
Logic Programs with Annotated Disjunctions

Joost Vennekens and So£e Verbaeten∗ and Maurice Bruynooghe
Department of Computer Science, K.U.Leuven

Celestijnenlaan 200A
B-3001 Leuven

Belgium
{joost,sofie,maurice}@cs.kuleuven.ac.be

Abstract

Current literature offers a number of different approaches to
what could generally be called “probabilistic logic program-
ming”. These are usually based on Horn clauses. Here, we
introduce a new formalism, Logic Programs with Annotated
Disjunctions, based on disjunctive logic programs. In this
formalism, each of the disjuncts in the head of a clause is
annotated with a probability. Viewing such a set of probabil-
istic disjunctive clauses as a probabilistic disjunction of nor-
mal logic programs allows us to derive a possible world se-
mantics, more precisely, a probability distribution on the set
of all Herbrand interpretations. We demonstrate the strength
of this formalism by some examples and compare it to related
work.

Introduction
The study of the rules which govern human thought has,
apart from traditional logics, also given rise to logics of
probability (Halpern 2003). As was the case with £rst or-
der logic and logic programming, attempts have been made
to derive more “practical” formalisms from these probab-
ilistic logics. Research in this £eld of “probabilistic logic
programming” has mostly focused on ways in which prob-
abilistic elements can be added to Horn clause programs.
We, however, introduce in this work a formalism which is
based on disjunctive logic programming (Lobo, Minker, &
Rajasekar 1992).

This is natural choice, as disjunctions themselves — and
therefore disjunctive logic programs — already represent a
kind of uncertainty. Indeed, they can, to give just one ex-
ample, be used to model indeterminate effects of actions.
Consider for instance the following disjunctive clause:

heads(Coin) ∨ tails(Coin)← toss(Coin).

This clause offers quite an intuitive representation of the fact
that tossing a coin will result in either heads or tails. Of
course, this is not all we know. Indeed, if a coin is not biased,
we know that it has equal probability of landing on heads or
tails. In the formalism of Logic Programs with Annotated
Disjunctions or LPADs, this can be expressed by annotating

∗So£e Verbaeten is a Postdoctoral Fellow of the Fund for Sci-
enti£c Research - Flanders (Belgium)(F.W.O. - Vlaanderen).

the disjuncts in the head of such a clause with a probability,
i.e.

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)

← toss(Coin),¬biased(Coin).

Such a clause expresses the fact that for each coin
c, precisely one of the following clauses will hold:
heads(c) ← toss(c),¬biased(c), i.e. tossing the unbiased
coin c will cause it to land on heads, or tails(c) ←
toss(c),¬biased(c), i.e. tossing c will cause it to land on
tails. Both these clauses have a probability of 0.5.

Such annotated disjunctive clauses can be combined to
model more complicated situations. Consider for instance
the following LPAD:

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)

← toss(Coin),¬biased(Coin).

(heads(Coin) : 0.6) ∨ (tails(Coin) : 0.4)

← toss(Coin), biased(Coin).

(fair(coin) : 0.9) ∨ (biased(coin) : 0.1).

(toss(coin) : 1).

Similarly to the £rst clause, the second clause of the pro-
gram expresses that a biased coin lands on heads with prob-
ability 0.6 and on tails with probability 0.4. The third clause
says that a certain coin, coin, has a probability of 0.9 of be-
ing fair and a probability of 0.1 of being biased; the fourth
clause says that coin is tossed (with probability 1).

In general, each body of a ground instantiation of an
LPAD clause can be thought of as denoting a certain cause.
The disjuncts in the head of such a clause sum up all pos-
sible effects of this cause. Each cause causes precisely one of
its effects. The probabilistic annotation given to a disjunct,
speci£es the probability of the body of that clause causing
this effect. It is worth noting that such “causal probabil-
ities” do not necessarily correspond to conditional probab-
ilities. Indeed, as is well known in statistics, if the same
effect can have multiple causes, which are not mutually ex-
clusive, the conditional probability of observing this effect
given that one of its causes was observed does not equal the
probability of this cause actually causing its effect. Trans-
lated to LPADs, this means that if the same atom appears in
the head of different clauses whose bodies are not mutually

exclusive, the conditional probability of this atom given one
of these bodies will be different from its annotation.

