
they liked Euclid or liked Euclid slightly more than 
they liked Cauchy. Cauchy and his supporters are 
furious about the results. Cauchy had 32 percent 
of the population’s votes before Euclid joined the 
election and took 18 percent of the voters with him. 
If Euclid’s supporters’ votes were combined with his 
own, Cauchy would have won (Figure 2).

After the election, Euclid admitted that he only 
ran because he was talked into it by Archimedes’ 
supporters, who knew about another criterion that 
plurality fails: Independence of Clones. Euclid agreed 
with everything on Cauchy’s platform during his 
campaign and was a better public speaker, dividing 
the Cauchy voters and preventing Cauchy from 
winning. In theory, Euclid should not have affected 
the outcome because he didn’t even come close to 
winning, but because of the flaws in the plurality 
voting system, he became a relevant alternative and 
changed the outcome of the election. Plurality is 
susceptible to strategic nominating, which is unfair.

4. Kenneth Arrow saves the day
By the time Archimedes was about to take his 
oath of office, everybody but his supporters was 
protesting. Euclid’s supporters were furious because 
they had been tricked into supporting an irrelevant 
alternative. Cauchy’s supporters felt cheated because 
they could have won if the votes weren’t split. 

Fig. 2: Without Euclid in the running, Cauchy would have won.

29%   Archimedes          Descartes    Cauchy          Babbage

19%   Descartes              Cauchy    Babbage          Archimedes
32%   Cauchy              Babbage    Descartes         Archimedes

20%   Babbage              Descartes    Cauchy          Archimedes

1st 2nd 3rd 4th
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Descartes’ supporters were angry because their 
candidate was the Condorcet winner and therefore 
should have won. Babbage’s supporters were annoyed 
because they greatly disliked Archimedes and knew 
that the majority of Mathematician Nation’s citizens 
shared this dislike.

The nation was full of unrest and Archimedes feared 
that he would be pushed out of office. In a panic, 
Archimedes called Kenneth Arrow, who would later 
win a Nobel Prize in Economics, a man respected by 
everyone in Mathematician Nation.

Arrow sent him a book called Social Choice and 
Individual Values, which includes a theorem he 
first introduced in his PhD thesis. He reminded the 
citizens of Mathematician Nation that the beauty 
of math is that it can be used everywhere. Math 
has applications in technology, its patterns are in 
nature and the physical sciences require it for every 
formula. In fact, mathematical logic can even show 
that all elections are unfair! 

Wait… what? 

5. Why nobody should have won
Alas, it is true. Elections are unfair and Kenneth 
Arrow has proven it. A mathematically derived 
theorem, Arrow’s impossibility theorem, states that 
no election with more than two candidates can ever 
be completely fair. In fundamental terms, there 
is no voting system that can satisfy these fairness 
criteria: unanimity (if the entire group prefers one 
candidate to another, the ranking should reflect 
this), independence of irrelevant alternatives 
(if a candidate who loses is removed from the 
election, the outcome should not change) and non-
dictatorship (because democracy says so).

Mathematician Nation was saddened by this 
revelation, but could not deny it. Several 
mathematical proofs show the truth in Arrow’s 
theorem and the people accepted that no election 
can ever be completely fair. Luckily, for the next 
election they avoided such a dilemma. One man 
became so popular that no other potential candidate 
dared run against him. Kenneth Arrow for dictator! 
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Have you ever wondered where math came from? 
Or who invented numbers? There isn’t one answer 
because math arose independently in many cultures, 
but we can look at how it developed in one culture 
and explore what it was like to be a student in 
ancient times. 

One of the most studied areas of the ancient world 
is Mesopotamia, making it a (relatively) easy case 
study. Mesopotamia is in the area surrounding the 
Tigris and Euphrates rivers in modern day Iraq and 
is part of the Fertile Crescent, an area where grain 
crops were reasonably easy to grow. Civilization is 
thought to have begun approximately 12,000 years 
ago when people transitioned to 
farming from a hunter-gatherer 
lifestyle. This area is sometimes 
referred to as the cradle of 
civilization because it was one of 
the first places people settled and 
farmed. 

Mesopotamia was an area poor 
in many resources; there was 
no metal, stone, hard timber or 
minerals. Because these materials 
were only available through trade 
or conquest, mud and reeds 
tended to be the materials used in 
everyday life. Houses, canals and 
even tools were made using only 
mud, mud bricks, fired clay and 
reeds.

As the system of agriculture grew 
more complex, people began to 
use tokens for trading to keep 
track of labour and commodities. 
The tokens can be thought of as 
the beginnings of mathematics as 
they showed both counting and 
the process of abstraction. 

From Tokens to Tablets
Tokens originated 9,000 years ago as simple 
geometric figures made out of clay with different 
shapes representing different goods. For example, a 
cone could represent an amount of grain, while a 
sphere might represent a different amount of grain 
and a tetrahedron, an amount of labour. The major 
advantage of tokens was that they could be counted, 
manipulated and traded without having to physically 
move heavy baskets of grain or ornery animals. As 
time progressed the number of types of tokens, 
as well as their complexity, increased until there 
were over 350 types of tokens in circulation, often 
meaning different things in different areas.

Math: The Age-Old 
Question 
BY KENTON KAUPP

Fig. 1: Mesopotamia was located in modern day Iraq. Modified and used under GNU Free  
Documentation License.
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Around 5,300 years ago it became common to deal 
with debts by sealing tokens in a clay sphere that was 
marked with a seal which would break if tampered 
with. This way both parties knew the contents 
remained the same. Unfortunately, it was difficult to 
determine what was in the sphere without opening 
it, so generally an impression of the tokens inside 
the sphere was made on the outside of the sphere to 
indicate its contents. Eventually, it was realized that 
this process had redundant information and so was 
simplified just using the impressions as the record. 
Using this system, five grain impressions would 
be used to represent five units of grain and two oil 
impressions would be used to represent two units of 
oil. These impressions on clay are considered the first 
type of writing in Mesopotamia.

Urbanization began significantly in Mesopotamia 
around 5,200 years ago as city states began to form. 
With this development came an unprecedented 
volume of goods to manage and the writing system 
needed to evolve to handle this change. First, the 
impressions were replaced with a sketch made with 
a pointed stylus allowing a scribe to work more 
quickly. Next, the one symbol per item strategy 
gave way to a numeral followed by the type of good, 
similar to the way we might say “nine sheep” today. 
This method was advantageous because scribes could 
represent very large numbers using relatively little 
writing space. 

This number system varied from region to region 
and sometimes things we would consider unusual 
would appear. 

For example, the set of numerals to count discrete 
objects like animals was different from one used 
for continuous measurements such as areas and 
volumes. Many of the measurement units were 
not standardized and there were different sized 
conversion factors between units which is similar to 
the conversion factors seen in the US today. 

Length Volume
1 ft = 12 in 1 cp = 8 oz

1 yd = 3 ft 1 pt = 2 cp

1 mi = 1760 yd 1 qt = 2 pt

Length Volume
1 cubit = 3 double-

hands
1 ban = 10 sila

1 reed = 6 cubits 1 bariga = 6 ban

1 rod = 2 reed 1 lidga = 4 bariga

Fig. 2: The US measurement system has various conversion factors. Adding 
to this complexity, the volume units have a different meaning in the US and 
Canada. Ancient measuring systems would have seen much of this type of 
variation. The second table shows a measurement system used just over 5,000 
years ago. A cubit is about 50 cm and a sila is about 1 L.

