Actions, Planning and Defeasible Reasoning *

Guillermo R. Simari and Alejandro J. Garcia and Marcela Capobianco

grs@cs.uns.edu.ar

agarcia@cs.uns.edu.ar

mc@cs.uns.edu.ar

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahia Blanca, Argentina

Abstract

The aim of this work is to study an argumentation-
based formalism that an agent could use for construct-
ing plans. Elsewhere, we have introduced a formal-
ism for agents to represent knowledge about their en-
vironment in Defeasible Logic Programming, and a set
of actions that they are capable of executing in order
to change the environment where they are performing
their tasks. We have also shown that action selection,
when combined with a defeasible argumentation for-
malism, is more involved than expected.

In this paper we will develop a novel way of using ar-
gumentation in the definition of actions and combining
those actions to form plans. Since our interest here lies
in exploring the important issues that need to be ad-
dressed, the main contribution will be to show mean-
ingful examples where those issues are exhibited and
not in improving current planning implementations.
Therefore, we will use simple planning algorithms in an
effort to reduce the complexity of the examples. Never-
theless, as the different ways of constructing plans in-
troduce interesting details, we will be considering pro-
gression and regression planning.

General Considerations

The aim of this work is to define actions in a way that
would permit the use of an argumentation-based for-
malism to select among them and to construct plans.
Several formalisms have been introduced relating some
form of argumentation formalism to reason about ac-
tion and change (KMT99; KMTO00; Bre01). Argumen-
tation will be the device used to introduce defeasibility
in the construction of plans. In previous work, we have
introduced a formalism where agents represent their
knowledge about the environment using the language
of Defeasible Logic Programming (DELP) (SGO01; ?;
GS04). They also should have a set of actions that they
can execute in order to change the environment where
they are performing their tasks. Here, we will explore
the consequences of using this kind of formalism in the
selection of actions.

*Partially supported by Secretaria General de Ciencia y
Tecnologia de la Universidad Nacional del Sur and the Agen-
cia Nacional de Promocién Cientifica y Tecnolégica (PICT
2002 Nro 13096)

We will begin by developing a novel way of using ar-
gumentation in the definition of actions and combining
those actions to form plans. Since our current interest
lies in exploring the basic, foundational issues that need
to be addressed, the main contribution in this work will
be to show meaningful examples where those issues are
exposed and not in improving current planning imple-
mentations. Therefore, we will consider simple plan-
ning algorithms in an effort to reduce the complexity of
the examples. Nevertheless, as the different methods of
constructing plans introduce interesting details, we will
be considering progression and regression planning.

We have shown (SGO01) that action selection, when
combined with an argumentation formalism, is more
involved than expected specially in regression plan-
ning. Because of these complexities, any naive al-
gorithm would be computationally inadequate. After
completing the necessary definitions, we will address
the implementation concerns succinctly.

First Step: Actions

We will begin with an example. Suppose an agent
named Yosemite Sam, or Sam for short, is in the dark.
He wants to light up the place and he has a match.
Sam is lost, but he knows that the room he is in is a
gunpowder shed. He also has some defeasible rules to
guide his behavior: “if someone is in the dark then he
would like to produce light”, “if someone wants to pro-
duce light and he has a match, then he has a good reason
for striking the match” and “being in a gunpowder shed
s a good reason for not striking a match”.

Our formalism follows the logic programming
paradigm for knowledge representation (GS04). In
that setup, an agent’s knowledge will be represented
by a knowledge base K = (¥,A), where ¥ should
be a consistent set of facts, and A a set of defeasible
rules. Below, we have agent Sam’s knowledge base as
described before.

U = { in_the_dark(s),lost(s),
has(s,match), at(s, gps) }

A = { wants(s, light) — lost(s), in_the_dark(s),
strike(s, match) — has(s, match), wants(s,light),
~strike(s, match) — has(s, match), at(s, gps) }

From the knowledge base described, Sam could not
decide what to do because he has reasons both in fa-
vor and against striking the match. Notice that a
defeasible rule is the key element for introducing de-
feasibility (Pol95) and it is used to represent a rela-
tion between pieces of knowledge that could be de-
feated, after all things are considered. A defeasible rule
“Head — Body” is understood as expressing that “rea-
sons to believe in the antecedent Body of a rule pro-
vide reasons to believe in its consequent, Head” (SL92).
Strong negation “~” is allowed in the head of defeasi-
ble rules, and and it can therefore be used to represent
potentially contradictory knowledge.

