
Semantic Considerations on Rejection

Ján Šefránek
Institute of Informatics, Comenius University, Bratislava, Slovakia,

e-mail: sefranek@fmph.uniba.sk

Abstract

Rejection of some beliefs when a more faithful informa-
tion is acquired belongs among fundamental features of
human (nonmonotonic) reasoning. However, this fea-
ture has been noticed usually more as a side effect than
as a subject of value for a theoretical investigation.

Recently rejections of rules attracted an attention of
researchers in logic program updates. An important
insight has been obtained thanks to dynamic logic pro-
gramming paradigm: set of models is not a sufficient
conceptual basis for a semantic characterization of logic
program updates. The main idea can be characterized
by the causal rejection principle: if there is a conflict
between rules, then more preferred rules override those
less preferred.

We argue that it is not sufficient to be focused only
on the conflicts between rules. Meaning of a nonmono-
tonic knowledge base is determined both by rules and
by nonmonotonic assumptions. Therefore, also con-
flicts between assumptions (beliefs) are important. We
are turning back to a more semantic approach. How-
ever, it is needed to include also dependencies between
interpretations into the semantics.

A Kripkean semantics of logic program updates is pre-
sented in this paper. The semantics enables to record
the dependencies between interpretations. An update
operation on Kripke structures is defined. The main
idea of the update operation consists in rejecting some
dependencies between interpretations. The approach is
evaluated with respect to well known troubles with ir-
relevant updates in the approaches based on the causal
rejection principle.

Introduction
Background Dynamic aspects of knowledge repre-
sentations didn’t attract an adequate attention of logic
programming community for a long time. Recently
the problem has been tackled by a variety of the ap-
proaches, see (Alferes and Pereira 1996; Alferes et
al. 2000; Eiter et al. 2002; Leite and Pereira 1997;
Leite and Pereira 1998; Leite, Alferes and Pereira
2001; Marek and Truszczynski 1998; Przymusinski and
Turner 1997) and others.

An important turn in understanding logic program
updates has been based on the observation that “not all

the information borne by a logic program is contained
within its set of models” (Leite and Pereira 1997). The
research in the field shifted its focus from interpreta-
tion updates to program updates. The main atten-
tion is devoted to the conflicts between rules. They
are resolved according to the causal rejection principle,
used in most important approaches to logic program
updates, see (Alferes et al. 2000; Eiter et al. 2002;
Leite 2003) and others: if there is a conflict between
rules, then more preferred rules override those less pre-
ferred.

Problem Causal rejection principle does not apply
to all cases relevant for updates of logic program (and
nonmonotonic knowledge bases). There are some con-
flicts between programs that are not identifiable on the
level of conflicts between rules.

On the other hand, the causal rejection principle ap-
plies with respect to some irrelevant cases and produces
undesirable consequences.

Proposed solution Meaning of a nonmonotonic
knowledge base is determined both by rules and by non-
monotonic assumptions. Dependencies on assumptions
are relevant from the semantical point of view and con-
flicts between those dependencies are relevant for up-
dates. We need a semantics which is sensitive both to
conflicts between rules and to conflicts between belief
sets. Our main goal is a more general semantic charac-
terization of rejections.

The semantics presented in this paper is focused on
rejection of some dependencies between belief sets. A
more rich semantic structure is needed, in order to reach
the goal described above. Our semantic characteriza-
tion of logic programs records dependencies between
belief sets in terms of the accessibility relation in a sort
of Kripke structure. We believe that it is an appro-
priate structure, which is able to identify more of the
information borne by a logic program than models do.

Contributions and structure of the paper Main
contributions of the approach are as follows:

• Our semantics is able to distinguish conflicts not
identifiable on the level of conflicts between rules.

• The well known problems with tautological and cyclic
(and more generally, irrelevant) updates are removed
in our semantics.

The language of generalized extended programs
(GELP) is used in this paper. A symmetric treatment
of assumptions is enabled thanks to the decision to use
GELP: if A is an atom it can be assumed both A and
¬A. Let B be a belief/assumption operator. We can
denote assumptions (of literals) by BA (in terms of de-
fault negation as not ¬A), or B¬A (not A). Moreover,
this language is suitable for a comparison of various
approaches to logic program updates, see (Leite 2003;
Homola 2004).

A recap of basic notions connected to semantics based
on rejection of rules is presented and some problems
inherent in that approach are illustrated by examples.

Next, Kripke structures associated with a program
are presented. Then updates on Kripke structures are
motivated and defined. Finally, properties of the up-
dates on Kripke structures are described and our ap-
proach is evaluated.

