
Splitting an operator:
An algebraic modularity result and its application to auto-epistemic logic

Joost Vennekens and David Gilis and Marc Denecker
Department of Computer Science, K.U. Leuven

Celestijnenlaan 200A
B-3001 Leuven, Belgium

Abstract

It is well known that it is possible to split certain auto-
epistemic theories under the semantics of expansions, i.e. to
divide such a theory into a number of different “levels”, such
that the models of the entire theory can be constructed by in-
crementally constructing models for each level. Similar res-
ults exist for other non-monotonic formalisms, such as lo-
gic programming and default logic. In this work, we present
a general, algebraic theory of splitting under a £xpoint se-
mantics. Together with the framework of approximation the-
ory, a general £xpoint theory for arbitrary operators, this
gives us a uniform and powerful way of deriving splitting res-
ults for each logic with a £xpoint semantics. We demonstrate
the usefulness of this approach, by applying our results to
auto-epistemic logic.

Introduction
An important aspect of human reasoning is that it is often
incremental in nature. When dealing with a complex do-
main, we tend to initially restrict ourselves to a small subset
of all relevant concepts. Once these “basic” concepts have
been £gured out, we then build another, more “advanced”,
layer of concepts on this knowledge. A quite illustrative ex-
ample of this can be found in most textbooks on computer
networking. These typically present a seven-layered model
of the way in which computers communicate. First, in the
so-called physical layer, there is only talk of hardware and
concepts such as wires, cables and electronic pulses. Once
these low-level issues have been dealt with, the resulting
knowledge becomes a £xed base, upon which a new layer,
the data-link layer, is built. This no longer considers wires
and cables and so on, but rather talks about packages of in-
formation travelling from one computer to another. Once
again, after the workings of this layer have been £gured out,
this information is “taken for granted” and becomes part of
the foundation upon which a new layer is built. This process
continues all the way up to a seventh layer, the application
layer, and together all of these layers describe the operation
of the entire system.

In this paper, we investigate a formal equivalent of this
method. More speci£cally, we address the question of
whether a formal theory in some non-monotonic language
can be split into a number of different levels or strata, such
that the formal semantics of the entire theory can be con-

structed by succesively constructing the semantics of the
various strata. (We use the terms “strati£cation” and “split-
ting” interchangeably to denote a division into a number of
different levels. This is a more general use of both these
terms, than in literature such as (Apt, Blair, & Walker 1988)
and (Gelfond 1987).) Such strati£cations are interesting
from both a practical and a more theoretical, knowledge rep-
resentational point of view. For instance, computing mod-
els of a strati£ed version of a theory is often signi£cantly
faster than computing models of the original theory. Further-
more, in order to be able to build and maintain large know-
ledge bases, it is crucial to know which parts of a theory can
be analysed or constructed independently and, conversely,
whether combining several correct theories will have any
unexpected side-effects.

It is therefore not surprising that this issue has already
been intensively studied. Indeed, splitting results have been
proven for auto-epistemic logic under the semantics of ex-
pansions (Gelfond & Przymusinska 1992), default logic un-
der the semantics of extensions (Turner 1996) and various
kinds of logic programs under the stable model semantics
(Lifschitz & Turner 1994; Erdo®gan & Lifschitz 2004). In all
of these works, strati£ability is seen as a syntactical prop-
erty of a theory in a certain language under a certain formal
semantics.

In our work, we take a different approach to studying this
topic. The semantics of several (non-monotonic) logics can
be expressed through £xpoint characterizations in some lat-
tice of semantic structures. In such a semantics, the meaning
of a theory is given by the way in which it revises a proposed
“state of affairs”; its models are those states which no longer
have to be revised. Knowing such a revision operator for a
theory should suf£ce to know whether it is strati£able: this
will be the case if and only if no higher levels are ever used
to revise the state of affairs concerning lower-level concepts.
This motivates us to study the strati£cation of these revision
operators themselves. As such, we are able to develop a
general theory of strati£cation at an abstract, algebraic level
and apply its results to each formalism which has a £xpoint
semantics.

This approach is especially powerful when combined
with the framework of approximation theory, a general
£xpoint theory for arbitrary operators, which has already
proved highly useful in the study of non-monotonic reason-

ing. It naturally captures, for instance, (most of) the com-
mon semantics of logic programming (Denecker, Marek,
& Truszczynski 2000), auto-epistemic logic (Denecker,
Marek, & Truszczynski 2003) and default logic (Denecker,
Marek, & Truszczynski 2003). As such, studying strati£ca-
tion within this framework, allows our abstract results to be
directly and easily applicable to logic programming, auto-
epistemic logic and default logic.

Studying strati£cation at this more semantical level has
three distinct advantages. First of all, it avoids duplication
of effort, as the same algebraic theory takes care of strat-
i£cation in logic programming, auto-epistemic logic, de-
fault logic and indeed any logic with a £xpoint semantics.
Secondly, our results can be used to easily extend existing
results to other (£xpoint) semantics of the aforementioned
languages. Finally, our work also offers greater insight into
the general principles underlying various known strati£ca-
tion results, as we are able to study this issue in itself, free
of being restricted to a particular syntax or semantics.

In (Vennekens, Gilis, & Denecker 2004), we presented
our basic theory of strati£able operators and used these res-
ults to derive splitting results for logic programming. In this
work, we deal with auto-epistemic logic. In doing so, we
also extend the algebriac results from (Vennekens, Gilis, &
Denecker 2004) to a larger class of operators.

Preliminaries: Approximation theory
This presentation of approximation theory is based on (De-
necker, Marek, & Truszczynski 2000), but introduces a
slightly more general de£nition of approximations. Let
〈L,≤〉 be a lattice. An element (x, y) of the square L2 of
the domain of such a lattice, can be seen as denoting an in-
terval [x, y] = {z ∈ L | x ≤ z ≤ y}. Using this intuition,
we can de£ne a precision order ≤p on the set L2 from the
order ≤ on L: for each x, y, x′, y′ ∈ L,

(x, y) ≤p (x
′, y′) iff x ≤ x′ and y′ ≤ y.

Indeed, if (x, y) ≤p (x
′, y′), then [x, y] ⊇ [x′, y′]. It can

easily be shown that 〈L2,≤p〉 is also a lattice, which we will
call the bilattice corresponding to L. Moreover, if L is com-
plete, then so is L2. As an interval [x, x] contains precisely
one element, elements (x, x) of L2 are called exact.

Approximation theory is based on the study of operators
on bilattices L2 which are monotone w.r.t. the precision
order ≤p. Such operators are called approximations. For
an approximation A and elements x, y of L, we denote by
A1(x, y) and A2(x, y) the unique elements of L, for which
A(x, y) = (A1(x, y), A2(x, y)). An approximation approx-
imates an operator O on L if for each x ∈ L, A(x, x) con-
tains O(x), i.e. A1(x, x) ≤ O(x) ≤ A2(x, x). An exact
approximation is one which maps exact elements to exact
elements, i.e. A1(x, x) = A2(x, x) for all x ∈ L. Each
exact approximation approximates a unique operator O on
L, namely that which maps each x ∈ L to A1(x, x). An
approximation is symmetric if for each pair (x, y) ∈ L2, if
A(x, y) = (x′, y′) then A(y, x) = (y′, x′). Each symmetric
approximation is also exact.