Thus, the agent’s knowledge base will be represented
using a restricted defeasible logic program (delp). The
results already obtained for such argumentation-based
form of logic programming will be used here freely,
but a brief description of DELP will be introduced be-
low. The interested reader is referred to (GS04) for de-
tails about DELP’s general framework and to (CCSO01;
Cap03) for the restricted form of the language used
here.

In DELP, a literal L is warranted from knowledge
base K = (¥, A) if there exists a non-defeated argument
A supporting L. An argument structure 4 for a literal
L, denoted (A, L), is a minimal and consistent set of de-
feasible rules that allows to infer L. In order to establish
whether (A, L) is a non-defeated argument, argument
rebuttals or counter-arguments that could be defeaters
for (A, L) are considered, i.e., counter-arguments that
by some criterion are preferred to (A, L). Since counter-
arguments are arguments, there may exist defeaters
for them, and defeaters for these defeaters, and so on.
Thus, a sequence of arguments called argumentation
line appears, where each argument defeats its prede-
cessor in the line (see the example below). Usually, for
a given argument more than one defeater exists and
in that case more than one argumentation line could
appear. Thus, all argumentation lines could be con-
solidated in a tree of arguments called dialectical tree,
where the root is (A4, L) and each path from the root
to a leaf is an argumentation line. Finally, a dialectical
analysis of this tree is used for deciding whether L is
warranted. Next, all of the concepts introduced before
are exemplified. We will use a propositional language
in order to simplify the example.

Example 1 Consider the following knowledge base
K= (¥,A) with the set of facts

U = {a,b,c,d}

and the set of defeasible rules,

A :{(p% b)? (q% T)7 (T’* d)v (NT - 5)7(5 - b)a
(~s = a,b), (w—=b),(~w—=b,c)}

Here, the literal p has the argument A={p — b} sup-
porting it, and A is undefeated because there is no
counter-argument for it. Hence, p is warranted. The
literal ¢ has the argument A;= {(¢ = r), (r < d)}, but
A; is defeated by Ax= {(~r —<s), (s —=b)}, that at-
tacks r, an inner point in A;. The argument As is in
turn defeated by As= {(~s < a,b)}. Thus, the argu-
mentation line [A;, As, As] is obtained. The literal ¢
is warranted because its supporting argument A; has
only one defeater Ay that is defeated by Az, and As
has no defeaters.

Observe that there is no warrant for ~r because A, is
defeated by As. The literals t and ~t have no argument,
so neither of them is warranted. Every fact of U is
trivially warranted, because no counter-argument can
defeat a fact.

Following Lifschitz (Lif96), DELP rules, strict and
defeasible, could be represented as schematic rules
making abstraction of the object constants. The result-
ing DELP programs are therefore schematic programs.

Besides its knowledge base I, an agent will have a
set of actions I' that it may use to change its world.
Once an action has been applied, the effect of the action
will change the set IC. The formal definitions that were
introduced in (SGO1) are recalled below.

Definition 1 [Action] An action A is an ordered
triple (X, P,C), where X is a consistent set of literals
representing consequences of executing A, P is a set of
literals representing preconditions for A, and C is a set
of constraints of the form not L, where L is a literal.
We will denote actions as follows:

(X1, Xo} <2 {Py, ..., Pu}not {Cy,....CL}

Notice that the notation not {Ci,...,Ck} represents
{not C1,...,not Cy}.

Note that the dialectical process may have different
outcomes. When looking for a warrant for a literal L
there might be four different answers: YES, if L is war-
ranted; NO, if ~L is warranted; UNDECIDED, if there
is no warrant for L and no warrant for ~L; and UN-
KNOWN, if L is a literal that is not possible to consider
given the knowledge base K, i.e., L is not part of the
language of K.

Accordingly, the condition that must be satisfied be-
fore an action A = (X, P,C) can be executed contains
two parts: P, which mentions the literals that must be
warranted, and C, which mentions the literals whose
negations must not be warranted. In this way, the sat-
isfaction of the preconditions could also depend on the
fact that some information is unknown (un-warranted).