Generalized extended logic programs

Let a set of propositional symbols (atoms) A be given.
An objective literal is an atom (a positive literal) or
an atom preceded by the explicit negation ¬A (a neg-
ative literal). The set of all objective literals is de-
noted by Obj . A subjective literal is an objective literal
L preceded by the default negation: not L. The set
{not L : L ∈ Obj} will be denoted by D (defaults).
The set of literals is defined by Lit = Obj ∪ D.

A convention as follows is used: if literal L is of the
form ¬A (not L′), where A ∈ A (L′ ∈ Obj) then ¬L =
A (not L = L′). For each literal L, the pairs L and ¬L
(L and not L) are called conflicting literals. A set of
literals is called consistent, if it does not contain a pair
of conflicting literals.

A rule is a formula r of the form L ← L1, . . . , Lk,
where k ≥ 0, and L, Li are literals (for each i). We
will denote L also by head(r) and the set of liter-
als {L1, . . . , Lk} by body(r). body(r) can be split into
two parts, body+(r) ⊆ Obj and body−(r) ⊆ D, where
body(r) = body+(r) ∪ body−(r). The set of all rules
forms the language L. A subset of L is called a gener-
alized extended logic program (program hereafter).

A partial interpretation of the language L is a consis-
tent set of literals. The set of all partial interpretations
of the language L is denoted by IntL.

A total interpretation is a partial interpretation I
such that for each L ∈ Obj holds L ∈ I or not L ∈ I.
An important special case is as follows: both not A ∈ I
and not ¬A ∈ I, where A ∈ A and I is a total interpre-
tation.

The satisfaction relation and the notion of model are
defined as usual. Notice that (propositional generalized

extended logic) programs may be treated as Horn the-
ories: each literal of the form ¬A, where A ∈ A, or of
the form not L, where L ∈ Obj , may be considered as
a new propositional symbol. The least model of a Horn
theory H is denoted by least(H).

The definition of answer sets follows the idea of
(Alferes et al. 2000). It respects the original definitions
of (Gelfond and Lifschitz 1988; Gelfond and Lifschitz
1990), see Theorem 3. Answer sets do not contain sub-
jective literals usually. However, in this paper answer
sets contain also subjective literals. Default negations
in heads of rules make such representation more appro-
priate.

Definition 1 (Answer set) Let P be a program and
S be a total interpretation. Let S− = S ∩ D.

S is an answer set of P iff S = least(P ∪ S−). 2

This, rather non-standard definition of answer sets, cor-
responds in a clear sense to the classical definition:

Definition 2 Let P be a program, r ∈ P be a rule and
S be a total interpretation, r+ be the rule of the form
head(r)← body+(r).

supptd(P, S) = {L ∈ S : (∃r ∈ P) S |= body(r),
L = head(r)}

GL(P, S) = {r+ : r ∈ P, body−(r) ⊆ S−}.2

Theorem 3 Let P be a program, S an interpretation,
S \ supptd(P, S) ⊆ D.

Then least(GL(P, S)) = supptd(P, S) iff S is an an-
swer set of P . 2

Causal rejection principle

In order to do the paper self-contained we recap the
basic notions connected to the causal rejection principle
and to semantics based on rejection of rules (the last
term is borrowed from (Homola 2004)). All concepts
are defined for the case of multidimensional dynamic
logic programs.

Definition 4 ((Leite, Alferes and Pereira 2001))
A multidimensional dynamic logic program (also mul-
tiprogram hereafter) is a pair (P, G), where G = (V,E)
is an acyclic digraph, |V | ≥ 2, and P = {Pi : i ∈ V } is
a set of (generalized extended logic) programs.

We denote by i ≺ j that there is a path from i to j
and i � j means that i ≺ j or i = j. If i ≺ j, we say
that Pj is more preferred than Pi. 2

The class of multiprograms is denoted hereafter by
MDyLoP .

Definition 5 A semantics of multiprograms is a func-
tion SEM : MDyLoP −→ 2IntL .