This causal interpretation of LPADs arises from the fact
that, as mentioned previously, each ground instantiation of
an annotated disjunctive clause is seen to represent a probab-
ilistic choice between several non-disjunctive clauses. Sim-
ilarly, each ground instantiation of an LPAD represents a
probabilistic choice between several non-disjunctive logic
programs, which are called instances of the LPAD. This in-
tuition can be used to de£ne a probability distribution on the
set of Herbrand interpretations of an LPAD: the probability
of a certain interpretation I is the probability of all instances
for which I is a model. This probability distribution de£nes
the semantics of a program.

In the remainder of this paper, we will £rst introduce the
formal syntax and semantics of LPADs. Then, we will illus-
trate this formalism by some examples, showing for instance
how a Bayesian network and Hidden Markov Model can be
represented. We will also give an overview of, and compare
our work with, existing formalisms for probabilistic logic
programming. It is shown that, while the ideas underlying
LPADs and their semantics are not radically new, they of-
fer enough advantages to constitute a useful contribution.
An extended version of this paper is given in (Vennekens &
Verbaeten 2003b).

Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions consists of a
set of rules of the following form:

(h1 : α1) ∨ · · · ∨ (hn : αn)← b1, . . . , bm. (1)

Here, the hi and bi are, respectively, atoms and literals of
some language and the αi are real numbers in the interval
[0, 1], such that

∑n

i=1 αi = 1. For a rule r of this form, the
set {(hi : αi) | 1 ≤ i ≤ n} will be denoted as head(r),
while body(r) = {bi | 1 ≤ i ≤ m}. If head(r) contains
only one element (a : 1), we will simply write this element
as a.

We will denote the set of all ground LPADs as PG .
The semantics of an LPAD is de£ned using its ground-

ing. For the remainder of this section, we therefore restrict
our attention to ground LPADs. Furthermore, in providing
a formal semantics for such a program P ∈ PG , we will,
in keeping with logic programming tradition (Lloyd 1987),
also restrict our attention to its Herbrand base HB(P) and
consequently to the set of all its Herbrand interpretations
IP = 2HB(P). In keeping with (Halpern 1989), the se-
mantics of an LPAD will be de£ned by a probability dis-
tribution on IP :

De£nition 1. Let P be in PG . An admissible probability
distribution π on IP is a mapping from IP to real numbers
in [0, 1], such that

∑

I∈IP
π(I) = 1.

We would now like to select one of these admissible prob-
ability distributions as our intended semantics. To illus-
trate this process, we consider the grounding of the example

presented in the introduction:

(heads(coin) : 0.5) ∨ (tails(coin) : 0.5)

← toss(coin),¬biased(coin).

(heads(coin) : 0.6) ∨ (tails(coin) : 0.4)

← toss(coin), biased(coin).

(fair(coin) : 0.9) ∨ (biased(coin) : 0.1).

toss(coin).

As already mentioned in the introduction, each of these
ground clauses represents a probabilistic choice between a
number of non-disjunctive clauses. By choosing one of the
possibilities for each clause, we get a non-disjunctive logic
program, for instance:

heads(coin)← toss(coin),¬biased(coin).

heads(coin)← toss(coin), biased(coin).

fair(coin).

toss(coin).

Such a program is called an instance of the LPAD. Note
that this LPAD has 2.2.2 = 8 different instances. An in-
stance can be assigned a probability by assuming independ-
ence between the different choices. Intuitively, this means
that for each two clauses c1, c2 and atoms a1, a2 in the head
of, respectively, c1 and c2, the probability that body(c1)
causes a1 is assumed to be independent of the probability
that body(c2) causes a2, i.e. as in (Pearl 2000), each clause
is supposed to describe a single independent “causal mech-
anism”. This assumption allows each clause to be read in-
dependently from the others, as is also the case in classical
logic programming, since dependencies are modeled within
one clause. In our example it of course makes perfect sense
to assume that the probability of a non-biased coin landing
on heads is independent of the probability of a biased coin
landing on heads and of the probability of a certain coin be-
ing fair. As such, the probability of the above instance of the
example is 0.5 · 0.6 · 0.9 · 1 = 0.27.