For example, using this form of specification of ac-
tions, it is possible to express conditions such as the

following: “If it did not rain today and it is unknown
when it might rain, then water the garden”, using wg
for water the garden:

{wg(today)} <L {~rain(today)}, not {rain(X)}
Formally,

Definition 2 [Applicable Action] Let £ = (¥,A)
be an agent’s knowledge base. Let I' be the set of ac-
tions available to this agent. An action A in I', defined
as before, is applicable if every precondition P; in P has
a warrant built from (¥, A) and every constraint C; in
C fails to be warranted.

Definition 3 [Action Effect] Let £ = (¥, A) be an
agent’s knowledge base. Let I' be the set of actions

available to this agent. Let A be an applicable action
in I' defined by:

(X1, Xt < {P,... Pu},not {Ch,...,Ck}

The effect of executing A is the revision of ¥ by X, i.e.
X = g*{X X} Revision will consist of removing
any literal in ¥ that is complementary of any literal in
X and then adding X to the resulting set. Formally:

gX = grtF Xl — (g - X) U X

where X represents the set of complements of members
of X.

Example 2 Let K= (¥, A) be an agent’s knowledge
base as defined in Example 1

U = {a,b,c,~d}
A :{(p — b)v (C] - ’I“), (T - d)v (NT — S)’(S - b)v
(NS —a, b)’(w — b)a(Nw - b,C)}

And T the set of available actions containing only:

{~a,d,z} A {a,p,q},not {t,~t,w}
This action is applicable because every literal in the
precondition set has a warrant, and no constraints in
{t,~t, w} are warranted (see Example 1). If the action
is executed, the set of facts becomes:

V' ={b,¢,~a,d,z}

Observe that the precondition a was “consumed” by
the action.

In (SGO1), we have shown that the interaction be-
tween actions and the defeasible argumentation formal-
ism is twofold. On one hand, as stated by Definition 2,
defeasible argumentation is used for testing precondi-
tions and constraints through the warrant notion. On
the other hand, actions may be used by agents in order
to change the world (actually the set ¥) and then have
a warrant for a literal L that has no warrant from the
current knowledge base (¥, A).

As we have shown in (SGO1), this interaction pro-
duces a powerful formalism. However, some new ele-
ments that are not present in traditional planning sys-
tems prompt for a deeper analysis.

Defeasible Planning through
Argumentation

A simple formulation of a planning problem defines
three inputs (Wel99): a description of the initial state
of the world in some formal language, a description of
the agent’s goal, and a description of the possible ac-
tions that can be performed. The initial state is the
agent’s current representation of the world, and in our
case it will be the set ¥. As stated above, through the
execution of actions the agent may change its world.
Therefore, in order to achieve its goals, the agent will
start in the initial state ¥ and it will execute a sequence
of actions transforming ¥ into ¥’. The agent’s goals
will be represented as a set G of literals. The agent will
satisfy its goals when through a sequence of actions it
reaches some state U’ where each literal of G is war-
ranted. The planner will be in charge of obtaining the
proper sequence of actions in advance.

Progression Planning

A progression planner searches forward from the initial
state I to the goal state G. The outline of a progression
planner that searches through the space of possible
states follows:

INITIALIZE the current state () with I

REPEAT
- SELECT an action such that its

preconditions hold in @
- SIMULATE the action execution
modifying () with the action effects

UNTIL G C Q

Remark 1 We will assume, realistically, that none of
the goals contained in the initial goal state G is already
holding in the initial state I. i.e., GNI = 0.

That is, the planner starts in the initial state I, it
selects one applicable action and simulates its execution
modifying the state with the action effects. The process
continues until all the literals in G hold in the current
state). If there is more than one applicable action to
select, then a choice point is generated and backtracking
is possible. Thus, the planner will explore a space of
states rooted in I.

Combining our proposed formalism with a progres-
sion planner is straightforward. The initial state is
represented with the agent’s facts U. In each step, the
planner will select an applicable action in the current
state U, that is, an action A=(X,P,C), where every
precondition P; in P has a warrant built from (¥, A),
and every constraint C; in C fails to be warranted from
(¥, A). The action effect will be calculated with W*.
A progression planner algorithm that uses defeasible
argumentation follows:

LET ¥ be the initial state and G the agent’s goal
REPEAT
- SELECT an applicable action A=(X,P,C)

- SIMULATE the action effect with ¥ := ¥*X
UNTIL all literals in G are warranted from (¥, A)

In progression planning, there are no further considera-
tions, since it is unnecessary to protect the literals used
to construct the warrants. Naturally, if there is a con-
siderable number of actions, then the branching factor
could be very large and the search problem intractable.
Regression planning tries to improve this situation. In
the next section we will analyze the combination of re-
gression planning with our approach and study the in-
teraction between the process of constructing warrants
and executing planning.