Let Π ∈ MDyLoP . It is said that SEM is based on
rejection of rules iff every I ∈ SEM (Π) satisfies a con-
dition of the form

I = least((τ(Π) \ τ(RejR(Π, I))) ∪Assumpt(Π, I)),

where τ(Π) is the multiset of all rules from all programs
from Π, τ(RejR(Π, I)) is a multiset of all rejected rules
from Π w.r.t. I, Assumpt(Π, I) is the set of all as-
sumptions accepted by the semantics (with respect to
the program Π and interpretation I) and the difference
of multisets τ(S1) \ τ(S2) contains no occurrence of a
member of τ(S2). 2

There are some strategies how to implement
RejR(Π, I)) and Assumpt(Π, I). We present the
strategy of (Leite, Alferes and Pereira 2001), see the
definitions of sets rejected(Π, I) and defaults(Π, I):

Definition 6 It is said that two rules, r and r′, are
conflicting, if their heads are conflicting literals (nota-
tion: r 1 r′).

rejected(Π, I) = τ({r ∈ Pi : (∃r′ ∈ Pj)
i ≺ j ∧ r 1 r′ ∧M |= body(r′)})

defaults(Π, I) = {not L : (¬∃r ∈ Π) L ∈ Obj ∧
head(r) = L ∧ I |= body(r)}.2

The semantics of multiprograms based on rejec-
tion of rules implemented using rejected(Π, I) and
defaults(Π, I) is dubbed here dynamic answer set se-
mantics.

Remark 7 Another strategy of accepting assumptions
is that of answer set semantics: if I is an interpretation
then assumptions of I are in the set D∩ I. A semantics
based on this strategy is called justified update.

A rule r ∈ Pi is rejected by a rule r′ ∈ Pj only if
r′ itself is not rejected according to the strategy of rule
rejection proposed by (Eiter et al. 2002). The semantics
which respect this strategy are called backward dynamic
answer set semantics and backward justified update in
(Šefránek 2003) and also in (Homola 2004).

The semantics based on the refined extension prin-
ciple (REP) (Alferes et al. 2004) modifies the Defini-
tion 6 of rejected(Π, I) as follows: instead of i ≺ j it
is required i � j. It is possible to distinguish refined
dynamic answer sets semantics and refined backward
dynamic answer set semantics (Homola 2004).

For a comparison of various semantics see (Eiter et
al. 2002; Leite 2003; Homola 2004).

Example 8 (Cyclic updates)

P = {a← U = {a← b

not a←} b← a}
Let multiprogram Π consists of two programs
P,U . Then rejected(Π, {a, b}) = {not a ←},
defaults(Π, {a, b}) = ∅ and {a, b} is the dynamic an-
swer set of Π. It has to be mentioned that the problem

illustrated by this example is removed by the semantics
based on REP (Alferes et al. 2004). 2

However, the problem of tautological and cyclic updates
is not solved by REP for (general) multiprograms.

Example 9 ((Šǐska 2004)) Let a multiprogram Π is
given by a set of programs {Pi, Pj , Pk, Pl}, and by par-
tial ordering Pi ≺ Pj ≺ Pk and Pl ≺ Pk, i.e. Pk is the
most dominant module and there are some incompara-
ble modules.

Let Pk = {b ←}, Pl = {not a ←}, Pj = {not a ←
not a}, Pi = {a←}.

Rule a ← is rejected with respect to interpretation
S = {b,not a} because of the rule not a ← not a.
S is the dynamic answer set. Unfortunately, it is not
known how to extend the semantics based on REP to
the case of general multiprograms and it seems that it
is impossible (Šǐska 2004). 2

There are some other examples of problematic be-
haviour of semantics based on rejection of rules.

Example 10 ((Eiter et al. 2002)) Let Π consists of
P,U , where P ≺ U .

P = {a← b U = {not b← not a}
b←}

If S = {not b,not a} then rejected(Π, S) = {b ←},
defaults(Π, S) = {not a} and S is a dynamic answer
set of P ∪ U .

If we apply (intuitively) the principle of inertia, we
have no reason to reject the fact from P . Notice that
rejected rules and defaults are based on a choice of an
interpretation. It seems that some problems with se-
mantics based on rejection of rules are caused by that
(too free) choice. Anyway, a step from intuitions and
examples to a more fundamental theory (theories) is
needed. For an attempt to give such a theory see
(Šefránek 2004). 2

Notice that the proposal based on the REP (Alferes
et al. 2004) does not solve the problem of irrelevant
updates of the type presented in Example 10. The pro-
posal is focused only on the inconsistent programs.

Later, in Example 21, we present a conflict between
programs that is even not identifiable on the level of
conflicts between rules.

In order to summarize this Section: We have seen
that a semantics based on rejection of rules leads to
some problems. We propose to turn to a more seman-
tic approach. Our semantics is focused not only on the
conflicts between rules but also on conflicts between as-
sumptions. Hence, semantics should be sensitive both
to rejection of rules and to rejection of assumptions.
We believe that it is necessary to record dependencies
between interpretations (an between literals) in the se-
mantics in order to be able understand the topic of re-
jections. A sort of Kripkean semantics (aiming at a rep-
resentation of dependencies between interpretations) is
presented in this paper.