We now formalize the above ideas.

De£nition 2. Let P be a program in PG . A selection σ is
a function which selects one pair (h : α) from each rule
of P , i.e. σ : P → (HB(P) × [0, 1]) such that for each
r in P , σ(r) ∈ head(r). For each rule r, we denote the
atom h selected from this rule by σatom(r) and the selected
probability α by σprob(r). Furthermore, we denote the set
of all selections σ by SP .

Each selection σ de£nes an instance of the LPAD.

De£nition 3. Let P be a program in PG and σ a selection
in SP . The instance Pσ chosen by σ is obtained by keeping
only the atom selected for r in the head of each rule r ∈ P ,
i.e. Pσ = {“σatom(r)← body(r)” | r ∈ P}.

The process of de£ning the semantics of an LPAD
through its instances, is similar to how so-called split pro-
grams are used in (Sakama 1990) to de£ne the possible
model semantics for (non-probabilistic) disjunctive logic
programs. The main difference is that a split program is
allowed to contain more than one non-disjunctive clause for

each original disjunctive clause, as the possible model se-
mantics aims to capture both the exclusive and inclusive in-
terpretations of disjunction. In contrast, a probabilistic rule
in an LPAD expresses the fact that exactly one atom in the
head holds (with a certain probability) as a consequence of
the body of the rule being true1. It is worth noting that
the semantics of the preferential reasoning formalism Logic
Programs with Ordered Disjunctions (Brewka 2002), is also
de£ned using a similar notion of instances2.

Next, we assign a probability to each selection σ in SP ,
which induces a probability on the corresponding program
Pσ . As motivated above, we assume independence between
the selections made for each rule.

De£nition 4. Let P be a program in PG . The probability of
a selection σ in SP is the product of the probabilities of the
individual choices made by that selection, i.e.

Cσ =
∏

r∈P

σprob(r).

The instances of an LPAD are normal logic pro-
grams. The meaning of such programs is given by
their models under a certain formal semantics. For
example, all common semantics for logic programs
agree that the meaning of the above instance of the
coin-program, is given by the Herbrand interpretation
{fair(coin), toss(coin), heads(coin)}. The instances of
an LPAD therefore de£ne a probability distribution on the
set of interpretations of the program. More precisely, the
probability of a certain interpretation I is the probability of
all instances for which I is a model.

Returning to the example, there is one
other instance of this LPAD which has
{fair(coin), toss(coin), heads(coin)} as its model,
namely

heads(coin)←toss(coin),¬biased(coin).

tails(coin)←toss(coin), biased(coin).

fair(coin).

toss(coin).

The probability of this instance is 0.5 · 0.4 · 0.9 · 1 =
0.18. Therefore the probability of the interpretation
{fair(coin), toss(coin), heads(coin)} is 0.5 ·0.4 ·0.9 ·1+
0.5 · 0.6 · 0.9 · 1 = 0.5 · (0.4 + 0.6) · 0.9 · 1 = 0.45.

Of course, there are a number of ways in which the se-
mantics of a non-disjunctive logic program can be de£ned.
In our framework, uncertainty is modeled by annotated dis-
junctions. Therefore, a non-disjunctive program should con-
tain no uncertainty, i.e. it should have a single two-valued
model. Indeed, this is the only way in which an LPAD
can be seen as specifying a unique probability distribution,
without assuming that the “user” meant to say something he

1Of course, in such a semantics, the inclusive interpretation of
disjunctions can be simulated by adding additional atoms, which
explicitly represent the conjunction of two or more of the original
disjuncts.

2We would like to thank an anonymous reviewer of a previous
draft for pointing this out to us.

did not actually write. Consider for instance the program:
{a ← ¬b. b ← ¬a.}. Any reasonable probability distribu-
tion speci£ed by this program, would have to assign a prob-
ability α to the interpretation {a} and 1−α to {b}. However,
if such a probability distribution were intended, one would
simply have written: (a : α) ∨ (b : 1− α).