Regression Planning

A regression planner searches backward from the goal
state G to the initial state I. As we have remarked,
we assume that G NI = (). The outline of a typical
regression planner that searches through the space of
possible states is given below:

REPEAT
- SELECT an action A=(X,P,C),
such that XN G #
- RECOMPUTE G eliminating X and adding P,
that is, G :== (G — X)UP
UNTIL G C [

Unfortunately, it is known that X NG # () is not
enough as a selection condition. In a regression planner,
the first action to be selected is the last to be executed.
Therefore, at any point in the search, a selected action
A could introduce some literal that could interfere with
an action already selected but that will be executed
after A in the plan. Consider the following example: the
initial state is I = {c¢, e, f}, the goal state is G = {a},
and the actions are:

{a} &- {b, ¢}, not {}
{~d, b} 22 {d}, not {}
{~e,d} <2 {e},not {}

{d} <= {f},not {}

{c} <= {f}mot {}

The following table shows one possible trace of the
regression planner outline:

G selected action X P
{a} Ay {a} {b,c}
{b, ¢} Az {~d, b} {d}

{C, d} A3
{ce}

{~edy {e}

Since we are using a regression planner, the selected
actions, in inverse order, form a plan. However, if the
sequence [As, Aa, A;] is executed in this order, action
Az will delete the literal ¢ from the initial state, but
action Ay needs ¢ as a precondition. Observe that ¢
was “assumed” to be present along the search. The
problem can be solved if the literal ¢ is “protected”.
One way of achieving this is to add to the selection
mechanism the condition X N G =). That is,

REPEAT
- SELECT an action A=(X,P,C),
such that XN G # () and XNG =)
- RECOMPUTE G as (G — X)UP
UNTIL G C I

Although this is a well known problem, we bring it
up here because in our approach the standard solution
that consists of protecting the necessary literals is inad-
equate. Thus, some further considerations are needed.
First, we will consider examples of actions without con-
straints.

Observe that our approach uses a deductive knowl-
edge base (¥, A), so a goal is not necessarily achieved
when it becomes a member of the set. A goal literal
g € G is achieved if and only if g is warranted from
the agent’s current knowledge base (¥,A). From
now on we will use w(G) to represent the subset of
warranted literals of G, i.e., w(G) = {g| g € G and ¢
is warranted }. Thus, a planning problem will be solved
when all the literals in G become warranted, that is,
G = w(@). The modified outline follows:

REPEAT
- SELECT an action A=(X, P, C), such that
XN (G —w(@))#0and XNG =0
- RECOMPUTE G as (G — X)UP
UNTIL G = w(G)

We will analyze the behavior of this last outline
through meaningful examples. In all of the following
examples the agent has the goal G = {a}, and the ac-
tions of the agent are:

{a} &5 (b, ¢}, not {}
{~a,b} 42 {e},not {}

Example 3 [Argument Clipping]

Suppose that the agent has the following knowledge
base: U= {e, x} and A= { ¢ < z}. In order to achieve
the goal “a”, action A; is selected first, and G becomes
{b, c}. Observe that B={c¢ — x} is an undefeated argu-
ment, so the literal ¢ is warranted. Since literal b is not
warranted, the planning process continues and action
As=(Xq, Pa, Cy) is selected. The effect of Ay is Xo= {b,
~x}, 50 X NG = () holds, and G becomes {e, c}. Both
literals are warranted, so plan [A3, A1) appears to be
correct.

However, if action A, is executed in the initial state,
the literal x is removed from W. Therefore, no argument
for ¢ can be built and action A; cannot be executed.

Example 3 shows that the literals in G are not only
the ones that should be protected. All the facts used
for constructing arguments involved in the warrant of a
literal in G need to be protected. The following example
shows a different situation where an action causes, as a
side effect, the existence of a new argument. This new
argument becomes a defeater of an argument that was
assumed undefeated.