Four thousand years ago, Mesopotamia’s government 
grew very large and centralized which resulted in the 
numeric system being standardized. This included 
writing in cuneiform text and using a sexagesimal1 
place value system. The period following this change 
is often called the Old Babylonian Period which 
lasted from about 4,000 to 3,600 years ago and is 
the period for which we have the most information. 
This is largely because of the endurance of the clay 
tablets that were commonly used for writing, which 
withstand weathering better than other mediums 
such as wax or papyrus. 

Like a Mesopotamian  
Student
An Old Babylonian school typically consisted of a 
few rooms and a courtyard. These looked like the 
surrounding houses, except they contained many 
more tablets than a house would. 

1.  Sexagesimal refers to base 60. Remnants of this system can still be seen in 
how we measure angles and time. 6 x 60 = 360°, 60 seconds make a minute 
and 60 minutes make an hour. 
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Using clay as a writing medium had a few challenges. 
The clay needed to stay wet to be written on so a 
basin of water would have been nearby. 

A student needed to write fast enough to complete 
their work before the clay dried and couldn’t fix 
mistakes afterwards. Clay tablets were bulky, so 
storage was likely an issue. 

Discarded tablets were often used as building filler. 
To reduce the number of tablets, only the important 
information was kept while the ‘work’ was done on a 
separate hand tablet which was reusable. 

Most students were training to become scribes or 
bureaucrats. It appears that these students spent 
a large amount of time copying tables from an 
instructor. These tables could include things like 
names of animals or places, translations between 
languages and mathematical tables. This served a 
dual purpose; the student became more familiar 
with the material, while creating a personal library 
for later use. Much of the mathematics taught used 
multiplication, reciprocal, square, square root and 
conversion tables to simplify procedures. Usually 
mathematics was taught in a way that each problem 
used a specific algorithm to solve it. So for problem 
type A, use solution type A. Evidence for this 
is apparent because students would often show 
unnecessary steps such as multiplying by 1.

Take a step back in time and try some mathematics 
Babylonian style.

Cuneiform Numbers 

Fig. 3: A wedge shaped stylus was used to write in cuneiform. The cuneiform 
number system used during the Old Babylonian Period only required two 
unique symbols. The style of writing varies somewhat from person to person 
and over time just as is true today. Notice how the numbers progress and that 
1 and 60 have the same symbol.

Fig. 5: Here is a tablet with cuneiform numbers c. 3,800 – 3,600 years ago. 
Which numbers can you identify correctly? The tablet is part of the Yale 
Babylonian Collection. Photograph courtesy of Bill Casselman, http://www.
math.ubc.ca/~cass/Euclid/ybc/ybc.html.

During the Old Babylonian Period, numbers were 
represented using two symbols: one to represent 1 
and one to represent 10 as shown in Figure 3. To 
represent 2, you used two 1s and to represent 34 
you used three 10s and four 1s. Once you reached 
60, you added 1 to the `place’ to the left, just like 
after 9, you add a 1 to the left to get 10. To represent 
sexagesimal numbers in this article, spaces are used 
to represent place value and a semicolon will be used 
to separate whole numbers from fractional ones2. For 
example, the sexagesimal value 12 43 6 represents 

12 × 602 + 43 × 60 + 6 = 45,786 

in decimal notation and 12; 43 6 represents 

12 + 43 × 60-1 + 6 × 60-2 ≈ 12.718.

Using a place value system allows you to easily 
represent large numbers. This is an advantage over 
a system like the Roman numerals which requires 
different symbols as numbers get larger. Another 
advantage of using base 60 is that 60 has 10 proper 
divisors greater than 1 (2, 3, 4, 5, 6, 10, 12, 15, 20, 
30) whereas 10 only has two (2, 5). 

2.  There were notations for simple fractions such as 1/2 and 1/3, however,
for this article all numbers will be represented using numbers, spaces and
semicolons. 1/2 will be written ; 30, 1/3 will be written ; 20 and so on.
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This makes division by these numbers easier just as 
dividing numbers by 2 or 5 is much easier than other 
numbers when using the decimal system. 

Fig. 4: Some equivalent numbers written in both sexagesimal and decimal.

Two things about the Old Babylonian system 
can lead to ambiguity. The first is that the 
Mesopotamians did not have a symbol for 0 to act 
as a place holder. This means that 1 can represent 
(using zeros) 1, 1 0 or 1 0 0 as well as other numbers 
and 12 21 can represent 12 21, 12 0 21 or 12 0 0 21 0 
as well as other numbers. A second problem is that 
there was no notation for a decimal and so 
34 5 39 can represent many different values such as 
34; 5 39, 34 5; 39, 34 5 39. Eventually, notations were 
produced to solve both of these problems; a space or 
spaces were used to represent zeros and a symbol, 

, was used to indicate place value.

Addition and Subtraction
Addition and subtraction were two mathematical 
procedures that did not rely on tables. Typically, 
no intermediate steps were shown for these types 
of problems, however, algorithms similar to those 
used today, that included carrying and borrowing 
were probably used. Figure 6 shows an example of 
addition and subtraction using sexagesimal numbers.

Multiplication
Most students would have had basic multiplication 
tables memorized up to 12 × 12, just like you 
(hopefully). Multiplication beyond this would have 
relied on a table. Using the multiplication table in 
Figure 7 to multiply 30 × 12 48 could have been 
done in parts by looking up the values separately 
and summing the results.

30 × 12 0 = 6 0 0
30 × 40 = 20 0

30 × 8 = 4 0
6 0 0 + 20 0 + 4 0 = 6 24 0

Note that place value needs to be accounted for 
when adding the products.

1

58 19 31 17 30+60 +60

1 32 18 18 31

2 3 47 51 ; 19

3 2 38 49 17 39 ; 41

Fig. 6: The addition 58 19 31 + 32 18 + 2 3 47 0 = 3 2 38 49 and the 
subtraction 18 31− 51; 19 = 17 39; 41. Notice that `carrying’ is used when a 
column sums to more than 60 and you `borrow’ 60 at a time.

60

1 30 2 30

2 1 3 20

3 1 30 4 15

4 2 5 12

5 2 30 6 10

6 3 7; 30 8

7 3 30 8 7; 30

8 4 9 6; 40

9 4 30 10 6

10 5 12 5

11 5 30 15 4

12 6 16 3; 45

13 6 30 18 3; 20

14 7 20 3

15 7 30 24 2; 30

16 8 25 2; 24

17 8 30 27 2; 13 20

18 9 30 2

19 9 30 32 1; 52 30 

20 10 36 1; 40

30 15 40 1; 30

40 20 45 1; 20

50 25 48 1; 15

50 1; 12

54 1; 6 40

Fig. 7: Here is a multiplication table (left) and a reciprocal table (right) that 
a student would have been familiar with. Note that the reciprocal table only 
includes values that can be written using a terminating sequence. For example, 
60 ÷ 7 = 8.5714… and so it is not included. 7 30 was included on most 
reciprocal tables, likely because it was a commonly used fraction.

Sexagesimal 1 0 0 4 37 46 40 8 51; 15

Decimal 216 000 1 000 000 531.25
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Division
Multiplying by a reciprocal was used for division. 
Reciprocal tables can be hard to remember, so it 
was common for a student to use a reciprocal table 
like that shown in Figure 7. In base 60, just like in 
base 10, you can end up with reciprocals that have 
infinitely long decimal representations. The only 
sexagesimal numbers with finite reciprocals have 
factors that are powers of 2, 3 and 5. These are now 
called regular numbers. It seems that the ancient 
math instructors went out of their way to make sure 
solutions required only regular numbers. As with the 
other operations, place value needed to be accounted 
for when completing a division. A sample is shown. 