Therefore, we will take the meaning of an instance Pσ of
an LPAD to be given by its well founded model WFM(Pσ)
and require that all these well founded models are two-
valued. If, for instance, the LPAD is acyclic (meaning that
all its instances are acyclic (Apt & Bezem 1991)), this will
always be the case.

De£nition 5. An LPAD P is called sound iff for each se-
lection σ in SP , the well founded model of the program Pσ
chosen by σ is two-valued.

The probabilities on the elements σ of SP are then nat-
urally extended to probabilities on interpretations. The fol-
lowing distribution π∗P gives the semantics of an LPAD P .

De£nition 6. Let P be a sound LPAD in PG . For each of its
interpretations I in IP , the probability π∗P (I) assigned by
P to I is the sum of the probabilities of all selections which
lead to I , i.e. with S(I) being the set of all selections σ for
which WFM(Pσ) = I:

π∗P (I) =
∑

σ∈S(I)

Cσ.

It is easy to show that — for a sound LPAD — this dis-
tribution π∗P is indeed an admissible probability distribution
(Vennekens & Verbaeten 2003b).

There is a strong connection between the interpretations
I ∈ IP for which π∗P (I) > 0 and traditional semantics for
disjunctive logic programs. First of all, each such interpret-
ation I with π∗P (I) > 0 is also a possible model (Sakama
1990) of the LPAD (when ignoring the probabilities, of
course). Secondly, each stable model (Gelfond & Lifschitz
1991) of the LPAD is such an interpretation. Moreover, in
most cases, the stable model semantics coincides precisely
with this set of interpretations. Only for programs in which
the same atom appears in the head of different clauses, can
there be a difference. Indeed, for instance the program
{(a : 0.5) ∨ (b : 0.5). a.} has a unique stable model {a},
but in our probabilistic framework π∗P ({a, b}) = 0.5. From
a modeling perspective, this difference makes sense, because
in an LPAD such a clause represents a kind of “experiment”,
of which the disjuncts in its head are possible outcomes. As
such, there is no reason why a being true should preclude b
as a possible outcome of the experiment denoted by the £rst
clause.

Of course, we are not only interested in the probabilities
of interpretations, but also in the probability of a formula φ
under the semantics π∗P . This is de£ned as the sum of the
probabilities of the interpretations in which the formula is
true:

De£nition 7. Let P be a sound LPAD in PG . Slightly ab-
using notation, for each formula φ, the probability π∗P (φ) of
φ according to P is the sum of the probabilities of all inter-

pretations in which φ holds, i.e.

π∗P (φ) =
∑

I∈I
φ

P

π∗P (I).

with IφP = {I ∈ IP | I |= φ}.

Calculating such probabilities is the basic inference task
of probabilistic logic programs. Usually, the formulas are
restricted to being queries, i.e. existentially quanti£ed con-
junctions. While inference algorithms are not the focus of
this work, we will nevertheless brie¤y explain how this in-
ference task is related to inference for logic programs.

The probability of a formula is de£ned as the sum of
the probabilities of all interpretations in which it is true.
The probability of such an interpretation is, in turn, de£ned
in terms of the probabilities of the normal logic programs
which can be constructed from the LPAD. Hence, £nding a
proof for the query, gives us already “part” of the probability
of the query. To compute the entire probability of the query,
it suf£ces to £nd all proofs and to appropriately combine the
probabilities associated with the heads of the clauses appear-
ing in these proofs.

In the section on related work, we will discuss a form-
alism called the Independent Choice Logic (Poole 1997).
For this formalism, an inference algorithm has been de-
veloped, which operates according to the principles outlined
in the previous paragraph. Furthermore, a source-to-source
transformation from acyclic LPADs to ICL exists, which al-
lows this algorithm to also be applied to acyclic LPADs.
Moreover, as this transformation is polynomial in the size
of the input program, this shows that acyclic LPADs are in
the same complexity class as ICL.

In (Vennekens & Verbaeten 2003b), we show that the se-
mantics presented in this section is consistent with that pro-
posed in Halpern’s fundamental article (Halpern 1989), in
which a general way of formalizing a certain type of prob-
abilistic knowledge through a possible world semantics was
introduced.