Example 4 [Enabling a Defeater]

Suppose that the agent has the following knowledge
base: U= {e, x, d} and A= {(¢c =d), (~c—= ~x)}.
In order to achieve the goal “a”, action A; is selected
first, and G becomes {b, c}. The literal ¢ is war-
ranted because B={c — d} is an undefeated argument
that supports it. Observe that although there is a rule
with head ~c, there is no defeater for B because ~zx
is not in the knowledge base. Since literal b is not
warranted, the planning process continues and action
As=(Xa, Pa, Cy) is selected. The effect of Ay is Xo= {b,
~x}, 50 X NG = () holds, and G becomes {e, c}. Since
both literals are warranted, a plan [As, A;] appears to
be found.

However, if action As is executed, literal ~x is added
to ¥, and then the argument C={~c —= ~z} can be
obtained. Since C defeats B, there is no warrant for ¢
and action A; cannot be executed.

Example 4 shows a case where, as a side effect of
one of the selected actions, a new argument can be
built. This new argument interferes with the warrant
of a literal that was assumed warranted. Therefore, not
only the literals but the existence of warrants for literals
needs to be protected. The following example shows a
different situation where a warrant disappears because
a supporting argument defeating a defeater disappears.

Example 5 [Disabling a Defeater]

Suppose that the agent has the following knowledge
base: U= {e, x, g} and A= {(c—=d), (d—=e),
(~d—=e f), (f =9g), (~f =2x)}. In order to achieve
the goal “a”, action A; is selected first, and G becomes
{b, ¢}. The literal ¢ is warranted, because although
B={(c—=d), (d—=e)} is defeated by C={(~d —= e, f),
(f = g)}, a third argument D= {~f < z} defeats C
reinstating B.

Again, action A;=(X,P,C) is selected next, G be-
comes {e, c}, and a plan [As, A;] appears to be found.
However, if action As is executed, literal x is removed
from ¥, and then the argument D={~f — z} cannot
be obtained. Argument C is now undefeated and since
C defeats B, there is no warrant for ¢ and action A;
cannot be executed because c is needed as a precondi-
tion.

It is clear that, when an action is executed new lit-
erals can be added or deleted from W. As a conse-
quence, new defeaters could appear or disappear inter-
fering with the existence of assumed warrants. As it
was shown in the examples above, this could cause the
planner to select an improper sequence of actions that
cannot be used as a plan. In traditional planning, the
solution is to protect the literals. However, since in this
approach we are using a deductive knowledge base, we
need to protect the warrant of the literals. A solution
to this problem is proposed in the following section.

Protecting Warrants in Regression
Planning

In DELP, an argumentation line (GS04) starting at
(Ao, Lo) is a sequence of arguments

[(Ao, Lo), (A1, L), (A, La) (As, Ls), . .]

where each element of the sequence (A;,L;),
i > 0, is a defeater of its predecessor (A;_1,L;_1).
Then, (Ag,Lo) becomes a supporting argument for
Lo, (Ay,L1) an interfering argument posed against
(Ao, Lo), (As,Ls) a supporting argument because
it attacks (Aj, L1), (As, Ls) an interfering one as it
attacks (As, Lo), ete. Thus, an argumentation line
A = [<.A0,L0>, <A1,L1>, <A2,L2> <A3,L3>, .. } can be
split into two disjoint sets: The set Ag={({Ao, Lo),
(A2, La), (A4, Ly), ...} of supporting arguments, and
the set A;={(Ai1, L1), (As,L3), ...} of interfering
arguments. The warrant of a literal Ly is obtained
exploring all possible argumentation lines that start
with (Ag, Lgp). These argumentation lines could be
seen as paths from the root to a leaf in a tree. This
tree is called dialectical tree in DELP (see (GS04) for
the complete details).

Suppose now that during the planning process the
literal p was assumed to be warranted for selecting an
action A, and that warrant exists because of the argu-
mentation line [(Ag, Lo), (A1, L1), {As, La), (As, Ls),
(A4, L4)]. On the one hand, if an action B selected af-
ter, but to be executed before, A deletes one of the
literals used in the supporting arguments {({Ao, Lo),
(A2, La), (A4, L4)}, then the warrant for p could disap-
pear. On the other hand, if the selected action B adds a
fact to the knowledge base, such that a new undefeated
argument (A;, L;) can be built and (A;, L;) defeats
any of the supporting arguments {(Ag, Lo), (A2, L2),
(A4, Ly)}, then the warrant for p could also disappear.