	 37 36 ÷ 24	 =  37 36 × ; 2 30
		  =  37 36 × ; 2 + 37 36 × ; 0 30
		  =  1 15; 12 + 18; 48
		  =  1 34

The Quadratic Equation
Geometric problems were common for Old 
Babylonian students. The following problem is 
adapted from a translation given in A. E. Berriman’s 
article The Babylonian Quadratic Equation (1956). 
The problem and its solution in modern notation are 
similar in style to what an Old Babylonian student 
would have experienced.

Notice that there is no explicit question in the 
problem, it is implied that the student is supposed 
to determine the square line which is referring to 
the side length. The solution is given to the student 
and is meant to be a model for this type of problem. 
Generalized solutions were not used.

	 •  The surface and the square line I have  
	   accumulated: 12.

1
; 30 × 1 = ; 30

; 302 = ; 15
; 15 + 12 = 12; 15

= 3; 302

3; 30−; 30 = 3

You may have found that the problem above can be 
written as x2 + x = 12 where the student is meant to 
determine the value of x. One interpretation of this 
solution is found in Figure 8 and below.

Fig. 8: This may have been how a student interpreted the solution to a 
quadratic equation.

a. Draw a rectangle with dimensions x, x+1. 
Separate it into a square with side length x (red) and 
a rectangle (blue).

b. Divide the rectangle in half to get two blue 
rectangles with widths of ; 30.

c. Move one of the blue rectangles to the bottom of 
the square.

d. Determine the area of the missing square (green), 
;15 in this case and the area of the large square, 12; 15.

e. Use the area of the large square to determine the 
side length of the large square, 3; 30 in this case.

f. Subtract the width of the blue rectangle from the 
length of the large square to determine the unknown 
length, x = 3.
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Try to correlate the steps in this solution to those in 
the Old Babylonian solution.

Square Roots
Look back to Figure 5. This tablet is thought to be 
the work of a student because the writing and the 
tablet are fairly large. What do you suppose the 
significance of the tablet was? As a clue, convert to 
decimals: ; 30 = 0.5, 1; 24 51 10 ≈ 1.4142 and 
; 42 25 35 ≈ 0:7071. It looks like the student is using 
an approximation of √2 to determine the length of 
the diagonal of a square with side ; 30. There is no 
work shown by the student, but he likely looked up 
the value of √2 from a table. What step(s) could he 
have used to determine the diagonal length?

It is clear from the tablet shown in Figure 5 that 
Old Babylonians were familiar with square roots, 
but how did they calculate them? No outright 
calculations have been found but some clues suggest 
the method shown in Figure 9 and below.
 

Fig. 9: Here’s one iteration of how √2 may have been approximated. The 
diagram is not to scale.

a. Begin with an estimate. 1; 30 is a reasonable start 
as 1; 302 = 2; 15 which is fairly close to 2. Draw a 
square with side length 1; 30. 

b. This is an overestimate so you can separate this 
square into rectangles of area 2 and ;15.

c. Determine the unknown length of the small 
rectangle by dividing the area by the known length,  
; 15 ÷ 1; 30 = ; 15×; 40 = ; 10.

d. Next, divide this rectangle in two and use one to 
cover the bottom of the original estimate square.

e. This gives you an overestimate of 1; 25, 1; 252 =  
2; 0 25. Use this as your new estimate and repeat the 
process as until you reach a desired level of accuracy.

A similar process can be used for underestimates by 
adding a rectangle to the underestimate, so they sum 
to 2.

******

Giving word problems to students was a favourite 
activity of Old Babylonian teachers. Normally, 
students would be given some information and 
expected to compute an unknown value. Just as it is 
true today, many of the word problems had no real-
world usefulness. Interested readers are encouraged 
to look into some of these in Elenor Robson’s 
Mesopotamian Mathematics (2007), which includes 
translations for word problems as well as many other 
mathematical texts. 

In many ways, the math learned by the ancient 
Mesopotamians was similar to the math students 
learn today. Students were given examples to work 
from and problems to solve, the work was more 
important than the answer and unrealistic problems 
were used to teach thinking skills. It is amazing to 
think that in some respects, a student’s experience 
four millennia ago was similar to a student’s 
experience today. 
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Think Outside the Box Grid
BY CHRISTINE LI, GUNN HIGH SCHOOL, CALIFORNIA
Christine Li wrote this article while she was a high school student at Gunn High School, California and is currently  
studying at Princeton.

When given an x by y grid with two rectangular black holes that do not touch one another, how do you figure 
out the number of unique paths from the bottom left vertex to the top right vertex of the grid? A path is valid 
only if every step of the path goes either towards the right or towards the top and not through any black holes. 
A step in the path, however, may go along the edges of the black holes. Let us start with an example problem.

Given a 7x5 grid with two holes, how many 
different paths are there from A to B?  
(Fig. 1)
At first glance, the problem may stump you. 
Should the grid be separated into sections with 
black holes and without black holes? Should 
complimentary counting be used: (total number 
of paths from A to B ignoring the black holes) 

– (number of paths from A to B that go through 
either/both of the holes)? At this point, there 
seems to be no obvious way to go about solving 
the problem.

Before we dive into the problem, let us match 
the grid with a Cartesian plane, placing the 

origin at the bottom left vertex of the grid, the x-axis along the bottom edge of the grid and the y-axis along the 
left edge of the grid.  Then, the coordinates of point A are (0,0) and the coordinates of point B are (7,5).

Simplify
Let us simplify the problem by removing the black holes from the grid (Fig. 2). There are two methods to find 
the number of unique paths from A to B.

Method 1
Let each coordinate point have a property k 
where k is the number of possible paths from 
(0,0) to that coordinate point, and let k@(a,b) 
denote the k value of the point with coordinate 
(a,b).

Initial Conditions
k@(0,0)=1, because there is only 1 way to get 
from (0,0) to (0,0). Also for any x, k@(x,0)=1 
and for any y, k@(0,y)=1 because there is only 1 
way to get from (0,0) to any point along the left 
or bottom edges of the grid.

A Fig. 1

B

B

Fig. 2A
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As stated above, k@(1,0)=1 and k@(0,1)=1. 
Then, k@(1,1)=k@(1,0)+k@(0,1) because each 
path from (0,0) to (1,1) must go through either 
(1,0) or (0,1).

We can generalize this: For any 
(x,y), k@(x,y)=k@(x-1,y)+k@(x,y-1) [Eq. 1] 
because each path to (x,y) must go through 
either (x-1,y) or (x,y-1). 

This is called a recurrence relation. (A good 
introduction to this topic is given in Chapter 7 of 
Richard A. Brualdi, Introductory Combinatorics, 
5th edition [ISBN-10: 0136020402].) 

Using Eq. 1, we can find the k value at every 
coordinate point in the grid. We see that 
k@(7,5) is 792. (Fig. 3)

Method 2
Notice that any path from A to B goes through 12 steps, which consist of 5 steps upwards and 7 steps to the 
right. Let ‘U’ denote a step upwards, and ‘R’ denote a step to the right. We can look at each path from A to B as a 
permutation of 5 ‘U’s and 7 ‘R’s. An example of a valid path from A to B would be ‘URRURURRRUUR’. 

The number of different paths from A to B is then  , because there are  ways to choose 

which 5 places in the permutation to place the ‘U’s, and after the ‘U’s are placed, there are  ways to choose 

the remaining 7 places in the permutation to place the 7 ‘R’s.