Examples
A Bayesian network The Bayesian network in Figure 1
can also be represented in our formalism. This is done by
explicitly enumerating the possible values for each node. In
this way, every Bayesian network can be represented as an
LPAD.

(burg(X, t) : 0.1) ∨ (burg(X, f) : 0.9).

(earthq(X, t) : 0.2) ∨ (earthq(X, f) : 0.8).

alarm(X, t)← burg(X, t), earthq(X, t).

(alarm(X, t) : 0.8) ∨ (alarm(X, f) : 0.2)

← burg(X, t), earthq(X, f).

(alarm(X, t) : 0.8) ∨ (alarm(X, f) : 0.2)

← burg(X, f), earthq(X, t).

(alarm(X, t) : 0.1) ∨ (alarm(X, f) : 0.9)

← burg(X, f), earthq(X, f).

burglary earthquake

alarm

burg=t 0.1
burg=f 0.9

earthq = t 0.2
earthq = f 0.8

b=t, e=t b=t, e=f b=f, e=t b=f, e=t
alarm=t 1 0.8 0.8 0.1
alarm=f 0 0.2 0.2 0.9

Figure 1: A Bayesian network.

S S S0 1 2

0.7 0.8 1

0.3 0.2

a:0.2 b:0.9 b:0.3
c:0.7c:0.1b:0.8

Figure 2: A Hidden Markov Model.

Actually, this LPAD represents several “versions” of the
original Bayesian network, namely one for each instanti-
ation of X . As such, this representation is similar to the
knowledge based model construction-formalism of Bayesian
Logic Programs(Kersting & Raedt 2000), a £rst-order exten-
sion of Bayesian networks, which will be discussed in the
next section.

Note also that in the grounding of this LPAD, all bodies of
clauses which have the same atom in their head are mutually
exclusive (i.e. there is no interpretation I for which π∗(I) >
0 and two such bodies hold in I). As such, in this case, the
“causal probabilities” of the LPAD can safely be interpreted
as conditional probabilities.

A Hidden Markov Model The Hidden Markov Model in
Figure 2 can be modeled by the following LPAD.

(state(s0, s(T)) : 0.7) ∨ (state(s1, s(T)) : 0.3)

← state(s0, T).

(state(s1, s(T)) : 0.8) ∨ (state(s2, s(T)) : 0.2)

← state(s1, T).

state(s2, s(T))← state(s2, T).

(out(a, T) : 0.2) ∨ (out(b, T) : 0.8)← state(s0, T).

(out(b, T) : 0.9) ∨ (out(c, T) : 0.1)← state(s1, T).

(out(b, T) : 0.3) ∨ (out(c, T) : 0.7)← state(s2, T).

state(s0, 0).

This program corresponds nicely to the way in which one
would tend to explain the semantics of this HMM in natural
language. For instance, the £rst clause could be read as: “if

the HMM is in state s0, then it can either go to state s1 or
stay in state s0.” It is worth noting that this LPAD has an
in£nite grounding. As such, each particular instance of this
LPAD has a probability of zero. However, our semantics
remains well-de£ned and still assigns an appropriate non-
zero probability to each £nite string, through an in£nite sum
of such zero probabilities. Moreover, the aforementioned
transformation from LPADs to ICL is also able to deal with
such programs and, as the inference-algorithm of ICL does
not need to compute the grounding of a program, still allows
these probabilities to be effectively computed as well.

Throwing dice There are some board games which re-
quire a player to roll a six (using a standard die) before he
is allowed to actually start the game itself. The following
example shows an LPAD which de£nes a probability distri-
bution on how long it could take a player to do this.

(on(D, 1, s(T)) : 1/6) ∨ · · · ∨ (on(D, 6, s(T)) : 1/6)

← time(T), die(D),¬on(D, 6, T).

start game(s(T))← time(T), on(D, 6, T).

time(s(T))← time(T).

time(0).

die(die).

The £rst rule of this LPAD is the most important one. It
states that if the player has not succeeded in getting a six
on his current attempt, he will have to try again. Note
that, because of the use of negation-as-failure in the body of
this clause, the atoms on(D, 1, s(T)), . . . , on(D, 5, s(T))
are only needed to serve as alternatives for on(D, 6, s(T)).
As such, in the context of this example, this clause could
equivalently be written as for instance:

(on(D, 6, s(T)) : 1/6) ∨ (not six : 5/6)

← time(T), die(D),¬on(D, 6, T).