For an approximation A on L2, the following two operat-
ors on L can be de£ned: the operator A1(·, y) maps an ele-

ment x ∈ L to A1(x, y), i.e. A1(·, y) = λx.A1(x, y), and
the function A2(x, ·) maps an element y ∈ L to A1(x, y),
i.e. A2(x, ·) = λy.A2(x, y). As all such operators are
monotone, they all have a unique least £xpoint. We de£ne an
operator C↓A on L, which maps each y ∈ L to lfp(A1(·, y));
similarly the operatorC↑A maps each x ∈ L to lfp(A2(x, ·)).
C
↓
A and C↑A are called, respectively, the lower stable oper-

ator and upper stable operator of A. They are both anti-
monotone. Combining these two operators, the operator CA
on L2 maps each pair (x, y) to (C↓A(y), C

↑
A(x)). This oper-

ator is called the partial stable operator of A. Because the
lower and upper partial stable operators are anti-monotone,
the partial stable operator CA is monotone. Note that if an
approximation A is symmetric, its lower and upper partial
stable operators are equal, i.e. C↓A = C

↑
A. An approximation

A de£nes a number of different £xpoints: the least £xpoint
of an approximation A is called its Kripke-Kleene £xpoint,
£xpoints of its partial stable operator CA are stable £xpoints
and the least £xpoint of CA is called the well-founded £x-
point of A. As shown in (Denecker, Marek, & Truszczynski
2000) and (Denecker, Marek, & Truszczynski 2003), these
£xpoints correspond to various semantics of logic program-
ming, auto-epistemic logic and default logic.

Finally, it should be noted that an approximation as
de£ned in (Denecker, Marek, & Truszczynski 2000) corres-
ponds to our de£nition of a symmetric approximation.

Strati£cation of operators
In this section, we present an algebraic theory of strati£ca-
tion. First, we brie¤y restate results from (Vennekens, Gilis,
& Denecker 2004), dealing with strati£cation of operators
and approximations on product lattices. These results are
then extended to a larger class of operators.

Product lattices
We begin by de£ning the notion of a product set, which
is a generalization of the well-known concept of cartesian
products. Let I be a set, which we will call the index set of
the product set, and for each i ∈ I , let 〈Si,≤i〉 be a partially
ordered set. The product set S =

⊗

i∈I Si is the following
set of functions, selecting one element from each set Si:
⊗

i∈I

Si = {f | f : I →
⋃

i∈I

Si such that ∀i ∈ I : f(i) ∈ Si}

The product order ≤⊗ on S is de£ned by ∀x, y ∈ S : x ≤⊗
y iff ∀i ∈ I : x(i) ≤i y(i). It can easily be shown that if all
of the partially ordered sets Si are (complete) lattices, the
product set S, together with its product order ≤⊗, is also a
(complete) lattice. The pair 〈S,≤⊗〉 is called the product
lattice of lattices Si. We will only consider product lattices
with a well-founded index set, i.e. index sets I with a par-
tial order ¹ such that each non-empty subset of I has a ¹-
minimal element. This allows us to use inductive arguments
in dealing with elements of product lattices.

In the next sections, the following notations will be used.
For a function f : A → B and a subset A′ of A, we denote
by f |A′ the restriction of f to A′, i.e. f |A′ : A′ → B : a′ 7→

f(a′). For an element x of a product lattice ⊗i∈ILi and
an i ∈ I , we abbreviate x|{j∈I|j¹i} by x|¹i. We also use
abbreviations x|≺i, x| 6¹i and x|i . If i is a minimal element
of the well-founded set I , x|≺i is the empty function. A
set {x|¹i | x ∈ L}, ordered by the appropriate restriction
≤⊗|¹i of the product order, is also a lattice. Clearly, this
sublattice of L is isomorphic to the product lattice ⊗j¹iLi.
We denote this sublattice by L|¹i and use a similar notation
L|≺i for ⊗j≺iLi. If f, g are functions f : A → B, g :
C → D and the domains A and C are disjoint, we denote
by f t g the function from A ∪ C to B ∪ D, such that for
all a ∈ A, (f t g)(a) = f(a) and for all c ∈ C, (f t
g)(c) = g(c). We call f t g an extension of f . For each
element x of a product lattice L and each index i ∈ I , the
extension x|≺itx|i of x|≺i is clearly equal to x|¹i. For ease
of notation, we will sometimes simply write x(i) instead of
x|i in such expressions, i.e. we will identify an element a
of the ith lattice Li with the function from {i} to Li which
maps i to a. Similarly, x|≺i t x(i) t x| 6¹i = x.

Operators on product lattices

In this section, we de£ne and discuss strati£able operators
on product lattices. For proof of the results presented in this
section, we refer to (Vennekens, Gilis, & Denecker 2004).

Intuitively, an operatorO on a product latticeL = ⊗i∈ILi
is strati£able over the order ¹ of its index set I , if the value
(O(x))(i) ofO(x) in the ith stratum only depends on values
x(j) for which j ¹ i.

De£nition 1. An operator O on a product lattice L is strat-
i£able iff ∀x, y ∈ L,∀i ∈ I : if x|¹i = y|¹i then
O(x)|¹i = O(y)|¹i.

It is possible to characterize strati£ablity in a more con-
structive way. The following proposition shows that strati£-
ablity of an operator O on a product lattice L is equivalent
to the existence of a family of operators on each lattice Li
(one for each partial element u of L|≺i), which mimics the
behaviour of O on this lattice.

Proposition 1. Let O be an operator on a product lattice
L. O is strati£able iff for each i ∈ I and u ∈ L|≺i there
exists a unique operator Ou

i on Li, such that for all x ∈ L:
if x|≺i = u then (O(x))(i) = Ou

i (x(i)).

These operators Ou
i are called the components of O. As

shown by the following theorem, their existence allows us to
incrementally (w.r.t. the well-founded order ¹ on the index
set I) construct the £xpoints and least £xpoint of a strati£-
able operator.

Theorem 1. Let O be a strati£able operator on a complete
product lattice L. Then for each x ∈ L:

x is a £xpoint of O

iff

∀i ∈ I : x(i) is a £xpoint of Ox|≺i

i .

Moreover, ifO is monotone, then the components ofO are

also monotone and

x is the least £xpoint of O

iff

∀i ∈ I : x(i) is the least £xpoint of Ox|≺i

i .

It is worth noting that — as shown in (Vennekens, Gilis,
& Denecker 2004) — the well-foundedness of the order ¹
on the index set I is a necessary condition for this last equi-
valence to hold.