Another way to look at the number of different paths from A to B is , because there are  

ways to choose which 7 places in the permutation to place the ‘R’s, and after the ‘R’s are placed, there are  

ways to choose the remaining 5 places in the permutation to place the 5 ‘U’s.

Add a Complication 
Now, let us add one hole to the problem. 
Assume there is a black 3x2 hole in the middle 
of the grid as shown. How many different paths 
are there from A to B? (Fig. 4)

Method 1
As stated before, we can use the following 
equation to get the number of paths from point 
(0, 0) to point (x, y) in a grid without holes. 

k@(x,y)=k@(x-1,y)+k@(x,y-1) 

1 6 21 56 126 252 462 792

1 5 15 35 70 126 210 330

1 4 10 20 35 56 84 120

1 3 6 10 15 21 28 36

1 2 3 4 5 6 7 8

A 1 1 1 1 1 1 1

B

A

B

Fig. 3

Fig. 4
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Now, can we apply this equation to a grid with holes? The answer is yes, but with a few added black hole rules:

Black Hole Rules
1. k@(x,y)=k@(x-1,y) if the path from (x,y-1) to (x,y) falls inside the hole.
2. k@(x,y)=k@(x,y-1) if the path from (x-1,y) to (x,y) falls inside the hole.
3.k@(x,y)=0 if both paths fall inside the hole (This rule applies to all points inside the hole).

Rule 1: the only way to get from (0,0) to (x,y) is 
through (x-1,y), as in the case of  point at (2,3): 
k@(2,3)=k@(1,3)=4.

Rule 2: the only way to get from (0,0) to (x,y) is 
through (x,y-1), as in the case of point (4,2):  
k@(4,2)=k@(4,1)=5.

Rule 3: there are 0 paths from (0,0) to (x,y), as 
in the case of (2,2).

By this logic, we can fill in the rest of the grid 
from k@(0,0) to k@(7,5), and we see that  
k@(7,5)=316. (Fig. 5) Therefore, there are 316 
paths from A to B.

Method 2
We can see that any path 
from A to B that does not 
pass through the hole must go 
through one of the following 
points: (0,4), (1,3), (4,1), (5,0)—
call them ‘crucial points’. But 
how do we determine which 
points are considered ‘crucial 
points’?

Suppose a rectangular black hole’s top left vertex is at (xm,ym) and its bottom right vertex is at (xn,yn). Draw a 
diagonal line in the northwest direction starting from point (xm,ym) until it either hits another black hole or the 
corner or edge of the grid. Then draw a diagonal line in the southeast direction starting from point (xn,yn) until 
it either hits the vertex or edge of another black hole or the vertex or edge of the grid. All points on these two 
lines constitute the set of crucial points for this black hole. 

Each path is essentially broken into two parts: from (0,0) to one of the crucial points and from that crucial point 
to (7,5). To get the total number of paths from (0,0) to (7,5), paths that pass through each of the crucial points 
need to be considered.

 In order to get the number of paths that pass through each crucial point, we need to multiply the number of 
paths from (0,0) to the crucial point by the number of paths from that point to (7,5) because each full path is a 
combination of the two sub-paths and must go through both paths (see table above). 

1 6 15 28 50 92 172 316

1 5 9 13 22 42 80 144

1 4 4 4 9 20 38 64

1 3 0 0 5 11 18 26

1 2 3 4 5 6 7 8

A 1 1 1 1 1 1 1

B

Fig. 5

Coordinates # of paths from (0,0) 
to point

# of paths from 
point to (7,5)

# of paths from (0,0) to (7,5) 
through point

(0,4) 1*8=8

(1,3) 4*28=112

(4,1) 5*35=175

(5,0) 1*21=21
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This uses the multiplication principle1. Then, the number of paths from A to B that pass through each of the 
crucial points is added together to get the final answer because the paths through different crucial points are 
mutually exclusive. This uses the addition principle1. Thus, we get a total of 8+112+175+21=316 paths. 

Add Another Complication
Now, we add the second hole and are back 
to our original problem (Fig. 1). How many 
unique paths are there from A to B?

The same two methods used for one hole can 
also be applied to the problem with two holes.

Method 1
Find the k value for each point in the grid by 
applying the equation and black hole rules.  
The number of paths from A to B is 256 paths 
(Fig. 6).

Method 2
The crucial points associated with the first hole stay the same: (0,4), (1,3), (4,1), (5,0). But now that there is a 
second hole, there are crucial points associated with this hole as well: (4,5), (5,4), (6,2), (7,1). 

Now let us organize these crucial points into two categories: ‘Category 1’ and ‘Category 2’.

Category 1: If all possible paths were to be drawn from (0,0) to this point, the paths would not pass through any 
other crucial point.

Category 2: If all possible paths were to be drawn from (0,0) to this point, at least one of the paths would pass 
through a crucial point in Category 1. 

To generalize for any x>1:

Category x: If all possible paths were to be drawn from (0,0) to this point, at least one of the paths would pass 
through a crucial point in Category (x-1).

So, each path goes through exactly one crucial point in Category (x-1).

Applying this to our problem, we get:

Crucial points 1: (0,4), (1,3), (4,1), (5,0).

Crucial points 2: (4,5), (5,4), (6,2), (7,1).

All paths from (0,0) to (7,5) must go from (0,0) → crucial point 1 → crucial point 2 → (7,5). 

To calculate the total number of paths from (0,0) to (7,5), all crucial points need to be considered. Using the 
same method shown in the simpler version of the problem with only one hole, we fill in the table as below.

1.  R. A. BRUALDI, Introductory Combinatorics (5th Edition) Pearson (2008)	

1 6 15 28 50 92 152 256

1 5 9 13 22 42 60 104

1 4 4 4 9 20 18 44

1 3 0 0 5 11 18 26

1 2 3 4 5 6 7 8

A 1 1 1 1 1 1 1

B

Fig. 6
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Fig. 7

Each path goes from (0,0) through one of the four first crucial points and then through a second crucial point to 
(7,5). For example, if the path went from (0,0) through a first crucial point (4,1), it could go one of four ways—
through the second crucial point (4,5), (5,4), (6,2), or (7,1)—and finally to (7,5). Let p@(a,b)(m,n) denote the 
number of unique paths from (a,b) to (m,n). Then, the number of paths that go from (0,0) through (4,1) and 
ultimately to (7,5) is:

k@(4,1)*[p@(4,1)(4,5)*p@(4,5)(7,5)+p@(4,1)
(5,4)*p@(5,4)(7,5)+p@(4,1)(6,2)*p@(6,2)
(7,5)+p@(4,1)(7,1)*p@(7,1)(7,5)]=130 (Fig. 7)

The same method, as shown above, can be used 
to calculate the paths that go through (0,4), 
(1,3), and (5,0). (Fig.7)

Adding the number of possible paths from (0,0) 
to (7,5) through each of the first crucial points, 
we get a total of 8+100+130+18=256 paths.

Further Reading: The theory of lattice paths is 
an important branch of modern combinatorics; 
Brualdi gives a nice introduction in section 8.5.