In general, rejections play a fundamental role in
human (nonmonotonic) reasoning. Therefore, under-
standing rejections can play an important role in non-
monotonic reasoning theory.

Kripke structure associated with a
program

In this Section a semantic treatment of dependencies
between sets of literals is presented. The dependencies
are encoded in (rather nonstandard) Kripke structures.
First an example.

Example 11 Let P be
{a ← not b

not ¬b ← ¬a}.
Dependencies between interpretations of P can be
recorded in a graph. Nodes of the graph are interpreta-
tions. Some examples of edges: If we believe in {not b}
and in P then we have to accept also {not b, a}. Hence,
the edge ({not b}, {not b, a}) should be included in the
graph.

Observe that it is possible accept also
{not b, a,not ¬a}. If we accept a then we should
accept also not ¬a in order to be consistent.

On the other hand, {not ¬b,¬a} is accessible
from {¬a}, but it is not reasonable to make also
{not ¬b, b,¬a} accessible from {¬a} – b is not forced
by not ¬b.

Finally, consider interpretation {not b,¬a}. Incon-
sistent set of literals {a,not ¬a,not b,¬a} should be
accessible from it.

Each edge is generated - in a sense - by a rule. It is
useful to label the edge by the head of the rule. Labels
are important for the update operation. 2

We will call the graphs illustrated by Example 11
Kripke structures. A more detailed motivation is post-
poned after the definition 12. Here only the basic intu-
ition. If our knowledge of the world is represented by
an interpretation w then (the meaning of) a program P
may be viewed as a set of transitions to other worlds,
dependent, in a sense, on w. If body(r) is satisfied in w
for some r ∈ P then the world w ∪ {head(r)} is depen-
dent on w. Example 11 motivates why and when it is
reasonable to consider w ∪ {head(r),not ¬head(r)} to
be dependent on w. The relation of dependency should
be transitive, asymmetric and irreflexive.

Definition 12 (Kripke structure) Let P be a pro-
gram. A Kripke structure KP associated with P is a
triple (W,ρ, label), where:
• W = IntL ∪ {w⊥}, W is called the set of possible

worlds, w⊥ is the representative of the set of all in-
consistent sets of literals,

• ρ is a binary relation on W ×W , it is called the ac-
cessibility relation and it contains the set of all pairs
(w,w′) such that w 6= w′, ∃r ∈ P (w |= body(r)) and
w′ satisfies exactly one of the conditions:

1. w′ = w ∪ {head(r),not ¬head(r)} iff head(r) ∈
Obj ,

2. w′ = w ∪ {head(r)} iff head(r) ∈ D,
3. w′ = w⊥ iff not head(r) ∈ w ∨ ¬head(r) ∈ w,
• label ⊆ ρ × Lit is a relation such that

((w,w′), head(r)) ∈ label , whenever (w,w′) ∈ ρ is
generated by r; an edge (w,w′) ∈ ρ is generated by r
if w |= body(r) and
– head(r) ∈ w′ \ w,
– or w′ = w⊥ and either not head(r) ∈ w or
¬head(r) ∈ w. 2

Example 13 Let w be {a, b} and P contains rules
¬a ← b and ¬b ← a. Then ((w,w⊥),¬a) ∈ label ,
((w,w⊥),¬b) ∈ label . 2

KP may be viewed as a derivation graph. But we
emphasize that it is a semantic structure. First, KP

records many irrelevant “derivations”. Assume that a
program P contains a rule b← a, and a is not derivable
from P . Consider the world w = {a, c}. The meaning of
P allows a transition from w to w1 = {a, c, b,not ¬b}.
More importantly, the transition (the accessibility re-
lation) carries (encodes) a semantic information about
dependencies between possible worlds. A semantic con-
cept true because of (introduced in (Šefránek 2004))
may be based on edges (in Kripke structures). The deep
Kripke’s insight into the dependencies between knowl-
edge states provides a very flexible, multiform and use-
ful tool for doing semantics.

Definition 14 Let KP = (W,ρ, label) be a Kripke
structure associated with a program P . If e = (u, v) ∈
ρ, it is said that e is a ρ-edge and u (v) is called the
source (the target) of e.

Let w0 ∈W . It is said that 〈w0〉 is a trivial sequence.
A ρ-path is a trivial sequence or a sequence σ of ρ-

edges (w0, w1), (w1, w2), . . . , (wn−1, wn), where n ≥ 1.
The path is denoted also by a shorthand of the form
〈w0, w1, . . . , wn〉.