Using this result, it is possible to construct the £xpoints
(least £xpoint) of a strati£able operator O, by means of the
following procedure. First, we construct the £xpoints (least
£xpoints) of the components Oi, for all minimal elements i
of the index set I . These (least) £xpoints then allow the con-
struction of operatorsOu

j for all indices j on the “next level”
(i.e. such that all indices k ≺ j are minimal), using the previ-
ously construced (least) £xpoints as u ∈ L|≺j . This process
can be repeated until all indices have been dealt with. As the
previous theorem shows, combining the (least) £xpoints of
all levels then yields the £xpoints (least £xpoint) of O itself.

In the preliminaries, we introduced the Kripke-Kleene,
stable and well-founded £xpoints of an approximation. We
will now investigate the relation between these various £x-
points of an approximation and its components. In doing so,
it will be convenient to switch to an alternative represent-
ation of the bilattice L2 of a product lattice L = ⊗i∈ILi.
Indeed, this bilattice is clearly isomorphic to the structure
⊗i∈IL

2
i , i.e. to a product lattice of bilattices. From now on,

we will not distinguish between these two representations.
Because of this isomorphism, we can view an approxim-

ation as a monotone operator on a product lattice. There-
fore, theorem 1 already provides a way of constructing the
£xpoints and the least (Kripke-Kleene) £xpoint of a strati£-
able approximation A, by means of its components A(u,v)i .
As mentioned in the preliminaries, an exact approximation
A approximates a unique operator O. Because A(x, x) =
(O(x), O(x)) for each x ∈ L, it is clear that if A is strat-
i£able, then O is strati£able as well. This leaves only the
stable and well-founded £xpoints of A to be investigated. It
turns out that these can be incrementally constructed from
the partial stable operators C

A
(u,v)
i

of the components A(u,v)i

of A.

Theorem 2. Let L be a product lattice and let A : L2 →
L2 be a strati£able approximation. Then for each element
(x, y) of L2: (x, y) is a (least) £xpoint of CA iff ∀i ∈ I :
(x, y)(i) is a (least) £xpoint of C

A
(x,y)|≺i
i

.

Putting all of this together, the main results of this section
can be summarized as follows. If A is a strati£able approx-
imation on a product lattice L, then a pair (x, y) is a £xpoint,
Kripke-Kleene £xpoint, stable £xpoint or well-founded £x-
point of A iff for each i ∈ I , (x(i), y(i)) is a £xpoint,
Kripke-Kleene £xpoint, stable £xpoint or well-founded £x-
point of the component A(x,y)|≺i

i of A. Moreover, if A is
exact then an element x ∈ L is a £xpoint of the unique op-
erator O approximated by A iff for each i ∈ I , (x(i), x(i))

is a £xpoint of the component A(x,x)|≺i

i of A. These charac-
terizations give us a way of incrementally constructing each
of these £xpoints.

Operators on other lattices
The theory developed in (Vennekens, Gilis, & Denecker
2004) and summarized in the previous sections allows us
to incrementally construct £xpoints of operators on product
lattices. However, not every operator is (isomorphic to) an
operator on a (non-trivial) product lattice. So, the question
arises whether it is also possible to incrementally construct
the £xpoints of an operator O on a lattice L, which is not a
product lattice. Clearly, this could be done if the £xpoints of
O were uniquely determined by the £xpoints of some other
operator Õ on a lattice L̃, where L̃ is a product lattice.

This section will investigate similarity conditions which
suf£ce to ensure the existence of such a correspondence
between the £xpoints fp(Õ) of an operator Õ on L̃ and
those of an operator O on L. More precisely, we will de-
termine a number of properties for a function k from L̃ to
L, such that applying k to the £xpoints of Õ yields the £x-
points of O. For a set S, function f : S → T and t ∈ T ,
we denote the set {f(s) | s ∈ S} by f(S) and the set
{s ∈ S | f(s) = t} by f−1(t). Using these notations,
we can rephrase our goal as determining conditions which
ensure that k(fp(Õ)) = fp(O).

De£nition 2. Let L̃ and L be lattices, Õ an operator on L̃
and O an operator on L. If there exists a function k from L̃

to L, such that k◦Õ = O◦k andO(L) ⊆ k(L̃), Õ k-mimics

O. This is denoted by Õ
k
∝ O.

Clearly, if Õ
k
∝ O, then k(fp(Õ)) ⊆ fp(O). However,

in general the reverse inclusion does not hold. Indeed, all
that can be shown, is that for each £xpoint x of O, k−1(x)
is not empty and closed under application of Õ. To ensure
that k(fp(Õ)) ⊇ fp(O) holds as well, we will use an ad-
ditional similarity condition between the lattices L̃ and L,
such that successive applications of a monotone Õ to a cer-
tain element of k−1(x) are sure to reach a £xpoint which is
still in k−1(x).

De£nition 3. Let L̃ and L be complete lattices. If there
exists a function k from L̃ toL, such that each non-empty set
k−1(x), with x ∈ L, has a central element (i.e. one which is
comparable to all other elements of k−1(x)) and k is chain-
continuous1 then L̃ is k-similar to L. This is denoted by

L̃
k
Ã L.

Theorem 3. Let L̃ and L be complete lattices, Õ a mono-
tone operator on L̃ and O a monotone operator on L, such

that L̃
k
Ã L and Õ

k
∝ O. Then

1. k(fp(Õ)) = fp(O), and

1A totally ordered subset of a lattice is called a chain. A func-
tion k from a lattice L̃ to a lattice L is chain-continuous iff for each
chain (x̃i)i<α ⊆ L̃, k(glb({x̃i | i < α})) = glb({k(x̃i) | i <
α}) and k(lub({x̃i | i < α})) = lub({k(x̃i) | i < α}).

2. k(lfp(Õ)) = lfp(O).

Proof. Let L̃, Õ, L and O be as above.

1. Let x ∈ fp(O) and let c̃ be a central element of k−1(x).
As Õ is monotone and c̃ is a central element, the elements
(Oβ(c̃))β<α form a chain for each ordinal α. As such,
for some ordinal γ, Õγ(c̃) is a £xpoint of Õ. Moreover,
because O(c̃) ∈ k−1(x) and k is chain continuous, by in-
duction, for each ordinal α, Õα(c̃) ∈ k−1(x). Therefore
k(Õγ(c̃)) = x.

2. Because each pair of comparable elements of L̃ forms
a chain, chain continuity of k implies that k is order-
preserving. This proves the correspondence between least
£xpoints.

So far, we have shown that if a monotone operator Õ k-
mimics O, the £xpoints and the least £xpoint of O can be
found by simply applying k to each £xpoint or, respectively,
the least £xpoint of Õ. If the operatorO is an approximation,
however, we are also often also interested in its stable and
well-founded £xpoints.

Proposition 2. Let L̃, L be lattices, such that L̃
k
Ã L. Let k

be the function from L̃2 to L2 which maps each pair (x̃, ỹ)
to (k(x̃), k(ỹ)). Let Ã be an approximation on L̃2 and A an

approximation on L2, such that Ã
k
∝ A. Then CÃ

k
∝ CA.