Bonus Problem: Given a 7x5 grid with 3 holes, 
how many different paths are there from A to 
B? (Fig. 8)

Abbreviations: cp1=crucial point 1, cp2=crucial point 2

Crucial points the path 
passes through

# of paths from (0,0) 
to cp1

# of paths from cp1 
to cp2

# of paths from cp2 
to (7,5)

# of paths from 
cp1 to (7,5)

# of paths from (0,0) to 
cp1 to cp2 to (7,5)

(0,0)(0,4)(4,5)(7,5) 5*1=5 1*(5+3)=8

(0,0)(0,4)(5,4)(7,5) 1*3=3

(0,0)(1,3)(4,5)(7,5) 10*1=10 4*(10+15)=100

(0,0)(1,3)(5,4)(7,5) 5*3=15

(0,0)(4,1)(4,5)(7,5) 1*1=1 5*(1+12+12+1)=130

(0,0)(4,1)(5,4)(7,5) 4*3=12

(0,0)(4,1)(6,2)(7,5) 3*4=12

(0,0)(4,1)(7,1)(7,5) 1*1=1

(0,0)(5,0)(5,4)(7,5) 1*1*3=3 1*(3+12+3)=18

(0,0)(5,0)(6,2)(7,5) 1*3*4=12

(0,0)(5,0)(7,1)(7,5) 1*3*1=3

B

A
Fig. 8
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HIDDEN CIRCLES AND 
THE DIGITS OF Π
BY REINHARD ILLNER

The number π is 
defined as the ratio 
of a circular object’s 
circumference to its 
diameter. In fith or sixth 
grade (I can’t quite remember) 
the teacher asked us to take round 
objects (coffee cups, pots, balls, whatever we 
could find) and do this measurement. In preparing 
this essay, I repeated this age old exercise with my 
own coffee cup and a hygrometer (a small round 
device that measures the humidity in my office). 
Table 1 shows what I measured with a primitive tape 
measure. C and d denote measured perimeter and 
diameter and q, the computed quotient.

Object C (cm) d (cm) q
Cup 27.7 8.8 3.14773

Hygrometer 26.4 8.4 3.14286

Table 1: Measurements

Since we all know that π=3.141592636..., it is clear 
that my method didn’t provide great accuracy. Of 
course, I could have tried harder, with a better tape 
measure and larger round objects. I could have 
also repeated my measurement many times and 
computed averages; however, I do not wish to waste 
anybody’s time. 2,200 years ago Archimedes proved 
π to be between 223/71 and 22/7, using regular 
polygons to approximate a circle (my high school 
teacher taught us that Archimedes had computed 
hundreds of digits and I believed this until a referee 
for this article taught me otherwise. According to 
Wikipedia, until the year 1,000, π was only known 
to less than ten digits [1],[2]). Now however, there 
are many algorithms and experiments one can use to 
approximate π, and we know more of π’s fascinating 
properties, for example, that it is a transcendental 
number (meaning it is neither rational nor 
algebraic). This property follows from what is 
known as the Lindemann-Weierstrass Theorem. 
In particular, the digits of π will never repeat 
periodically, nor can we expect any pattern.

Let me mention a second simple 
experiment which can be used 

to approximate π. In elementary 
mechanics one studies the pendulum, 

and after some simplifications derives the 
relationship 

where T is the period and l is the length of the 
pendulum and g = 9.80665 m/sec2 is standard gravity 
(earth acceleration of a free falling object at sea 
level). The appearance of π in this formula may 
appear a bit mysterious until you understand that the 
solution of the differential equation governing the 
pendulum motion approximates a circular motion in 
phase space and circles, of course, are the underlying 
geometric objects. You could set the generic task: See 
π, find the circle.

It is a standard exercise in a physics lab to compute 
g by measuring T and l. Conversely, if one already 
knows g (i.e from free fall experiments), one can use 
the formula to approximate π. However, no higher 
level accuracy need be expected, because the formula 
itself is only an approximation (derived as a linear 
approximation from the true pendulum equations), 
reasonably accurate only for small amplitudes. 
In addition, measurement errors will affect the 
quantities T and l. If you wish to use this experiment 
to find π, your pendulum should be a string of length 
l, with an attached weight that is much heavier than 
the string (because the formula is derived for such 
conditions).

I did the experiment with a homemade pendulum 
(made of a string with a golf ball attached at one 
end). The length of this pendulum from pivot point 
to the center of the golf ball was 105 cm (I did the 
best I could measuring this) and this pendulum 
exhibited a frequency of 29 swings in 60 seconds. 
This gives T=2.068965... seconds. Inserting these 
data and the value of g into the formula, I found 
π≈3.1614.... 
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I then lengthened the string, producing a pendulum 
with l=114.5 cm and measured that this pendulum 
swung 56 times in 120 seconds or T=2.142857... 
seconds. This gives π≈3.1346.... The average of both 
experiments is 3.148. Of course, it’s off, but this 
‘accuracy’ exceeded my expectations. 

For practical purposes it should never be necessary 
to compute π to more than 50 digits, however, there 
is some interest in the methods themselves, as they 
tend to shed light on many truths (or hidden truths) 
in geometry and analysis.

Consider the well-known expansion, known as the 
Leibniz series:

A bit of playing with your pocket calculator will 
convince you that this is not a very good method to 
compute the digits of π: the first four terms on the 
right, multiplied by 4, give 2.895238…. One has to 
add many, many terms until reasonable accuracy is 
obtained (actually, you can read from formula how 
many terms you have to include to compute π to, 
for example, 100 digits. Give it a try). Nevertheless, 
the formula should intrigue you because as written, 
there is no hint why this should be true at all. The 
hidden truth is that this formula arises from an 
elementary trigonometric identity, an integration 
and a so-called power series expansion, all things 
we do in first year calculus, but which were at the 
forefront of mathematical research 250 years ago 
(Leonhard Euler, who would recently have celebrated 
his 306th birthday, did much of the research).

Here are the steps: We know that tan(π/4)=1: a line 
at 45 degrees counterclockwise from the horizontal 
has slope 1 (this is where the circle is hiding), so  
π/4 = tan−11. From Calculus we know that

and if we use the geometric series

and integrate term by term, with , we 

find exactly Leibniz’ formula. 

Of course, we have to somehow justify the
manipulations with infinitely many terms, but 
this can be done, and can be found in university 
textbooks on real analysis. 

These steps show that

          (1)

which allows approximation of all values of the 
inverse tangent. Note that this works better (the 
series on the right converges faster) for smaller 
values of x. 

Further, the trigonometric identity

can be used (with some work) to derive the formula 
(attributed to a man named Machin and first 
published in 1706)

                 (2)

This offers a much better way to approximate π, 
because for x=1/5 and x=1/239 the right hand side 
of (1) converges much faster. Again, feel free to 
experiment with a pocket calculator, for example, 
the final displayed term in (1), evaluated for x=1/5, 
is 0.0000018286…. Much more on the power of 
Machin-like formulas to compute π with great 
accuracy can be found in [3, 4]. In combination 
with modern supercomputers, these formulas allow 
accuracies in the billions of digits.

A different and powerful formula is known as the 
Bailey-Borwein-Plouffe series

where

for n=0,1,2,.... Adding just the first two terms on the 
right gives 3.141422466.... This series converges to π 
at a very impressive rate. 

Two other things that are rather remarkable are: 
first, the derivation of this identity requires no more 
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than clever high school algebra and elementary 
integrations (involving trigonometric functions; this 
is, again, where the circle is hiding) and could have 
been done centuries ago (but was first published 
in only the 1990s [5]); second, in the hexadecimal 
system (based on the base 16 vs. 10 for the decimal 
system), this formula allows computing digits of π 
without knowing all previous digits. 

In passing, the number π also shows up in the 
identities 

(which nicely combines five fundamental real and 
complex numbers) and

(which is of major importance in statistics). I leave it 
as a challenge to the reader to find “where the circle 
is hiding” in these identities.