Let σ = 〈w0, w1, . . . , wn〉, where n ≥ 0 be a ρ-path.
It is said that σ is rooted in w0 (also w0-rooted) and w0

is the root of σ. If there is no ρ-edge (wn, w) in KP ,
we say that σ is terminated in wn, and wn is called the
terminal of σ. 2

Dependencies between interpretations (and literals) are
encoded by paths.

We are now ready to state (in terms of nodes and
paths in KP) conditions of being an answer set of a
program P .

Definition 15 (Good worlds) Let σ be a ρ-path
〈w0, . . . , wn〉, n ≥ 0. We say that σ is correctly rooted,
if w0 ⊆ D.

A correctly rooted ρ-path σ terminated in a total
interpretation w is called a distinguished path and w is
called a good world. 2

Remark 16 It is possible to change the definition of
accessibility relation. Instead of

w′ = w ∪ {head(r),not ¬head(r)}

can be used w′ = w ∪ {head(r)}.
Let r, with head(r) ∈ Obj , generates an edge on a

distinguished path from w0 to wn according to Defini-
tion 12. Obviously, there is a distinguished path from
w0 ∪ {not ¬head(r)} to wn according to the modified
definition.

However, we decided to use heuristically more useful
definition. 2

Theorem 17 Let P be a program. Then wn is a good
world in KP iff it is an answer set of P . 2

Remark 18 If D is a terminal in KP , it is the answer
set of P . Even the trivial sequence 〈D〉 is correctly
rooted and terminated in D. 2

Updates on Kripke structures
We now define the elementary case of an update oper-
ation on two Kripke structures.

Suppose in this Section two programs, P and U , and
the Kripke structures, KP = (W,ρP , labelP) and KU =
(W,ρU , labelU), associated with P and U , respectively.
U (the updating program) is more preferred than P
(the original program). The multiprogram defined by
P ≺ U is denoted here by Π.

We intend to define an operation ⊕ on Kripke struc-
tures. The resulting Kripke structure KU⊕KP = KU⊕P

should be based on KU while a reasonable part of KP

is preserved. The set of nodes W remains unchanged,
but some ρP -edges should be rejected.

Example 19 Let P be {a ← b} and U be {¬a ← b}.
Then KP contains an edge e1 = ({b}, {b, a,not ¬a})
and (e1, a) ∈ labelP . Similarly, KU contains an edge
e2 = ({b}, {b,¬a,not a}) and (e2,¬a) ∈ labelU .

e2 attacks e1, in a sense. 2

Definition 20 (Attacked edges) Let e1 = (w,w1) ∈
ρP , e2 = (w,w2) ∈ ρU .

We say that e1 is attacked by e2 iff ((w,w1), L1) ∈
labelP , ((w,w2), L2) ∈ labelU and L1, L2 are conflicting
literals. 2

Attacked edges correspond to conflicts between rules,
see Proposition 41.

However, there are more complicated conflicts ob-
servable on pairs of Kripke structures. A series of ex-
amples below motivates the need for a finer analysis.

Example 21

P = {a← c} U = {b← not a

c← b}

There is no conflict between rules of both programs. No
rule can be rejected and the meaning of P ∪ U cannot
be updated according to the causal rejection principle.

However, there is a sort of conflict between the pro-
grams: The literal a in the less preferred program P
depends on the literal c. On the other hand, the lit-
eral c depends on the default assumption not a in the
more preferred program U . This dependency of a on
not a can be resolved by rejecting the less preferred
dependency.

The intuition described above can be expressed
(formalized) in terms of our Kripkean semantics.
There is a ρU -path from {not a} to w =
{not a, b,not ¬b, c,not ¬c} and there is a ρP -edge
e = (w,w⊥) labeled by a. We propose to reject e from
KU⊕P . 2

However, a carefree rejection of a ρP -edge (w,w⊥)
because of a ρU -path 〈w0, . . . , w〉 could cause some com-
plications:

Example 22 Consider Example 10.

P = {a← b U = {not b← not a}
b←}

e1 = ({not a}, {not a,not b}) ∈ ρU and e2 =
({not a,not b}, w⊥) ∈ ρP , (e2, a) ∈ labelP .

Observe that there is a conflict between the nonmono-
tonic assumption not a in the source of the ρU -edge and
the literal a dependent on the empty interpretation in
P .

We prefer facts over assumptions. In other words:
an interesting information can be expressed by the rule
of U ; however the information cannot be used, if our
knowledge is represented by P ∪ U .

We propose to insert the edge e2 into KU⊕P . It can
be said that overriding of e2 by e1 is blocked by the
path σ = 〈∅, {b,not ¬b}, {b,not ¬b, a,not ¬a}〉.