Proof. Let L̃, L, Ã, A, k, k be as above. We will show that

C
↓

Ã

k
∝ C

↓
A. The proof of C↑

Ã

k
∝ C

↑
A is similar. Because

C
↓
A(L

2) ⊆ A1(L2), C↓A(L
2) ⊆ k(L̃). By de£nition, for

each ỹ ∈ L̃, k(C↓
Ã
(ỹ)) = k(lfp(Ã1(·, ỹ))), which because

of theorem 3 equals lfp(k(Ã1(·, ỹ)) = lfp(A1(·, k(ỹ))).

As each partial stable operator CA is by de£nition mono-
tone, this proposition shows that if an approximation A is
k-mimicked by an approximation Ã, its stable and well-
founded £xpoints can be found by applying k to the stable
£xpoints or, respectively, the well-founded £xpoint of Ã.
Moreover, it is easy to see that if Ã and A are exact approx-

imations of, respectively, operators Õ and O, then Õ
k
∝ O

as well. Therefore, if Õ is also monotone, then fp(Õ) =
k(fp(O)).

Using the results
Our goal is to use the abstract results presented in this sec-
tion to derive concrete splitting results for non-monotonic
reasoning formalisms such as logic programming, auto-
epistemic logic and default logic. As noted earlier, for each
of these formalisms there exists a class of approximations,
such that the various kinds of £xpoints of the approximation
AT associated with a theory T correspond to the models of
T under various semantics for this formalism.

As we showed in (Vennekens, Gilis, & Denecker 2004), in
the case of logic programming these approximations operate
on a (lattice isomorphic to) product lattice. Therefore, is was
possible to derive splitting results for logic programming by
the following method: First, we identi£ed syntactical con-
ditions, such that for each logic program P satisfying these
conditions, the corresponding approximation AP is strati-
£able. Our results then show that the £xpoints, least £x-
point, stable £xpoints and well-founded £xpoint of such an
approximation AP (which correspond to the models of P
under various semantics for logic programming) can be in-
crementally constructed from the components of AP . Of
course, in order for this result to be of any practical use, one
also needs to be able to actually construct these compon-
ents. Therefore, we also presented a procedure of deriving
new programs P ′ from the original program P , such that
the approximations associated with these programs P ′ are
precisely those components.

For auto-epistemic logic and default logic the situation
is, however, slightly more complicated, because the approx-
imations which de£ne the semantics of these formalism do
not operate on a product lattice. Therefore, in these cases,
we cannot simply follow the above procedure. Instead, we
need to preform the additional step of £rst £nding approx-
imations ÃT on a product lattice “similar” to the original
lattice, which “mimic” the original approximations AT of
theories T . The results of this section then show that the
various kinds of £xpoints of AT can be found from the cor-
responding £xpoints of ÃT . Therefore, we can split theories
T by stratifying these new approximations ÃT and, as these
ÃT are operators on a product lattice, this can be done by
the above procedure. In other words, we then just need to
determine syntactical conditions which suf£ce to ensure that
ÃT is strati£able and present a way of constructing new the-
ories T ′ from T , such that the components of ÃT correspond
to approximations associated with these new theories.

Application to auto-epistemic logic
In this section, we will £rst describe the syntax of auto-
epistemic logic and give a brief overview, based on (De-
necker, Marek, & Truszczynski 2003), of how a number of
different semantics for this logic can be de£ned using con-
cepts from approximation theory. Then, we will follow the
methodology outlined in the £nal paragraph of the previous
section to prove concrete splitting results for this logic.

Syntax and Semantics

LetL be the language of propositional logic based on a set of
atoms Σ. Extending this language with a modal operator K,
gives a language LK of modal propositional logic. An auto-
epistemic theory is a set of fomulas in this language LK .
For such a formula ϕ, the subset of Σ containing all atoms
which appear in ϕ, is denoted byAt(ϕ); atoms which appear
in ϕ at least once outside the scope of the model operator K
are called objective atoms of ϕ and the set of all objective
atoms of ϕ is denoted by AtO(ϕ). A modal subformula is a
formula of the form K(ψ), with ψ a formula.

To illustrate, consider the following example:

F = {ϕ1 = p ∨ ¬Kp ; ϕ2 = K(p ∨ q) ∨ q}

The objective atomsAtO(ϕ2) of ϕ2 are {q}, while the atoms
At(ϕ2) are {p, q}. The formula K(p∨ q) is a modal subfor-
mula of ϕ2.

An interpretation is a subset of the alphabet Σ. The set
of all interpretations of Σ is denoted by IΣ, i.e. IΣ = 2Σ.
A possible world structure is a set of interpretations, i.e. the
set of all possible world structuresWΣ is de£ned as 2IΣ . In-
tuitively, a possible world structure sums up all “situations”
which are possible. It therefore makes sense to order these
according to inverse set inclusion to get a knowledge order
≤k, i.e. for two possible world stuctures Q,Q′, Q ≤k Q′ iff
Q ⊇ Q′. Indeed, if a possible world structure contains more
possibilities, it actually contains less knowledge.

Following (Denecker, Marek, & Truszczynski 2003), we
will de£ne the semantics of an auto-epistemic theory by an
operator on the bilattice BΣ = W2

Σ. An element (P, S)
of BΣ is known as a belief pair and is called consistent iff
P ≤k S. In a consistent belief pair (P, S), P can be viewed
as describing what must certainly be known, i.e. as giving
an underestimate of what is known, while S can be viewed
as denoting what might possibly be known, i.e. as giving an
overestimate. Based on this intuition, there are two ways of
estimating the truth of modal formulas according to (P, S):
we can either be conservative, i.e. assume a formula is false
unless we are sure it must be true, or we can be liberal,
i.e. assume it is true unless we are sure it must be false. To
conservatively estimate the truth of a formula Kϕ accord-
ing to (P, S), we simply have to check whether ϕ is surely
known, i.e. whether ϕ is known in the underestimate P . To
conservatively estimate the truth of a formula ¬Kϕ, on the
other hand, we need to determine whether ϕ is de£nitely un-
known; this will be the case if ϕ cannot possibly be known,
i.e. if ϕ is not known in the overestimate S. The following
de£nition extends these intuitions to reach a conservative es-
timate of the truth of arbitrary formulas. Note that the ob-
jective atoms of such a formula are simply interpreted by an
interpretation X ∈ IΣ.

De£nition 4. For each (P, S) ∈ BΣ, X ∈ IΣ, a ∈ Σ and
formulas ϕ,ϕ1 and ϕ2, we inductively de£neH(P,S),X as:

• H(P,S),X(a) = t iff a ∈ X for each atom a;

• H(P,S),X(ϕ1 ∧ ϕ2) = t, iff H(P,S),X(ϕ1) = t and
H(P,S),X(ϕ2) = t;

• H(P,S),X(ϕ1 ∨ ϕ2) = t, iff H(P,S),X(ϕ1) = t or
H(P,S),X(ϕ2) = t;

• H(P,S),X(¬ϕ) = ¬H(S,P),X(ϕ);

• H(P,S),X(Kϕ) = t iffH(P,S),Y (ϕ) = t for all Y ∈ P ;

It is worth noting that an evaluationH(Q,Q),X(ϕ), i.e. one
in which all that might possibly be known is also surely
known, corresponds to the standard S5 evaluation (Ch
& van der Hoek 1995). Note also that the evaluation
H(P,S),X(Kϕ) of a modal subformula Kϕ depends only
on (P, S) and not on X . We sometimes emphasize this by

writingH(P,S),·(Kϕ). Similarly,H(P,S),X(ϕ) of an object-
ive formula ϕ depends only on X and we sometimes write
H(·,·),X(ϕ) .