So, I have shown four ways of getting to π, two 
experimental and two computational. With more 
effort, time and information, one could fill a book 
with such methods. I will provide one more example, 
this time from a (hypothetical) billiard game. This 
was first pointed out by Gregory Galperin [6] and is 
a fairly recent observation.

Consider two billiard balls which move on a straight 
line (in one dimension), without gravitational forces 
or friction and with fully elastic collisions (meaning 
that collisions between the balls preserve momentum 
and kinetic energy). We present a scenario in which 
there is a solid elastic wall at x=0, ball A (with initial 
speed 0) has mass 1, radius 1 and is centered at x=3 
and ball B has mass m≥1, radius 1, velocity −1 and 
is centered at x=6 (the radii and initial centers are of 
no actual importance; what matters is that the balls 
are initially apart and ball B is set up to hit ball A 
from the right at speed 1). See Figure 1.

Figure 1: Two elastic spheres

If m=1, then the balls are of equal mass and the 
result is very predictable: ball B will hit ball A, they 
will exchange velocities, then ball A will hit the wall, 
bounce back with velocity +1, hit ball B a second 
time and ball B will fly off with velocity +1. We 
observe one wall collision and three collisions in all. 
What happens if ball B is heavier than ball A (m>1)? 
Momentum and energy conservation still uniquely 
determine the outcome of each collision: if, we let u0 
be the initial velocity of ball A (we took u0 = 0) and  
the initial velocity of ball B (we took v0 = –1) then 
the velocities u'0, v'0 after the collision will be

 			  (3)

 			   (4)

This is known as the collision transformation (a well-
known concept in the kinetic theory of gases). One 
readily checks that

(momentum conservation) and

 		  (5)

(energy conservation). The collision transformation 
is uniquely determined by these two properties. 

x3 6

−1 B:Mass mA:Mass 1
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Ball A will now bounce off the wall and head right; it 
will collide again with ball B, but as ball B is heavier 
than ball A, this may not be the last collision—ball A 
will head for the wall again, bounce back, meet again 
with ball B and so on. Figure 2 show what this looks 
like in x,t ‘space’ time; for convenience, the particles 
have been shrunk to points (we mentioned before 
that the size of the particles did not matter).

	
	

Figure 2: Many collisions in spacetime

We need some terminology to carry on. Suppose 
that u0, u1, u2, ... denote the velocities of sphere A 
initially, after the first wall bounce, then after the 
second wall bounce, etc. and that v0, v1, v2, ... denote 
the velocities of sphere B initially, after the first 
collision with A and then after the second collision 
with A, etc. From the collision transformation we 
find u1 = –u'0,  
v1 = v'0 , or

 			   (6)

 			   (7)

The two particles were originally on collision course 
(or in a collision configuration) because  
v0 – u0 = –1 < 0 and if v1 – u1 ≤ 0 they will collide 
again. We can then compute (u2, v2), (u3, v3) etc., 
until we find a number k such that, for the first time,  
vk – uk > 0. Particle A can then not catch up with 
particle B and there will be no more collisions.

Using a computer, one can find the number k with a 
little bit of effort. 

Table 2 shows k as a function of m, the mass of 
particle B and, following Galperin’s idea, we have 
taken m = 100n where n=0,1,2,3,…. 

m N (total) M (wall 
touches)

1 3 1
 100 31 15

 10,000 314 157
106 3142 …
108 31415 …

Table 2: Number of collisions

Here, N and M are the numbers of total collisions 
and wall collisions, respectively. Remember that 
particle A is initially at rest and particle B moves 
initially at v0 = –1. 

It appears that the number of all collisions (including 
the wall touches of ball A) produce the digits of 
π and the number of wall touches is half or one 
less than half of the corresponding approximation 
of π. The latter is easily understood- it is possible 
that balls A and B have a final collision such that 
A retains a positive velocity and will not return 
to the wall (as sketched in 2). But why should this 
experiment produce the digits of π at all? Where is 
the circle hiding? Before we answer this riddle, let us 
point out that this is really a thought experiment that 
can’t be performed in reality; to get just four digits 
of π you have to have ball B a million times heavier 
than ball A and, of course, both have to be perfectly 
elastic and not be subject to friction or gravity. 

But where is the circle? The explanation is hidden 
in the properties of the transformations (6, 7), 
although another idea is necessary. This idea has 
to do with the identity (5), which demonstrates 
the conservation of kinetic energy. It turns out that 
things become simpler if one rescales the speeds v0, 
v1, v2 etc. of ball B by defining

etc.

The energy conservation (5) becomes then the 
simpler equation 

 		  (8)

B (initial) x

B
A

t

A (initial)
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and the collision transformation (7) becomes

 			   (9)

 			   (10)

This is the same transformation as before, but the 
speed coordinate for ball B has been rescaled. In this 
new coordinate system, the equations (9, 10) are 
where the circle is hiding: If you set

then one immediately checks that  and 
therefore there is an angle  such that cos  = α,  
sin  = β. Geometrically this means that in the u−w 
plane, (9,10) is a rotation in the counterclockwise 
sense by the angle  and in our setup we begin the 
rotation with the initial point . The speeds 
(uj, wj) computed from repeated application of (9, 
10) arise from repeated rotations by  in the u−w 
plane for j = 0,1,2,… as shown in Figure 3 or as 
expressed by the transformation (rotation)

Energy conservation, as stated in (8), is the key 
ingredient in this: It implies that the collision 
transformation in this context must conserve the 
length of the vector (u0, w0) and only rotations or 
reflections do this.

Figure 3: Collisions are rotations!

We are almost there! There will be no more 
collisions after the first k for which  or, 
equivalently,  .  Hence we have to find out 
for which k the sum of the angles will have crossed 
the line with slope . From the picture, this 
means we are looking for the smallest k for which 

 .

Now, let us consider a large m. Then  

(or, there have been enough collisions to go almost 

through a half-circle, meaning ). We can 

also approximate  in terms of m by observing 

that , hence  .  

Putting it all together gives and this 

is an approximation of the expected number of 

wall touches: For example, for m = 104 we find 

2k≈100π≈314. 

There is much more about this on the internet, in 
particular in article [6]. I would like to thank my 
colleague Peter Dukes for bringing this method of 
finding π to my attention.
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In a probability experiment, the complement of an 
event consists of all elements in the sample space 
not contained in the event. This concept is a basic, 
yet powerful, tool in probability. To illustrate this, 
consider the following situation:
 
At halftime at a basketball game, a fan can win a 
prize for making a basket from half court and is 
given five chances to do so. In reality, the shooter 
will stop taking shots if he makes one, but for this 
problem let’s assume that he takes all five shots even 
if he makes one of the first four.

Suppose that the fan’s shooting percentage from half 
court is 2%. We will further assume that his shots 
are independent of each other. That is, every time 
he takes a shot, his probability of making a basket is 
0.02. We will disregard, for example, fatigue, which 
might make the probability decrease as he takes 
more shots. 

Let’s assign a random variable X to 
represent the number of shots made in five 
attempts. The six possible outcomes will be: 

4,3,2,1,0 ===== XXXXX  and 5=X . 
Most of these outcomes can occur in more than one 
way. For example, 1=X  if he makes the first shot, 
the second shot, the third shot, the fourth shot or the 
fifth shot. 

The fan wins the prize if 

,4,3,2,1 ==== XXXX  or if 5=X  . These 
events can also be described collectively by the 
inequality X ≥ 1. In other words, he wins the prize if 
he makes at least one shot. Since these five events are 
pairwise mutually exclusive (that is, only one of them 
can possibly occur), the probability that one of them 
occurs can be found by adding the probabilities 
that each occurs. This would entail calculating five 
separate probabilities and adding them together. 
Although this is not an overwhelming task, there is a 
simpler way:

Of the six events described above, exactly one must 
occur. 