The path σ falsifies e1 in the sense as follows:
• it is rooted in ∅,
• no edge of σ is attacked by a ρU -edge,
• the terminal of σ contains a conflicting literal w.r.t.

a literal from the source of e1,
• finally, there is no ρU -edge (∅, {not a}). 2

Example 23 Let P be as in Example 10. U be
not b ← not c. Similarly, we do not propose to re-
ject the ρP -edge ({not b,not c}, w⊥). The target of the
ρU -edge ({not c}, {not b,not c}) is incompatible with
the world {b,not ¬b}, which is supported in KP by the
path σ = 〈∅, {b,not ¬b}〉 rooted in the empty interpre-
tation. While the dependency of not b on not c may
be of interest, the information contained in P ∪U does
not allow to use this information. It can be said again
that overriding is blocked. 2

Some trivial paths are important from the updates
point of view.

Example 24 Let P be {a← not b} and U be {b← a}.
The edge ({not b,not a}, w⊥) ∈ ρP could

be considered as overridden by the trivial ρU -path
〈{not b,not a}〉. In other, more intuitive, terms: the
stable model {not b,not a} of the more preferred pro-
gram U should override an (unsupported) dependency
of a on not b in P .

Observe that b depends on not b in P ∪ U . This
dependency should be overridden. 2

The following definitions resulted from our intuitive
analysis.

Definition 25 (Supported sets and literals) Let
P be a program. A consistent set of literals w is
supported in KP iff there is a ρP -path σ from ∅ to w,
w 6= w⊥. σ is called a path supporting w.

A literal L is supported in KP iff there is a set of liter-
als w supported in KP and L ∈ w. A path supporting
w is called also the path supporting L. 2

Definition 26 Let L1, L2 be conflicting literals.
It is said that L1 is falsified by L2 iff L2 is supported

and L1 is not supported.
It is said that L1 is carefully falsified by L2 iff

• L2 is supported in KP ,
• there is no edge attacked by a ρU -edge in a ρP -path

σ supporting L2,
• and L1 is not supported in KU . 2

Definition 27 (Blocking) Let L1, L2 be conflicting
literals, L1 ∈ w1. Let D be a terminal in KU .

A ρU -edge (w0, w1) is blocked iff L1 is carefully falsi-
fied by L2. A trivial path 〈D〉 is blocked iff L1 ∈ D and
L1 is carefully falsified by L2. 2

Remark 28 Notice that Definition 27 is sufficiently
general: if a literal L1 from w0 is conflicting with a
literal L2 supported in KP (as in Example 10) then
also L1 ∈ w1. 2

Definition 29 (Overriding) A ρU -edge e = (w0, w1)
overrides a ρP -edge (w1, w⊥) if e is not blocked.

Let D be a terminal in KU . The trivial path 〈D〉
overrides a ρP -edge (D, w⊥) if it is not blocked. 2

Definition 30 (Cancelled labels) Assume that
e1 = (w0, w1) ∈ ρU overrides e2 = (w1, w⊥) ∈ ρP .
Let L1, L2 be conflicting literals, (e1, L1) ∈ labelU ,
(e2, L2) ∈ labelP . It is said that (e2, L2) is canceled by
(e1, L1). The set of all canceled labels is denoted by
Can.

Definition 31 (Rejected edges) Consider KP =
(W,ρP , labelP) and KU = (W,ρU , labelU). We say that
e ∈ ρP is rejected, if e 6∈ ρU and
• e is attacked by some e′ ∈ ρU ,

• or e is of the form (w,w⊥), it is overridden by a ρU -
edge e′ = (w0, w) and each (e, L) ∈ labelP is canceled

• or e is of the form (D, w⊥) and it is overridden by D.

The set of all rejected edges from ρP is denoted by
RejectedρU (ρP). 2

Definition 32 (Update on Kripke structures)

KU ⊕KP = KU⊕P = (W,ρU⊕P , labelU⊕P)

ρU⊕P = ρU ∪ (ρP \ (RejectedρU (ρP))

and labelU⊕P is labelU ∪ (labelP \ Canc) restricted to
ρU⊕P . 2

General case
Consider the set of all Kripke structures K = {Ki :
i ∈ V } associated to all programs from a multiprogram
(P, G), G = (V,E). We will use a notation as fol-
lows: Ki = (W,ρi, label i). The preference relation on
programs is extended also to Kripke structures, i.e. if
i ≺ j then Kj is more preferred than Ki.

Our goal is to define an updated Kripke structure
⊕K.(We could, alternatively, define an updated Kripke
structure with respect to a state s ∈ V . However, the
essence of the definition remains unchanged.) The main
idea of this update is the same as for the case of two
Kripke structures. It is needed to handle only some
technical details.