As mentioned above, it is also possible to liberally estim-
ate the truth of modal subformulas. Intuitively, we can do
this by assuming that everything which might be known, is
in fact known and that everything which might be unknown,
i.e. which is not surely known, is in fact unknown. As such,
to liberally estimate the truth of a formula according to a
pair (P, S), it suf£ces to treat S as though it were describ-
ing what we surely know and P as though it were describing
what we might know. In others words, it suf£ces to simply
switch the roles of P and S, i.e. H(S,P),· provides a liberal
estimate of the truth of modal formulas.

These two ways of evaluating formulas can be used to
derive a new, more precise belief pair (P ′, S′) from an ori-
ginal pair (P, S). First, we will focus on constructing the
new overestimate S′. As S′ needs to overestimate know-
ledge, it needs to contain as few interpretations as pos-
sible. This means that S′ should consist of only those in-
terpretations, which manage to satisfy the theory even if
the truth of its modal subformulas is underestimated. So,
S′ = {X ∈ IΣ | ∀ϕ ∈ T : H(P,S),X(ϕ) = t}. Conversly,
to construct the new underestimate P ′, we need as many in-
terpretations as possible. This means that P ′ should contain
all interpretations which satisfy the theory, when liberally
evaluating its modal subformulas. So, P ′ = {X ∈ IΣ |
∀ϕ ∈ T : H(S,P),X(ϕ) = t}. These intuitions motivate the
following de£nition of the operator DT on BΣ:

DT (P, S) = (D
u
T (S, P),D

u
T (P, S))

with Du
T (P, S) = {X ∈ IΣ | ∀ϕ ∈ T : H(P,S),X(ϕ) = t}.

This operator is an approximation (Denecker, Marek,
& Truszczynski 2003). Moreover, since D1T (P, S) =
Du
T (S, P) = D2T (S, P) and D2T (P, S) = Du

T (P, S) =
D1T (S, P), it is by de£nition symmetric and therefore ap-
proximates a unique operator on WΣ, namely the operator
DT (Moore 1984), which maps each Q to Du

T (Q,Q). As
shown in (Denecker, Marek, & Truszczynski 2003), these
operators de£ne a family of semantics for a theory T :

• £xpoints of DT are expansions of T (Moore 1984),

• £xpoints of DT are partial expansions of T (Denecker,
Marek, & Truszczynski 1998),

• the least £xpoint ofDT is the Kripke-Kleene £xpoint of T
(Denecker, Marek, & Truszczynski 1998),

• £xpoints of C ↓DT
are extensions (Denecker, Marek, &

Truszczynski 2003) of T ,

• £xpoints of CDT
are partial extensions (Denecker, Marek,

& Truszczynski 2003) of T and

• the least £xpoint of CDT
is the well-founded model of T

(Denecker, Marek, & Truszczynski 2003).

These various dialects of auto-epistemic logic differ in their
treatment of “ungrounded” expansions (Konolige 1987),
i.e. expansions which arize from cyclicities such as Kp →
p.

When calculating the models of a theory, it is often useful
to split the calculation of Du

T (P, S) into two separate steps:

In a £rst step, we evaluate each modal subformula of T ac-
cording to (P, S) and in a second step we then compute all
models of the resulting propositional theory. To formalize
this, we introduce the following notation: for each formulaϕ
and (P, S) ∈ BΣ, the formula ϕ〈P, S〉 is inductively de£ned
as:

• a〈P, S〉 = a for each atom a;

• (ϕ1 ∧ ϕ2)〈P, S〉 = ϕ1〈P, S〉 ∧ ϕ2〈P, S〉;

• (ϕ1 ∨ ϕ2)〈P, S〉 = ϕ1〈P, S〉 ∨ ϕ2〈P, S〉;

• (¬ϕ)〈P, S〉 = ¬(ϕ〈S, P 〉);

• (Kϕ)〈P, S〉 = H(P,S),·(Kϕ).

For a theory T , we denote {ϕ〈P, S〉 | ϕ ∈ T} by T 〈P, S〉.
Because clearly H(·,·),X(T 〈P, S〉) = t iff H(P,S),X(T) =
t, it is the case that for each (P, S) ∈ BΣ:

Du
T (P, S) = {X ∈ IΣ | H(·,·),X(T 〈P, S〉)}.

To illustrate, we will construct the Kripke-Kleene model
of our example theory F = {p ∨ ¬Kp; K(p ∨ q) ∨
q}. This computation starts at the least precise element
(I{p,q}, {}) of B{p,q}. We £rst construct the new underes-
timate Du

F ({}, I{p,q}). It is easy to see that

H({},I{p,q}),·(¬Kp) = ¬H(I{p,q},{}),·(Kp) = ¬f = t,

and
H({},I{p,q}),·(K(p ∨ q)) = t.

Therefore, F 〈{}, I{p,q}〉 = {p ∨ t; q ∨ t} and
Du
F ({}, I{p,q}) = I{p,q}. Now, to compute the new over-

estimate Du
F (I{p,q}, {}), we note that

H(I{p,q},{}),·(¬Kp) = ¬H({},I{p,q}),·(Kp) = ¬t = f ,

and
H(I{p,q},·),·(K(p ∨ q)) = f .

Therefore, F 〈(I{p,q}, {}〉 = {p ∨ f ; q ∨ f} and
Du
F (I{p,q},{} = {{p, q}}. So, DT (I{p,q}, {}) =

(I{p,q}, {{p, q}}).
To compute Du

F ({p, q}, I{p,q}), we note that
H(·,I{p,q}),·(¬Kp) and H({{p,q}},·),·(K(p ∨ q) are
still t. So, Du

F ({{p, q}}, I{p,q}) = I{p,q}. Similary,
both H(·,{{p,q}}),·(¬Kp) and H(I{p,q},·),·(¬Kp) are still
f. So, Du

F (I{p,q}, {{p, q}}) = {{p, q}}. Therefore,
(I{p,q}, {{p, q}}) is the least £xpoint of DF , i.e. the
Kripke-Kleene model of F .

Strati£cation
Let (Σi)i∈I be a partition of the alphabet Σ, with 〈I,¹〉 a
well-founded index set. For an interpretation X ∈ IΣ, we
denote the intersectionX∩Σi byX|Σi

. For a possible world
structure Q, {X|Σi

| X ∈ Q} is denoted by Q|Σi
.