The first problem could be avoided collecting all the
facts used in {(Ao, Lo), (A2, L2), (A4, Ls)} and pro-
tecting them, requiring that no action can delete these
facts. The second problem could be solved by ensur-
ing that no new defeaters for the supporting arguments
{{Ao, Lo), (A2, La), (A4, L4)} can be obtained.

Finally, observe that if a literal used in an interfer-
ing argument for p {(A1, L1), (As, L3)} is erased, then
although the dialectical tree changes, the warrant for p
remains. However, it is important to note that a literal

could be used both in supporting and interfering argu-
ments, so in such a case it should be protected for the
supporting argument.

Therefore, to protect a warrant, all the facts used
in supporting arguments and all the potential points
of attack should be considered. This information will
be used for avoiding, in advance, the selection of an
improper action. The following definitions introduce
the necessary elements.

Definition 4 Let L be a literal. We will define war-
rants(L) as the set of warrants for that literal, i.e., the
set of all arguments A that are warrants for L. Given
a set S of literals, warrants(S) represents the set of all
warrants for literals in S.

Definition 5 Let L be a warranted literal with war-
rant A. We define SuppArg({A, L)) as the set of all
supporting arguments in the dialectical tree that shows
that A is a warrant for L.

Definition 6 Let L be a warranted literal
with warrant A, and let SuppArg({(A,L)) =
{<A1,L1>,<A2,L2>,...<Ak,Lk>}. We define
Facts(SuppArg({A, L))) as the set of all facts in
U used in the construction of the arguments in

{(A1, L1), (Ag, La), ... (Ag, L)}

The set Facts(SuppArg({A,L))) represents the set
of all known literals that are necessary for constructing
the supporting arguments. Failure in maintaining these
facts in the epistemic state of the agent would result in
the loss of the warrant.

Definition 7 Let L be a warranted literal
with warrant A, and let SuppArg((A,L)) =
{<A1,L1>,<A2,L2>,...<Ak,Lk>}. We define
Weak(SuppArg((A,L))) as the set of all literals
that are heads in rules contained in the arguments in

{<-A17 L1>7 <A27 L2>a s <-Ak7 Lk>}

The set Weak(SuppArg({A,L))) represents the set
of points that could be subject to attack in the dialecti-
cal process. These points were analyzed during the con-
struction of the dialectical tree. Any existing defeater
was defeated. We are taking notice of these points be-
cause any new defeater must attack one of them.

If we wish to maintain a warrant as such we should
do two things. It is necessary to protect the literals in
Facts(SuppArg({A, L))), and we need to avoid intro-
ducing new literals that could allow the construction of
new defeaters for SuppArg((A, L)).

Definition 8 Let K = (¥, A) be the agent’s knowl-
edge base, G the agent’s goal, i.e., a set of literals, and
[A1, As, ..., A,] the actions selected by the regression
planner. Let {(Aj, L1), (A, La), ..., {Ag, Li)} be the
set of warrants A; for the literals L; that were assumed

to be warranted for the selection of the actions [A;, As,
..., Ap]. We will define:

Protect = U Weak(SuppArg({A,L)))
i=1..k

and

PossAttack = U Facts(SuppArg({A;, L;)))
i=1..k

The sets Protect and PossAttack will be used by the
planner during the action selection process. In this
manner, the planner will not select an action that dur-
ing the execution of the resulting plan could cause a
protected literal to be erased, or a new defeater for a
supporting argument to be constructed. Note that if
backtracking occurs, the sets Protect and PossAttack
have to be updated accordingly.

Notice that for each literal in Protect and PossAttack
there could be more than one warrant. This could help
in the process of selecting the actions to reach the goals
in GG since a convenient action could still be selected
replacing the current warrant by a different one.