This means that 

P(X = 0)+ P(X =1)+…+ P(X = 5)= P(X = 0)+ P(X ≥1)=1.
 
Therefore, rather than add the five probabilities 
described above, it is easier to figure the probability 
that 0=X  and subtract from 1. 

There is an additional benefit to using the 
complement of a compound event to calculate the 
probability of that event. By using complements, 
we can easily write a function that describes the 
probability of making at least one shot in terms 
of the number of shots taken. This generalizes the 
outcome of the problem and allows us to use the 
same process to answer multiple questions of the 
same type.

If the probability of making a shot is 0.02, then 
the probability of missing that shot is 0.98. If n 
independent shots attempts are made, then the 
probability that all will be missed is (0.98)n . The 
complement of the event that the fan misses all the 
shots is the event that he makes at least one shot, so 
P(X ≥1)=1−0.98n. 

The Pink Tail Problem
2011 marked the 20th anniversary of the US release 
of the landmark video game Final Fantasy II (FFII). 
FFII contained an item called the Pink Tail, which is 
one of the most rare and elusive items in video game 
history. 

Complementary Events & the  
Pink Tail Problem
BY BILL RUSSELL, JAMES BOWIE HIGH SCHOOL, AUSTIN, TX

(1)
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It is desirable because it can 
be exchanged for the Adamant 
Armor – the strongest armor 
in the game – and there 
is no other way to get this 
particular piece of equipment. 
Much misinformation and 
bad mathematics has been 
circulated about this item; 
we can use the notion of 
complements of events to 
correct these inaccuracies.

The only way to acquire a Pink 
Tail is to defeat a ferocious-
looking enemy, Pink Puff (see 
picture) and have it drop one. 
Pink Puffs only appear in 
one room in the entire game 
and within that room, the 
probability that a random enemy group will consist 
of Pink Puffs is a mere 1/64 . Even if you find a group 
of Pink Puffs, the chances of getting this rare drop 
are miniscule: For each Pink Puff defeated, there is 
only a 5% chance that it will drop any item at all, and 
the probability that the item dropped will be a Pink 
Tail is only 1/64. The only good news is that Pink 
Puffs appear in groups of 5 and these 5 enemies drop 
(or don’t drop) items independently of each other. 

The first problem, then, is finding Pink Puffs. From 
the above discussion, the probability that you will 
encounter of at least one group of Pink Puffs in n 
random encounters is 

                            (2)

Here is a table of values for this function:

n 10 30 50 75 100
P(n) 0.15 0.38 .054 .069 .079

Table 1: Probabilities of finding at least one group of Pink Puffs in n random 
encounters.

Notice that even if you have 100 enemy encounters, 
there is still a 21% chance that you will not 
encounter any Pink Puffs. At 44 encounters, the 
chances are about 50%. Random encounters take 
roughly 20 seconds each, so after about 15 minutes 
the chances of encountering this enemy are about 
50:50. The bottom line is that finding the enemies 
that drop Pink Tails can take considerable time.

Now let’s look at the chances of actually getting Pink 
Puffs to drop the desired item. For the next four 
problems, assume that you have overcome the above 
odds and have now encountered a group of five Pink 
Puffs. Let’s further assume that there is no chance 
that the Pink Puffs will win the battle, a reasonable 
assumption if your team is sufficiently powerful to 
have advanced to this stage of the game.
 
Problem 1: Find the 
probability that at least 
one enemy drops an item.

Recall that the probability that a Pink Puff drops any 
item is 0.05. Thus, P(At least one drop) = 1 − P(no 
drops) = 1 − (0.95)5 ≈ 0.226. So, at least one item will 
be dropped in slightly more than one encounter out 
of five. Looked at pessimistically, even when you are 
fortunate enough to get a Pink Puff encounter, you 
will get no dropped items 78% of the time.

Problem 2: Find the 
probability that a specific 
Pink Puff will NOT drop a 
Pink Tail.

There are two mutually exclusive ways that this can 
happen: either there is no drop, or there is a drop, 
but it is not a Pink Tail. So,

P(no Pink Tail) = P(No drop) + P(getting a drop that 
is not a Pink Tail) = 0.95 + (0.05) x   ≈ 0.99921875 (3)
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Problem 3: Find the 
probability that none of 
the five Pink Puffs drop a 
Pink Tail.

Since the drops are independent, this probability is 
simply (0.99921875)5 ≈ 0.9961.

Problem 4: Find the 
probability of getting at 
least one Pink Tail.

From the above discussion, the probability of at least 
one Pink Tail in n Pink Puff battles is 

T(n)=1−(0.9961)n 				    (4)

Table 2 shows the values of this function for some 
values of n.

n 10 50 100 500 1000
T(n) .038 .177 .323 .858 .980

Table 2: Probabilities of getting at least one Pink Tail from n encounters with 
Pink Puffs.

Remember that this table does not account for the 
low probability of even finding Pink Puffs! Now let’s 
see how rare these drops actually are.

Problem 5: Find the 
probability that a random 
encounter will result in at 
least one Pink Tail.

Again, 

P(At least one Pink Tail) = 1 − P(no Pink Tails) =
1 − [P(encounter is not with Pink Puffs) + 

P(encounter contains Pink Puffs but none drop a 
Pink Tail)]

 (5) 

Thus, the probability of getting at least one Pink Tail 
after n random encounters is 1− (.99993906)n . 

Table 3 shows some values for this function:
n 10 50 100 500 1000
P(n) 6 x 10-4 .003 .006 .030 .059

Table 3: Probabilities of getting at least one Pink Tail from n random 
encounters.

Even with 1000 random encounters, there is less 
than a 6% chance of getting a Pink Tail if you go after 
this rare item in the traditional manner.

The probabilities in Table 3 are low because you are 
trying to get three low-probability events to all occur 
in the same encounter — finding Pink Puffs, getting 
them to drop an item and having that item be a Pink 
Tail. One way to circumvent this problem is to play 
a ROM version of the game so that you can save 
your game as soon as you encounter a group of Pink 
Puffs. That way, you only have to deal with the low 
probability of finding Pink Puffs once (as opposed to 
every time that you encounter enemies). Essentially, 
you can fight the same battle over and over again 
until you get a Pink Tail to drop, thus allowing you 
to deal with the more favorable probabilities in Table 
2 rather than the ones in Table 3. In this scenario, 
your probability of getting a Pink Tail hits 50% when 

, which seems a much more 

reasonable number than those illustrated in Table 3. 
However, since each battle takes about 1.5 minutes 
to complete, this still represents roughly 4.5 hours of 
fighting the same battle to get only a 50% chance of 
obtaining a single Pink Tail – and using the save-
anywhere feature of a ROM is certainly less than 
ethical.

In light of all of this, it seems that the game 
designers went somewhat overboard in establishing 
the difficulty of obtaining this item. If an item is too 
difficult to obtain, then most gamers simply won’t 
try. Perhaps the designers lacked the math skills to 
determine just how rare they made this particular 
item. In any event, finding a Pink Tail is clearly an 
extremely rare event. Consequently, the gamer who 
manages to acquire one of these rare items, can 
justifiably experience an exhilaration matched only 
by the thrill and excitement of having calculated the 
above probabilities!
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Section 1. Introduction.
A rectangular board is called a punctured board if 
one of its squares is removed. The diagram below 
shows the only two shapes, called trominoes, which 
are formed of three unit squares joined edge-to-
edge. The one on the left is called the V-tromino and 
the one on the right is called the I-tromino. We are 
not concerned with the latter in this paper.