In the previous section, we de£ned the semantics of auto-
epistemic logic in terms of an operator on the bilattice BΣ =
W2
Σ. However, for our purpose of stratifying auto-epistemic

theories, we are interested in the bilattice B̃Σ of the product

lattice W̃Σ =
⊗

i∈IWΣi
. An element of this product lat-

tice consists of a number of possible interpretations for each
level Σi. As such, if we choose for each Σi one of its inter-
pretations, the union of these “chosen” interpretations inter-
prets the entire alphabet Σ. Therefore, the set of all possible
ways of choosing one interpretation for each Σi, determines
a set of possible interpretations forΣ, i.e. an element ofWΣ.

κ : W̃Σ →WΣ : Q̃ 7→ {
⋃

i∈I

S(i) | S ∈ ⊗i∈IQ̃(i)}.

Similary, B̃Σ can be mapped to BΣ by the function κ, which
maps each (P̃ , S̃) ∈ B̃Σ to (κ(P̃), κ(S̃)).

This function κ is, however, not an isomorphism. Indeed,
unlikeWΣ, elements of W̃Σ cannot express that an interpret-
ation for a level Σi is possible in combination with a certain
interpretation for another level Σj , but not with a different
interpretation for Σj . For instance, if we split the alphabet
{p, q} of our example F into Σ0 = {p} and Σ1 = {q},
the element {{p, q}, {}} of WΣ is not in κ(W̃Σ), because
it expresses that {p} is only a possible interpretation for Σ0
when Σ1 is interpreted by {q} and not when Σ1 is inter-
preted by {}. For this reason, elements of κ(W̃Σ) and κ(B̃Σ)
are called disconnected.

Because B̃Σ and BΣ are not isomorphic, we cannot dir-
ectly stratify the operator DT . Instead, we need to follow
the previously outlined methodology for dealing with “op-
erators on other lattices”. As a £rst step, we show that W̃Σ

is κ-similar to WΣ. Recall that a lattice L̃ is k-similar to a
lattice L iff there exists a k : L̃ → L, such that k is chain-
continuous and each non empty set k−1(x) has a central ele-
ment.

Proposition 3. W̃Σ is κ-similar toWΣ and B̃Σ is κ-similar
to BΣ.

Proof. As κ is clearly order preserving and W̃Σ is £nite, κ is
also chain continuous. Therefore, it suf£ces to show that for
eachQ ∈ k(WΣ), k−1(Q) has a central element. IfQ 6= {},
then k−1(Q) is a singleton. Furthermore, κ−1({}) = {Q̃ ∈
W̃Σ | ∃i ∈ I : Q̃(i) = {}}. The element >̃{} of W̃Σ which
maps each i ∈ I to {} is a ≤k-largest and therefore central
element of this set.

In order to achieve our goal of being able to incrementally
construct the models of a theory by means of the compon-
ents of some operator on B̃Σ, we need to restrict our atten-
tion to a class of theories whose models are disconnected.

De£nition 5. An auto-epistemic theory T is strati£able
w.r.t. a partition (Σi)i∈I of its alphabet, if there exists a par-
tition {Ti}i∈I of T such that for each i ∈ I and ϕ ∈ Ti:

AtO(ϕ) ⊆ Σi and At(ϕ) ⊆
⋃

j¹i

Σj .

Clearly, for a strati£able theory, the evaluation
H(P,S),X(ϕ) of a formula ϕ ∈ Ti only depends on
the value of (P, S) in strata j ¹ i and that of X in stratum i.

Proposition 4. Let T be a strati£able theory. Let i ∈ I and
ϕ ∈ Ti. Then for each (P, S), (P ′, S′) ∈ BΣ and X,X ′ ∈

IΣ, such that X|Σi
= X ′|Σi

and ∀j ¹ i, P |Σj
= P ′|Σj

and
S|Σj

= S′|Σj
,H(P,S),X(ϕ) = H(P ′,S′),X′(ϕ).

This proposition allows us to construct an operator on B̃Σ
which mimics the DT -operator of a strati£able theory T .

De£nition 6. Let T be a strati£able theory. Let (P̃ , S̃) be
in B̃Σ. We de£ne D̃u

T(P̃ , S̃) = Q̃, with, for each i ∈ I ,

Q̃(i) = {X ∈ IΣi
| ∀ϕ ∈ Ti : Hκ(P̃ ,S̃),X(ϕ) =

t}. Furthermore, D̃T(P̃ , S̃) = (D̃u
T(S̃, P̃), D̃

u
T(P̃ , S̃)) and

D̃T (Q̃) = D̃
u
T(Q̃, Q̃).

Proposition 5. Let T be a strati£able theory. Then D̃T κ-
mimicsDT , i.e. eachDT (P, S) is disconnected and κ◦D̃T =
DT ◦ κ.

Proof. Let (P, S) ∈ BΣ andX,Y ∈ Du
T (P, S). Let Z ∈ IΣ

be such that for some i ∈ I , Z|Σi
= X|Σi

and, ∀j 6= i,
Z|Σj

= Y |Σj
. Then, by proposition 4, for all formulae

ϕ ∈ Ti, H(P,S),Z(ϕ) = H(P,S),X(ϕ) and for all formulae
ϕ ∈ Tj with j 6= i, H(P,S),Z(ϕ) = H(P,S),Y (ϕ). There-
fore Z is also in Du

T (P, S). This shows that Du
T (P, S),

and therefore also DT (P, S), is disconnected. To show that
κ ◦ D̃T = DT ◦ κ, it suf£ces to prove that for each (P̃ , S̃) ∈
B̃Σ, Du

T (κ(P̃ , S̃)) = κ(D̃u
T(P̃ , S̃)). Let X be an element of

IΣ. Then, by de£nition, X ∈ κ(D̃u
T(P̃ , S̃)) is equivalent to

∀i ∈ I,∀ϕ ∈ Ti : Hκ(P̃ ,S̃),X|Σi
(ϕ) = t, which, by proposi-

tion 4, is equivalent to ∀ϕ ∈ T : Hκ(P̃ ,S̃),X(ϕ) = t.

Therefore, it suf£ces to show that D̃T is monotone in or-
der to prove a correspondence between £xpoints and least
£xpoints of D̃T and DT (theorem 3).

Proposition 6. Let T be a strati£able theory. Then D̃T is an
approximation.

Proof. Let (P̃ , S̃), (P̃ ′, S̃′) ∈ B̃Σ, such that (P̃ , S̃) ≤p
(P̃ ′, S̃′). Because then (S̃, P̃) ≥ (S̃′, P̃ ′), we only need
to show that Du

T (P̃ , S̃) ≥⊗ Du
T (P̃

′, S̃′). As κ is order-
preserving, κ(P̃ , S̃) ≤p κ(P̃ ′, S̃′). From (Denecker, Marek,
& Truszczynski 2003), we know this implies that for each ϕ
of T and X in IΣ, if Hκ(P̃ ,S̃),X = t then Hκ(P̃ ′,S̃′),X = t.

Hence, D̃u
T(P̃ , S̃)(i) ⊆ D

u
T (P̃

′, S̃′)(i).