Let i1 ≺ i2 ≺ i3, e1 ∈ ρi1 , e2 ∈ ρi2 , e1 ∈ ρi3 . Sup-
pose that e2 attacks e1 according to Definition 20. Of
course, also e1 attacks e2 according to the same Defi-
nition. Therefore, we have to identify maximally pre-
ferred Kripke structures in which occurs an edge, in
order to define attacked (and overridden) edges for the
multidimensional case. Notice that there can be more
maximal i ∈ V such that e1 ∈ ρi. Similarly for e2.

Definition 33 (Attacked edges) Let L1, L2 be con-
flicting literals. Consider two edges e1, e2. It is said
that e1 is attacked by e2 iff for each j such that e1 ∈ ρj

and (e1, L1) ∈ label j there is k such that j ≺ k, e2 ∈ ρk

and (e2, L2) ∈ labelk.
The set of all attacked edges in

⋃
i∈V ρi is denoted

by Atck . 2

We have to be focused on paths built by edges from
different Kripke structures in order to define blocking
and overriding in an appropriate way. Therefore, we
will speak about ∆-paths, where ∆ is a set of vertices
from V . A ρ∆-path is a sequence σ = 〈x0, . . . , xn〉 such
that for each e = (xi, xi+1) there is k ∈ ∆ such that
e ∈ ρk.

We now extend the definition of supported sets and
literals to the case of ρ∆-paths.

Definition 34 (Supported sets and literals) Let
∆ ⊆ V . Let K∆ = {Kj : j ∈ ∆}.

A consistent set of literals w is supported in K∆ iff
there is a ρ∆-path σ from ∅ to w, w 6= w⊥. σ is called
a path supporting w.

A literal L is supported in K∆ iff there is a set of liter-
als w supported in K∆ and L ∈ w. A path supporting
w is called also the path supporting L. 2

Observe that K∆ is a set of Kripke structures. We don’t
need to modify the definition of falsification.

A comment concerning a modified definition of care-
ful falsification: A literal supported by a path from a
less preferred Kripke structure can falsify an unsup-
ported assumption from a more preferred Kripke struc-
ture. This idea is generalized to sets of Kripke struc-
tures:

Definition 35 Let ∆ ⊆ V , Γ ⊆ V , (∀i ∈ ∆) (∀j ∈
Γ) i ≺ j. It is said that L1 is carefully falsified by L2 iff
• L2 is supported in K∆,
• there is a ρ∆-path σ supporting L2 with no edge at-

tacked by a ρΓ-edge,
• and L1 is not supported in KΓ. 2

Definition 36 (Blocking) Let L1, L2 be conflicting
literals, L1 ∈ w1. Let D be a terminal in KPj , j ∈ V .

An edge (w0, w1) ∈ ρj \Atck is blocked iff L1 is care-
fully falsified by L2. A trivial path 〈D〉 is blocked iff
L1 ∈ D and L1 is carefully falsified by L2. 2

Definition 37 (Overriding) Let i ≺ j. A ρj-edge
e = (w0, w1) overrides a ρi-edge (w1, w⊥) if e is not
blocked.

Let D be a terminal in Kj . If the trivial path 〈D〉 is
not blocked then it overrides the ρi-edge (D, w⊥). 2

Definition 38 (Cancelled labels) Assume that
e1 = (w0, w1) ∈ ρj overrides e2 = (w1, w⊥) ∈ ρi.
Let L1, L2 be conflicting literals, (e1, L1) ∈ label j ,
(e2, L2) ∈ label i. It is said that (e2, L2) is canceled by
(e1, L1). The set of all canceled labels is denoted by
Can.

Definition 39 (Rejected edges) Consider Ki =
(W,ρi, label i) and Kj = (W,ρj , label j). We say that
e ∈ ρi is rejected, if e 6∈ ρΓ, where Γ) = {k : i ≺ k} and
• e is attacked by an edge e′ ∈ ρΓ,
• or e is of the form (w,w⊥), it is overridden by a ρΓ-

edge e′ = (w0, w) and each (e, L) ∈ label i is canceled,
• or e is of the form (D, w⊥), it is overridden by the

trivial path 〈D〉 and 〈D〉 is trivial in each Kk ∈ KΓ.
We denote the set of rejected edges by Rej . 2

Definition 40 ⊕K is called updated Kripke structure,
if

ρ⊕ = (
⋃
i∈v

ρi) \ Rej

⊕K = (W,ρ⊕, label⊕),

where label⊕ is (
⋃

i∈V label i) \Can restricted to ρ⊕. 2

Let ⊕K be an updated Kripke structure. Distinguished
paths and good worlds in ⊕K are defined according to
Definition 15 and they play an important role: they
represent the meaning of the updated Kripke structure.