Accordingly, we can modify the outline of the
planner as follows:

REPEAT
- SELECT an action A=(X, P, C), such that:
1. XN (G —-w(@) #0
2. XN Protect =0
3. there is no new undefeated defeater for a
warrant for a member of PossAttack
from ¥ U X
- RECOMPUTE G as G — XUP
- UPDATE Protect and PossAttack accordingly
UNTIL G = w(G)

Although this last solution averts the problems we
have mentioned, it is not complete. Consider the ex-
ample below, which is a variant of Example 3

Example 6 [Action Selection]
Consider an agent with the goal G = {a}, and the

actions:
{a} &5 (b, ¢}, not {}
{~a,b} 42 {e},not {}
{e} &2 {e},mot {}

Suppose that the agent has the following knowledge
base: = {e, x} and A={(c < z) }. In order to achieve
the goal “a”, action A; is selected first, and G becomes
{b, c}. Observe that the literal c is warranted because
B={c —= x} is an undefeated argument The planner has
to protect the warrant of ¢ and therefore sets Protect
= {z}.

Since literal b is not warranted, the planning process
continues and action A;=(X,P,C) is considered. The
action cannot be selected because X N Protect = {z}.

Therefore, no plan is found, but clearly a plan exists:
[A2, A3, A1]. However, this plan was not considered be-
cause the literal ¢ was warranted when the action A;
was selected.

In order to avert the problem introduced in Exam-
ple 6 we propose the following solution. When an appli-
cable action A = (X,P,C) cannot be selected because
one of its effects deletes a protected literal that is nec-
essary for the warrant of a literal ¢, instead of simply
discard the action, the planner will search for another
way of obtaining ¢ and insert this subsidiary plan into
the main plan. This search must consider the same
restrictions regarding Protect and PossAttack that the
main planner is considering in that step.

Implementation Issues

In (Cap03) a restricted version of DELP, known
as Observation based Defeasible Logic Programming
(ODELP), was developed and studied. ODELP ad-
dresses some of the implementation concerns associ-
ated with argumentative formalisms, borrowing con-
cepts from the theory of Truth Maintenance Systems
(TMS) presented in (Doy79). Under this view, pre-
compiled knowledge may be used to optimize the infer-
ence process of ODELP in the same way truth main-
tenance systems improve the performance of problem
solvers.

Associated with every ODELP program P = (U, A)
there is a data structure called Dialectical Base. Simply
put, the dialectical base of a given program stores all
the arguments that could be built from the rules in A.
These arguments are compiled in such a way that it is
possible to obtain warrants in a computationally less
costly way.

Dialectical bases may be seen as a set of potential
arguments. Potential arguments are different from the
notion used in section , where arguments are sets of
ground defeasible rules, instantiated accordingly with
the literals in the set ¥. Even though defeasible rules
are ground, they could also be expressed as “schematic
rules” with variables, as it is done in Logic Pro-
gramming (see (Lif96)). This form of expressing the
knowledge base is more convenient for potential argu-
ments, since they must be independent from the cur-
rent perceptions represented in the set ¥. When using
schematic rules it is possible to obtain “schematic ar-
guments”, which stand for a set of different arguments,
which are instantiated according to a particular .

From I = (¥, A), which represents the agent’s epis-
temic state, all the potential arguments could be ob-
tained. As mentioned above, these structures depend
only on the set A of defeasible rules. To finish the con-
struction of the Dialectical Base we also need to record
the defeat relation among potential arguments. Using
this relationship, and the potential arguments, it is pos-
sible to carry out the dialectical analysis in a seamless
manner.

Example 7 Dialectical Base. Consider the knowl-
edge base regarding Sam and his situation in the gun-
powder shed given in section . The dialectical base for
this program consists of the following potential argu-
ments:

A = {strike(X,Y) =< has(X,Y),wants(X, Z)}
Ay = {~strike(X,Y) = has(X,Y),at(X, Z)}

The change in notation reflects the situation that these
are not arguments but potential arguments. Note that
the set consisting of both rules is not a potential ar-
gument (since once instantiated it may result in an in-
consistent set of rules). The defeat relation establishes
that Ay defeats A;.

When reasoning with a particular knowledge base K
= (¥, A), only the potential arguments that can be in-
stantiated using the individual constants appearing in
U are considered in the dialectical analysis. Since the
defeat relation is already given, and the heavy com-
putational work is done off-line, the cost of the infer-
ence process is greatly lowered. Integrating a module
of pre-compiled knowledge in our planner can therefore
optimize the process of deciding when an action is ap-
plicable, a key issue for implementing the system.

Conclusions and Future Work

We have introduced a way in which argumentation can
be used in the definition of actions and the combination
of those actions to form plans. Our aim was not cen-
tered on improving current planning implementations.
We have explored how this new approach can be inte-
grated with a simple planning algorithm.