By theorem 3, these two propositions show that
κ(fp(D̃T)) = fp(DT) and κ(lfp(D̃T)) = lfp(DT).
Moreover, by proposition 2, the £xpoints and the least £x-
point of CD̃T

, i.e. the stable £xpoints and well-founded £x-

point of D̃T , correspond to the £xpoints and least £xpoints
of CDT

, i.e. the stable £xpoints and well-founded £xpoint
of DT . As mentioned at the end of section , D̃T also κ-
mimics DT . However, because D̃T is not monotone, it
does not satisfy the conditions of theorem 3. As such, the
best result which can be obtained for this operator, is that
{Q ∈ fp(DT) | Q 6= {}} = κ(fp(D̃T)). This fol-
lows from κ being injective on the subset {Q̃ ∈ W̃Σ |

κ(Q̃) 6= {}} of its domain. To see that a stronger proposi-
tion does not hold, consider the theory T = T1 ∪ T2, with
T1 = {Kp→ ¬p,¬Kp→ p} and T2 = {q ∧ ¬q}. Clearly,
DT has {} as a £xpoint, but D̃T has no £xpoints, as it oscil-
lates between {{p}} t {} and {{}} t {}.

As each operator D̃T is strati£able by construction, these
results allow us to incrementally construct the various mod-
els of a strati£able theory from the components of D̃T .
These components themselves can in turn be constructed by
replacing certain parts of T by their truth value according
to a partial pair of interpretations (Ũ , Ṽ) ∈ B̃Σ|≺i. Before
showing this for all strati£able theories, we will £rst deal
only with the following, more restricted class of theories.

De£nition 7. A theory T is modally separated w.r.t. to a par-
tition (Σi)i∈I of its alphabet iff there exists a corresponding
partition (Ti)i∈I of T , such that for each i ∈ I and ϕ ∈ Ti

• AtO(ϕ) ⊆ Σi,

• for each modal subformula Kψ of ϕ, either At(ψ) ⊆ Σi
or At(ψ) ⊆

⋃

j≺i Σj .

Clearly, modally separated theories are by de£nition strat-
i£able. The fact that each modal subformula of a level Ti
of a modally separated theory T contains either only atoms
from Σi or only atoms from a strictly lower level, makes it
easy to construct the components of its D̃T -operator. Repla-
cing all modal subformulae of a level Ti which contain only
atoms from a strictly lower level j ≺ i, by their truth-value
according to a partial belief pair (Ũ , Ṽ) ∈ BΣ|≺i results in a
“conservative theory” T c, while replacing these subformu-
lae by their truth-value according to (Ṽ , Ũ) yields a “liberal
theory” T l. The pair (Du

T l ,D
u
T c) is then precisely the com-

ponent (D̃T)
(Ũ,Ṽ)
i of D̃T .

To make this more precise, we inductively de£ne the fol-
lowing transformation ϕ〈U, V 〉i of a formula ϕ ∈ Ti, given
a partial belief pair (Ũ , Ṽ) ∈ B̃Σ|≺i:

• a〈Ũ , Ṽ 〉i = a for each atom a;

• (ϕ1 ∧ ϕ2)〈Ũ , Ṽ 〉i = ϕ1〈Ũ , Ṽ 〉i ∧ ϕ2〈Ũ , Ṽ 〉i;

• (ϕ1 ∨ ϕ2)〈Ũ , Ṽ 〉i = ϕ1〈Ũ , Ṽ 〉i ∨ ϕ2〈Ũ , Ṽ 〉i;

• (¬ϕ)〈Ũ , Ṽ 〉i = ¬(ϕ〈Ṽ , Ũ〉i);

• (Kϕ)〈Ũ , Ṽ 〉i =

{

H(Ũ,Ṽ),·(Kϕ) if At(ϕ) ⊆
⋃

j≺i Σj

K(ϕ) if At(ϕ) ⊆ Σi.

Note that this transformation ϕ〈Ũ , Ṽ 〉i is identical to the
transformation ϕ〈P, S〉 de£ned earlier, except for the fact
that in this case, we only replace modal subformulae with
atoms from

⋃

j≺i and leave modal subformulae with atoms
from Σi untouched.

From the various de£nitions, it is now clear that the com-

ponents (D̃T)
(Ũ,Ṽ)
i of the D̃T -operator of a modally separ-

ated theory T can be constructed as follows:

Proposition 7. Let T be a modally separated theory. Let

i ∈ I , (Ũ , Ṽ) ∈ B̃Σ|≺i and (P̃i, S̃i) ∈ B̃Σi
. Then:

(D̃T)
(Ũ,Ṽ)
i (P̃i, S̃i)

= (Du
Ti〈Ṽ ,Ũ〉i

(S̃i, P̃i),D
u
Ti〈Ũ,Ṽ 〉i

(P̃i, S̃i)).

Now, all that remains is to characterize the components of
strati£able theories which are not modally separated. It turns
out that for each strati£able theory T , there exists a modally
separated theory T ′, which is equivalent to ϕ w.r.t. evalu-
ation in disconnected possible world structures. To simplify
the proof of this statement, we recall that each formula ϕ
can be written in an equivalent form ϕ′ such that each modal
subformula of ϕ′ is of the form K(a1∨ · · ·∨am), with each
ai a literal. This result is well-known for S5 semantics and
can — using the same transformation — be shown to also
hold for all semantics considered here2.

Proposition 8. Let (P, S) be a disconnected element of
BΣ. Let i ∈ I , b1, . . . , bn literals with atoms from Σi and
c1, . . . , cm literals with atoms from

⋃

j≺i Σj . Then

H(P,S),·(K(
∨

j=1..n

bj ∨
∨

j=1..m

cj))

= H(P,S),·(K(
∨

j=1..n

bj) ∨K(
∨

j=1..m

cj)).

Proof. By de£nition,

H(P,S),·(K(
∨

j=1..n

bj ∨
∨

j=1..m

cj)) = t

iff

∀X ∈ P : H(·,·),X(
∨

j=1..n

bj ∨
∨

j=1..m

cj) = t.

This is equivalent to ∀X ∈ P , H(·,·),X(
∨

j=1..n bj) = t

or H(·,·),X(
∨

j=1..m cj) = t. Because P is disconnected,
it contains all possible combinations X|∪j≺iΣj

∪ Y |Σi
∪

Z|∪j 6¹iΣj
, with X,Y, Z ∈ P . Therefore the previous

statement is in turn equivalent to for each X,Y ∈ P ,
H(·,·),X|Σi

(
∨

j=1..n bj) = t or H(·,·),Y |∪j≺iΣj
(
∨

j=1..m cj),
which proves the result.

The modally separated formula corresponding to a for-
mula ϕ will be denoted by [ϕ]. In the case of our example
F = {p ∨ ¬Kp; K(p ∨ q) ∨ q}, the modally separated the-
ory [F] = {p ∨ ¬Kp; K(p) ∨K(q) ∨ q} is equivalent to F
w.r.t. evaluation in κ(W̃{p,q}). This results now allows us to
characterize the components of all strati£able theories.