Moreover, instead of the atom not six, any atom not ap-
pearing in the rest of the program could be used. We can
therefore simply abbreviate such clauses by

(on(D, 6, s(T)) : 1/6)← time(T), die(D),¬on(D, 6, T).

Related work
There is a large body of work concerning probabilistic logic
programming. Due to space limitations, we refer to (Ven-
nekens & Verbaeten 2003a) and (Vennekens & Verbaeten
2003b) for more details.

An important class of probabilistic logic programming
formalisms are those following the Knowledge Based Model
Construction or KBMC approach. Such formalisms al-
low the representation of an entire “class” of propositional
models, from which, for a speci£c query, an appropriate
model can then be constructed “at run-time”. This approach
was initiated by Breese et al (Breese, Goldman, & Well-
man 1994) and Bacchus (Bacchus 1993). Examples are:
Context-Sensitive Probabilistic Knowledge Bases of Ngo

and Haddawy (Ngo & Haddawy 1997), Probabilistic Re-
lational Models of Getoor et al (Getoor et al. 2001), and
Bayesian Logic Programs of Kersting and De Raedt (Kerst-
ing & Raedt 2000).

A formal comparison between LPADs and Bayesian Lo-
gic Programs (BLPs) is given in (Vennekens & Verbaeten
2003b). A BLP can be seen as representing a (possibly
in£nite) set of Bayesian networks. Each ground atom rep-
resents a random variable, which can take on a value from
a domain associated with its predicate. An implication in
a clause of a BLP is not a logical implication, but rather
an expression concerning probabilistic dependencies. This
makes the reading of a BLP — at least for those acquain-
ted with logic programming — less natural. Another differ-
ence is that, although it is possible to simulate classical neg-
ation in BLPs, they do not incorporate non-monotonic nega-
tion. In some cases, this can lead to longer and less intuitive
programs. In (Vennekens & Verbaeten 2003b) it is form-
ally shown that the semantics of a BLP can be expressed by
an LPAD, which explicitizes the implicit argument of each
atom, i.e. its “value”, and enumerates all the elements in the
domain. This process is similar to that which was used in the
previous section to model a Bayesian network by an LPAD.
Conversely, it is shown that quite a large subset of all LPADs
can be represented as BLP.

Another class of formalisms, besides that of KBMC, are
those which grew out of an attempt to extend logic pro-
gramming with probability. Among these formalisms, Pro-
gramming in Statistical Modeling (PRISM) (Sato & Kameya
1997; 2001) and the Independent Choice Logic (ICL) (Poole
1997) deviate the least from classical logic programming.
ICL is a probabilistic extension of abductive logic program-
ming. An ICL program consists of both a logical and a prob-
abilistic part. The logical part is an acyclic, normal logic
program. The probabilistic part consists of a set of clauses
of the form (in LPAD syntax): (a1 : α1) ∨ · · · ∨ (an : αn).
The atoms ai in such clauses are called abducibles. Each ab-
ducible may only appear once in the probabilistic part of an
ICL program; in the logical part of the program, abducibles
may only appear in the bodies of clauses.

Syntactically, each ICL program is clearly an LPAD. In
(Vennekens & Verbaeten 2003b) it was shown that this em-
bedding of ICL into LPADs preserves the original semantics
of ICL (as formulated in (Poole 1997)). Conversely, each
acyclic LPAD can be transformed into one in this restricted
syntax (Vennekens & Verbaeten 2003b). This is done by
creating new, arti£cial atoms, which explicitly represent the
process of choosing a disjunct from the head of a clause, as is
illustrated by the following ICL-version of the coin-example

of the introduction:

heads(Coin)

← toss(Coin),¬biased(Coin), fair heads(Coin).

tails(Coin)

← toss(Coin),¬biased(Coin), fair tails(Coin).

heads(Coin)

← toss(Coin), biased(Coin), biased heads(Coin).

tails(Coin)

← toss(Coin), biased(Coin), biased tails(Coin).