In his definitive treatise Polyominoes, Solomon W. 
Golomb proved that any punctured 2k x 2k board 
may be covered by copies of the V-tromino. By this, 
we mean that no copy protrudes beyond the board 
and no two copies overlap.

The argument is by mathematical induction. It is 
so instructive that we repeat it here. When k=0, 
the punctured 1×1 board is empty and may be 
covered by zero copies of the V-tromino vacuously. 
When k=1, a punctured 2×2 board is a copy of the 
V-tromino and may be covered by one copy of the 
V-tromino trivially.

Suppose the result holds for some k≥1. Consider 
a punctured 2k+1 × 2k+1 board. Divide it into four 
equal quadrants. Without loss of generality, we may 
assume that the square removed is in the north-
east quadrant. By the induction hypothesis, this 
punctured quadrant may be covered by copies of the 
V-tromino. We now place a copy of the V-tromino 
so that it covers the south-east corner of the north-
west quadrant, the north-east corner of the south-
west quadrant and the north-west corner of the 
south-east quadrant (see fig. 1). Then each of these 
quadrant is missing one square. By the induction 
hypothsis again, each of these punctured quadrants 
may be covered by copies of the V-tromino. By 
mathematical induction, the result holds for all k≥0. 

In this paper we consider n×n boards, punctured or 
otherwise, where n is not necessarily a power of 2.

Section 2. Basic Constructions.
In this section, we give a few constructions which 
will be useful later. First, a 2×3 board may be 
covered with two copies of the V-tromino. From 
now on, if two copies of the V-tromino form a 2×3 
subboard, we will just draw the subboard and not the 
individual copies.

The diagram below shows that a 6×n subboard 
may be covered by copies of the V-tromino for all 
n≥2. The case where n is even is on the left and the 
case where n is odd is on the right. From now on, 
6×n subboards will be drawn without showing the 
individual copies of the V-tromino.

Covering Square Boards with 
V-trominoes
BY: DANIEL YU-CHENG CHIU, TAICHUNG WASHINGTON 

HIGH SCHOOL, TAIWAN; THOMAS YAO-TENG YOU, 

TAOYUAN SHIN-SHING HIGH SCHOOL, TAIWAN; AND 

HANSON HUNG-HSUN YU, TAIPEI TIAN-MU JUNIOR HIGH, 

SCHOOL, TAIWAN.

Fig. 1
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Finally, we will have occasions to make use of a 
4×4 and a 5×5 subboard, each with a corner square 
removed. They may be covered by five and eight 
copies of the V-tromino respectively, as shown 
in the diagram below. The first subboard will be 
referred to as the unusual subboard and the second 
one the special subboard. Once again, they will be 
drawn without showing the individual copies of the 
V-tromino.

Section 3. Covering of 
punctured nxn boards where n≡1 
(mod 6).

We prove by induction on k that all punctured 
(6k+1)×(6k+1) boards may be covered by copies of 
the V-tromino. The case k=0 is vacuously true and in 
any case covered by Golomb’s classic result. For k=1, 
consider any punctured 7×7 board. The diagram 
below shows that by symmetry, the square removed 
must come from one of the shaded 2×2 subboards. 
The remaining part of the board may be covered by 
V-trominoes. Since a punctured 2×2 board may also 
be covered by Golomb’s classic result, so may any 
punctured 7×7 square.

Consider now a punctured (6k+1)×(6k+1) board for 
some k≥2. By symmetry, we may assume that the 
square removed is in the (6(k−1)+1)×(6(k−1)+1) 
subboard at the north-east corner. Then the rest of 
the board may be divided into a 6×(6k+1) subboard 
and a 6×(6(k−1)+1) subboard. By the induction 
hypothesis and the results of Section 2, any 
punctured (6k+1)×(6k+1) board may be covered by 
copies of the V-tromino.

Section 4. Covering of 
punctured nxn boards where 
n≡ 5 (mod 6).

It is not true that an arbitrary punctured 5×5 
board may be covered by copies of the V-tromino. 
Consider the nine shaded squares in the diagram 
below. A copy of the V-tromino can cover at most 
one of them. Now we need exactly eight copies of the 
V-tromino to cover a punctured 5×5 board. Hence 
the square removed must be one of the nine shaded 
squares.

On the other hand, the diagram below shows that 
the square removed can be any of the nine shaded 
squares. 

special
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We claim that any punctured (6k+5)×(6k+5) 
board may be covered by copies of the V-tromino 
for any k≥1. Such a board may be divided into a 
(6k+1)×(6k+1) suboard, two 6k×4 subboard and 
a special subboard. By symmetry, we may assume 
that the squared removed is in the (6k+1)×(6k+1) 
subboard. Our claim follows from the results in 
Sections 2 and 3.

Section 5. Covering of 
punctured nxn boards where 
n≡4 (mod 6).

The case of a punctured 4×4 board is covered by 
Golomb’s classic result. We claim that any punctured 
(6k+4)×(6k+4) board may be covered by copies of 
the V-tromino for any k≥1. Such a board may be 
divided into a (6k+1)×(6k+1) suboard, two 6k×3 
subboard and an unusual subboard. By symmetry, 
we may assume that the squared removed is in the 
(6k+1)×(6k+1) subboard. Our claim follows from the 
results in Sections 2 and 3.

Section 6. Covering of 
punctured nxn boards where n≡2 
(mod 6).

The case of a punctured 2×2 board is covered by 
Golomb’s classic result. We claim that any punctured 
(6k+2)×(6k+2) board may be covered by copies of 
the V-tromino for any k≥1. If k=2h, then the board 
may be divided into four (6h+1)×(6h+1) quadrants. 
If k=2h+1, then the board may be divided into four 
(6h+4)×(6h+4) quadrants. By symmetry, we may 
assume that the square removed is in the north-east 
quadrant. We now place a copy of the V-tromino so 
that it covers the south-east corner of the north-west 
quadrant, the north-east corner of the south-west 
quadrant and the north-west corner of the south-east 
quadrant, just as in Golomb’s classic result. Then each 
of these quadrant is missing one square. The claim 
is justified by the result in Section 3 in the case k=2h 
and by the the result in Section 5 in the case k=2h+1.

Section 7. Covering of nxn 
boards where n≡0 (mod 3).

The total number of squares in a 3k×3k board is 
9k2 and no square will be removed. For k=2h, a 
6h×6h board may be divided into h copies of 6×6h 
subboards. 

By the results in Section 2, this board may be covered 
by copies of the V-tromino. Henceforth, we let 
k=2h+1.

The 3×3 board cannot be covered by copies of the 
V-tromino. Consider the four shaded squares in the 
diagram below. A copy of the V-tromino can cover at 
most one of them. Now we need exactly three copies 
of the V-tromino to cover a 3×3 board. Hence one of 
the four shaded squares will not be covered.

We prove by induction on h that a (6h+3)×(6h+3) 
boards may be covered by copies of the V-tromino 
for any h≥1. The 9×9 board may be covered by 27 
copies of the V-tromino as shown in the diagram 
below.

Consider now a (6h+3)×(6h+3) board for some h≥2. 
It may be divided into a (6(h−1)+3) ×(6(h−1)+3) 
subboard, a 6×(6h+3) subboard and a 6×(6(h−1)+3) 
subboard. By the induction hypothesis and the results 
in Section 2, any (6h+3)×(6h+3) board with h≥1 may 
be covered by copies of the V-tromino.
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