2To show this, it suf£ces to show that each step of this trans-
formation preserves the value of the evalation H(P,S),X(ϕ). For
all steps corresponding to properties of (three-valued) proposi-
tional logic, this is trivial. The step of transforming a formula
K(K(ϕ)) to K(ϕ) also trivially satis£es this requirement. All
that remains to be shown, therefore, is thatH(P,·),·(K(ϕ ∧ ψ)) =
H(P,·),·(K(ϕ) ∧K(ψ)). By de£nition, H(P,·),·(K(ϕ ∧ ψ)) = t

iff ∀X ∈ P : H(·,·),X(ϕ) = t and H(·,·),X(ϕ) = t, which
in turn is equivalent to ∀X ∈ P : H(·,·),X(K(ϕ)) = t and
∀X ∈ P : H(·,·),X(K(ψ)) = t.

Theorem 4. Let i ∈ I , (Ũ , Ṽ) ∈ B̃Σ|≺i and (P̃i, S̃i) ∈ B̃Σi
.

Then:

(D̃T)
(Ũ,Ṽ)
i (P̃i, S̃i)

= (Du
[Ti]〈(Ṽ ,Ũ)〉

(S̃i, P̃i),D
u
[Ti]〈(Ũ,Ṽ)〉

(P̃i, S̃i)).

Putting all of this together, we arrive at the following res-
ults: an element (P, S) of BΣ is an expansion apart from
{}, partial expansion, (partial) extension, Kripke-Kleene £x-
point or well-founded model of a strati£able theory T iff
∃(P̃ , S̃) ∈ B̃Σ, such that κ(P̃ , S̃) = (P, S) and for all i ∈ I ,
(P̃ , S̃)(i) is, respectively, an expansion, partial expansion,
(partial) extension, Kripke-Kleene £xpoint or well-founded
model of [Ti]〈(P̃ , S̃)|≺i〉. Using these results, we can there-
fore incrementally construct the models of a strati£able the-
ory under each of these semantics.

To illustrate, we will use these results to increment-
ally compute the Kripke-Kleene model of our example F ,
which we previously partioned into F0 = {p ∨ ¬Kp} and
F1 = {K(p ∨ q) ∨ q}. The Kripke-Kleene model of F0 is
({{}, {p}}, {{p}}). Let F ′1 be [F1]〈({{p}}, {{}, {p}})〉 =
{t ∨ K(q) ∨ q} and let F ′′1 be [F1]〈({{}, {p}}, {{p}})〉 =
{f ∨ K(q) ∨ q}. The least £xpoint of (Du

F ′1
,Du

F ′′1
) is

({{}, {q}}, {{q}}). Therefore, the Kripke-Kleene £xpoint
of F is (I{p,q}, {{p, q}}). Of course, (partial) expansions,
(partial) extensions and the well-founded model of F can be
computed in a similar manner.

Related work
In (Gelfond & Przymusinska 1992), it was shown that mod-
ally separated auto-epistemic theories can be split under the
semantics of expansions. We have extended this result to
a larger class of theories and to other semantics for auto-
epistemic logic. (Turner 1996) proves a splitting theorem for
default logic under Reiter’s semantics of extensions (Reiter
1980). In [DMT03], approximation theory was used to show
the equivalence (under the Konolige transformation (Kono-
lige 1987)) between members of the family of semantics for
default logic and the corresponding members of the family
of semantics for autoepistemic logic. As such, the results
derived here for auto-epistemic logic could also be applied
to default logic. This would extend Turner’s results to other
semantics for default logic and to a larger class of theories,
as (Turner 1996) considers only default theories which cor-
respond to modally separated auto-epistemic theories.

Conclusion
We have studied the issue of strati£cation at the general, al-
gebraic level of operators and approximations (section).
This gave us a useful set of theorems, which enabled us
to easily prove splitting results for all £xpoint semantics
of auto-epistemic logic (section), thus generalizing exist-
ing results. Similar results can be obtained for logic pro-
gramming (Vennekens, Gilis, & Denecker 2004) and, in fu-
ture work, for default logic. As such, the importance of the
work presented here is threefold. Firstly, there are the con-
crete, applied splitting results themselves. Secondly, there is
the general, algebraic framework for studying strati£cation,

which can be applied to each formalism with a £xpoint se-
mantics. Finally, on a more abstract level, our work offers
greater insight into the principles underlying existing results,
as we are able to “look beyond” purely syntactical properties
of a certain formalism.

References
Apt, K.; Blair, H.; and Walker, A. 1988. Towards a theory
of Declarative Knowledge. In Minker, J., ed., Foundations
of Deductive Databases and Logic Programming. Morgan
Kaufmann.
Ch, J., and van der Hoek, M. 1995. Epistemic Logic for
Computer Science and Arti£cial Intelligence. Cambridge
University Press.
Denecker, M.; Marek, V.; and Truszczynski, M. 1998. Fix-
point 3-valued semantics for autoepistemic logic. In Pro-
ceedings of the Fifteenth National Conference on Arti£cial
Intelligence, 840–845. MIT Press / AAAI-Press.
Denecker, M.; Marek, V.; and Truszczynski, M. 2000.
Approximating operators, stable operators, well-founded
£xpoints and applications in non-monotonic reasoning.
In Logic-based Arti£cial Intelligence, The Kluwer Inter-
national Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston. 127–144.
Denecker, M.; Marek, V.; and Truszczynski, M. 2003.
Uniform semantic treatment of default and autoepistemic
logics. Arti£cial Intelligence 143(1):79–122.
Erdo®gan, S., and Lifschitz, V. 2004. De£nitions in Answer
Set Programming. In Proc. Logic Programming and Non
Monotonic Reasoning, LPNMR’04, volume 2923 of LNAI,
185–197. Springer-Verlag.
Gelfond, M., and Przymusinska, H. 1992. On consistency
and completeness of autoepistemic theories. Fundamenta
Informaticae 16(1):59–92.
Gelfond, M. 1987. On Strati£ed Autoepistemic Theories.
In Proc. of AAAI87, 207–211. Morgan Kaufman.
Konolige, K. 1987. On the relation between default and
autoepistemic logic. In Ginsberg, M. L., ed., Readings
in Nonmonotonic Reasoning. Los Altos, CA: Kaufmann.
195–226.
Lifschitz, V., and Turner, H. 1994. Splitting a logic pro-
gram. In International Conference on Logic Programming,
23–37.
Moore, R. C. 1984. Possible-world semantics for autoep-
istemic logic. In Proc. of the Non-Monotonic Reasoning
Workshop, 344–354.
Reiter, R. 1980. A logic for default reasoning. Arti£cial
Intelligence 13(1–2):81–132.
Turner, H. 1996. Splitting a default theory. In Proc. Thir-
teenth National Conference on Arti£cial Intelligence and
the Eighth Innovative Applications of Arti£cial Intelligence
Conference, 645–651. AAAI Press.
Vennekens, J.; Gilis, D.; and Denecker, M. 2004. Splitting
an operator: an algebriac modularity result and its applica-
tion to logic programming. Accepted for ICLP’04.