(fair heads(Coin) : 0.5) ∨ (fair tails(Coin) : 0.5).

(biased heads(Coin) : 0.6) ∨ (biased tails(Coin) : 0.4).

(fair(coin) : 0.9) ∨ (biased(coin) : 0.1).

(toss(coin) : 1).

On the £rst author’s web site3 a Prolog program can be
found which performs this transformation. As such, even
though LPADs do not (yet) have an implemented inference
algorithm of their own, it is already possible to solve queries
to acyclic LPADs by using the ICL algorithm.

It should be noted that, although these two formalisms
are similar in terms of theoretical expressive power, they
are quite different in their approach to modeling uncertainty.
Indeed, ICL (and of course the corresponding subset of
LPADs) is ideally suited for problem domains such as dia-
gnosis or theory revision, in which it is most natural to ex-
press uncertainty on the causes of certain effects. The exten-
ded expressiveness of LPADs (in the sense that LPADs allow
more natural representations of certain types of knowledge)
on the other hand, makes these also suited for problems such
as modeling indeterminate actions, in which it is most nat-
ural to express uncertainty on the effects of certain causes.
Of course, this is not surprising, as a similar relationship ex-
ists between the non-probabilistic formalisms on which ICL
and LPADs are based: (Sakama & Inoue 1994) shows that
abductive logic programs and disjunctive logic programs are
essentially equivalent; however, history has shown that both
these formalisms are valid ways of representing knowledge,
with each having problem domains for which it is better
suited than the other.

LPADs are not the only probabilistic formalism based on
disjunctive logic programming. In Many-Valued Disjunctive
Logic Programs of Lukasiewicz (Lukasiewicz 2001) prob-
abilities are associated with disjunctive clauses as a whole.
In this way, uncertainty of the implication itself — and not,
as is the case with LPADs, of the disjuncts in the head — is
expressed.

All the works mentioned above use point probabilities.
There are however also a number of formalisms using prob-
ability intervals: Probabilistic Logic Programs of Ng and
Subrahmanian (Ng & Subrahmanian 1992), their extension
to Hybrid Probabilistic Programs of Dekhtyar and Subrah-
manian (Dekhtyar & Subrahmanian 2000) and Probabil-
istic Deductive Databases of Lakshmanan and Sadri (Laksh-
manan & Sadri 1994). Contrary to our approach, programs

3http://www.cs.kuleuven.ac.be/∼joost.

in these formalisms do not de£ne a single probability distri-
bution, but rather a set of possible probability distributions,
which — in a sense — allows one to express a kind of “meta-
uncertainty”, i.e. uncertainty about which distribution is the
“right” one. Moreover, the techniques used by these form-
alisms tend to have more in common with constraint logic
programming than “normal” logic programming.

Conclusion and future work

We have introduced the formalism of Logic Programs with
Annotated Disjunctions. In our opinion, this formalism of-
fers a natural and consistent way of describing complex
probabilistic knowledge in terms of a number of (independ-
ent) simple choices, an idea which is prevalent in for in-
stance (Poole 1997). Furthermore, it does not ignore the
crucial concept of conditional probability, which underlies
the entire “Bayesian movement”, and does not deviate from
the well established and well known non-probabilistic se-
mantics of £rst-order logic and logic programming. In-
deed, for an LPAD P , the set of interpretations I for which
π∗P (I) > 0, is a subset of the possible models of P and a
(small) superset of its stable models.

While the comparison with related work such as ICL
showed that this is not a radically new approach, we feel
its additional expressiveness (in the sense that LPADs allow
more natural representations of certain types of knowledge)
offers enough advantages to constitute a useful contribution
to the £eld of probabilistic logic programming. In future
work, we hope to demonstrate this further, by presenting lar-
ger, real-world applications of LPADs. We also plan further
research concerning a proof procedure and complexity ana-
lysis for LPADs. Finally, there are a number of possible
extensions to the LPAD formalism which should be invest-
igated. For example, it might prove useful to allow (clas-
sical) negation in the head of LPAD rules or to incorporate
aggregates in order to allow a more concise representation
of certain basic probability distributions. Because of the lo-
gical nature of LPADs and their instance-based semantics,
it should be fairly straightforward to add such extensions to
the language in a natural way.