As we have shown above, the use of defeasible ar-
gumentation in progression planning is almost straight-
forward. However, regression planning becomes rapidly
more difficult and deserves more attention. The combi-
nation of searching backwards for appropriate actions
with the task of keeping warrants for literals could pro-
duce unexpected results. Several examples that illus-
trate these problems were introduced, and solutions
were proposed.

Future work includes the analysis of other methods
and planning systems, and the implementation of a
planner based in the framework described.

References

G. Brewka. Dynamic argument systems: A for-
mal model of argumentation processes based on sit-
uation calculus. Journal of Logic and Computation,
11(2):257-282, 2001.

Marcela Capobianco. Argumentacion rebatible en en-
tornos dindmicos. PhD thesis, Computer Science and
Engineering Department, Universidad Nacional del
Sur, Bahia Blanca, Argentina, June 2003.

M. Capobianco, C. I. Chesnevar, and G. R. Simari. An
argumentative formalism for implementing rational
agents. In Proceedings del 2do Workshop en Agentes

y Sistemas Inteligentes (WASI), Tmo Congreso Ar-
gentino de Ciencias de la Computacion (CACIC),
pages 1051-1062, El Calafate, Santa Cruz, October
2001. Universidad Nacional de la Patagonia Austral.

J. Doyle. A Truth Maintenance System. Artificial
Intelligence, 12(3):231-272, November 1979.

John Fox and Simon Parsons. On using arguments for
reasoning about action and values. In Proceedings of
the AAAI Spring Symposium on Qualitative. Stanford,
1997.

Alejandro J. Garcia and Guillermo R. Simari. Defea-
sible logic programming: An argumentative approach.
Theory and Practice of Logic Programming, 4(1):95—
138, 2004.

A. Kakas, R. Miller, and F. Toni. An argumentation
framework for reasoning about actions and changes.
In Michael Gelfond, Nicola Leone, and Gerald Pfeifer,
editors, Proceedings of the 5th International Confer-
ence on Logic Programming and Nonmonotonic Rea-
soning (LPNMR-99), volume 1730 of LNAI pages 78—
91, Berlin, December 2-4 1999. Springer.

Antonis Kakas, Rob Miller, and Francesca
Toni. Planning with incomplete information. In
Mirek Truszczynski Chitta Baral, editor, Proceedings
of the 8th International Workshop on Non-Monotonic
Reasoning, Breckenridge, Colorado, April 2000.

Vladimir Lifschitz. Foundations of logic programs. In
G. Brewka, editor, Principles of Knowledge Represen-
tation, pages 69-128. CSLI Publications & FOLLI,
1996.

Pablo Noriega and Carles Sierra. Towards layered di-
alogical agents. In Proc. of the ECAI’96 Workshop on
Agents, Theories, Architectures and Languages (Bu-
dapest), pages 69-81, 1996.

John Pollock. Cognitive Carpentry: A Blueprint for
How to Build a Person. MIT Press, 1995.

John Pollock. Implementing defeasible reasoning.
Workshop on Computational Dialectics, 1996.

Guillermo R. Simari and Alejandro J. Garcia. Actions
and arguments: Preliminaries and examples. In Pro-
ceedings of the VII Congreso Argentino en Ciencias
de la Computacion, pages 273-283. Universidad Na-
cional de la Patagonia San Juan Bosco, El Calafate,
Argentina, October 2001.

Murray Shanahan. An abductive event calculus plan-
ner. Journal of Logic Programming, 44(1-3):207-240,
2000.

Guillermo R. Simari and Ronald P. Loui. A Mathe-
matical Treatment of Defeasible Reasoning and its Im-
plementation. Artificial Intelligence, 53:125-157, 1992.
Jordi Sabater, Carles Sierra, Simon Parsons, and Nick
Jennings. Engineering executable agents using multi-
context systems. Journal of Logic and Computation

(In-press), 2001.
Bart Verheij. Rules, Reasons, Arguments: formal

studies of argumentation and defeat. PhD thesis,
Maastricht University, Holland, December 1996.

Gerard A.W. Vreeswijk. Abstract argumentation sys-
tems. Artificial Intelligence, 90:225-279, 1997.

Daniel S. Weld. Recent advances in Al planning. ATl
Magazine, 20(2):93-123, 1999.