References

Apt, K., and Bezem, M. 1991. Acyclic programs. New
Generation Computing 9:335–363.

Bacchus, F. 1993. Using £rst-order probability logic for the
construction of bayesian networks. In Proceedings of the
Sixth Conference on Uncertainty in Arti£cial Intelligence,
219–226.

Breese, J.; Goldman, R.; and Wellman, M. 1994. Introduc-
tion to the special section on knowledge-based construction
of probabilistic and decision models. IEEE Transactions
on Systems, Man, and Cybernetics 24(11):1577–1579.

Brewka, G. 2002. Logic programming with ordered dis-
junction. In Proceedings of the 18th National Conference
on Arti£cial Intelligence, AAAI-2002. Morgan Kaufmann,
2002., 100–105.

Dekhtyar, A., and Subrahmanian, V. 2000. Hybrid
probabilistic programs. Journal of Logic Programming
43(3):187–250.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New generation
computing 9:365–385.

Getoor, L.; Friedman, N.; Koller, D.; and Pfeffer, A. 2001.
Learning Probabilistic Relational Models. In Dzeroski, S.,
and Lavrac, N., eds., Relational Data Mining. Springer-
Verlag. 7–34. to appear.

Halpern, J. 1989. An analysis of £rst-order logics of prob-
ability. Arti£cial Intelligence 46:311–350.

Halpern, J. Y. 2003. Reasoning about uncertainty. MIT
press.

Kersting, K., and Raedt, L. D. 2000. Bayesian logic
programs. In Cussens, J., and Frisch, A., eds., Work-in-
Progress Reports of the Tenth International Conference on
Inductive Logic Programming (ILP-2000).

Lakshmanan, L., and Sadri, F. 1994. Probabilistic de-
ductive databases. In Bruynooghe, M., ed., Proceedings of
the International Symposium on Logic Programming, 254–
268. MIT Press.

Lloyd, J. 1987. Foundations of Logic Programming.
Springer-Verlag, 2nd edition.

Lobo, J.; Minker, J.; and Rajasekar, A. 1992. Foundations
of Disjunctive Logic Programming. MIT Press.

Lukasiewicz, T. 2001. Fixpoint characterizations for many-
valued disjunctive logic programs. In Proceedings of the
6th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’01), volume 2173 of
Lecture Notes in Arti£cial Intelligence, 336–350. Springer-
Verlag.

Ng, R., and Subrahmanian, V. 1992. Probabilistic logic
programming. Information and Computation 101(2):150–
201.

Ngo, L., and Haddawy, P. 1997. Answering queries from
context-sensitive probabilistic knowledge bases. Theoret-
ical Computer Science 171(1–2):147–177.

Pearl, J. 2000. Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.

Poole, D. 1997. The Independent Choice Logic for mod-
elling multiple agents under uncertainty. Arti£cial Intelli-
gence 94(1-2):7–56.

Sakama, C., and Inoue, K. 1994. On the equivalence
between disjunctive and abductive logic programs. In In-
ternational Conference on Logic Programming, 489–503.

Sakama, C. 1990. Possible model semantics for disjunctive
databases II (extended abstract). In Logic Programming
and Non-monotonic Reasoning, 107–114.

Sato, T., and Kameya, Y. 1997. PRISM: A language for
symbolic-statistical modeling. Proceedings of IJCAI 97
1330–1335.

Sato, T., and Kameya, Y. 2001. Statistical abduction with
tabulation. Kowalski 60th birthday volume.

Vennekens, J., and Verbaeten, S. 2003a. A general view
on probabilistic logic programming. In Proceedings of the
15th Belgian-Dutch Conference on Arti£cial Intelligence,
299–306. http://www.cs.kuleuven.ac.be/∼joost/bnaic.ps.
Vennekens, J., and Verbaeten, S. 2003b. Lo-
gic programs with annotated disjunctions.
Technical Report CW386, K.U. Leuven.
http://www.cs.kuleuven.ac.be/∼joost/techrep.ps.