Notice that it is possible to construct a program
P such that the set of all answer sets of P coincide
with the set of all good worlds in ⊕K: Let w be a
good world in ⊕K. Consider a distinguished path σ =
〈w0, w1, . . . , wn〉, where wn = w. Let ((wi, wi+1), L) ∈
label⊕. We add a rule L ← wi to P for each edge on
one distinguished path for each good world.

Properties
This Section contains a brief summary of the results.
First, the relation of rules rejection to edges rejection is
discussed. Second, it is shown that the critical cases for
updates based on causal rejection principle are solved
by updates on Kripke structures. Finally, an evalua-
tion of the updates on Kripke structures from the de-
pendency theory of (Šefránek 2004) point of view is
sketched.

The following proposition shows that the causal rule
rejection principle is satisfied in updated Kripke struc-
tures in the following sense: if a rule r ∈ P generates
an attacked edge then the rule is rejected.

Proposition 41 Let e1 = (w0, w1) ∈ Atck, let i ∈ V

be maximal vertex such that (e1, L1) ∈ label i.
Then there is a rule r1 of the form L1 ← Body in Pi

such that r1 ∈ rejected(Π, w0). 2

Proof: There is e2 = (w0, w2) ∈ ρj , i ≺ j, (e2, L2) ∈
label j , and L1, L2 are conflicting literals. Hence, (∃r2 ∈
Pj) w0 |= body(r2), head(r2) = L2.

Remark 42 The converse of the Proposition 41 does
not hold. If a rule is rejected, some edges generated
by this rule may be not attacked. Let Π consists of
P and U . P be {a ←}, U be {not a ← b} and w be
{a, b}. Then (∅, {a,not ¬a}) ∈ ρP is attacked by no
edge in ρU , but the rule a← belongs to rejected(Π, w)
(Mariničová 2001).

It is a further argument in favour of the claim that re-
jection defined within the frame of Kripkean semantics
is more sensitive (able to make a more fine distinguish-
ing) than the causal rejection principle.

Consider edges of the form (w,w⊥) ∈ ρP . There is
no general relation between rejecting such edges and
rejecting rules. The Example 21 shows a rejected edge
to inconsistency, but the rule generated that edge is not
rejected.

On the other hand, it is possible that an edge to in-
consistency, generated by a rejected rule, is not rejected
(because of blocking):

P = {not c← U = {c← b}
not b← not c}

The rule not c← is rejected in dynamic logic program-
ming paradigm w.r.t. each interpretation w such that
b ∈ w, but the edge ({b, c}, w⊥) ∈ ρP is not rejected –
the reason is that ({b}, {b, c}) is blocked. 2

We now present a series of examples in order to illus-
trate that updates on Kripke structures are immune to
some well known troubles connected to the approaches
based on the causal rejection principle.

Example 43 ((Leite 2003)) Let P be {a←} and U
be {not a← not a}. Tautologies do not generate edges.
Therefore the only good world in KU⊕P is {a}. 2

Observation 44 Tautologies do not exert influence on
updates of Kripke structures. 2

Example 45 (Cyclic updates) Consider Example
8.

P = {a← U = {a← b

not a←} b← a}

Edge ({a, b}, w⊥) ∈ ρP should not be rejected. Edge
({a}, {a, b}) ∈ ρU is blocked by the edge (∅, {not a}) ∈
ρP . There is no good world in KU⊕P . 2

The following proposition claims that cycles in a more
preferred program U do not allow rejection of supported
literals from a less preferred program P . A similar, but
rather complicated, proposition holds for the general
case.

Proposition 46 Let w be a set of mutually dependent
literals in KU , i.e. for all L1, L2 ∈ w there is a ρU -
path from a possible world w0 to w and L1 ∈ w0, L2 6∈
w0. Let w be not supported in KU and there is no edge
(w,w′) ∈ ρU .

If (w,w⊥) ∈ ρP , ((w,w⊥), L) ∈ labelP and L is sup-
ported in KP then (w,w⊥) 6∈ RejectedρU (ρP). 2

It means that Kripkean semantics of updates does not
allow to remove inconsistencies in less preferred pro-
grams on the basis of cycles in more preferred programs.

Tautological and cyclic updates do not represent
a problem for Kripkean semantics even for multipro-
grams.

Example 47 Consider Example 9: a multiprogram
{Pi, Pj , Pk, Pl} is given, where Pi ≺ Pj ≺ Pk and
Pl ≺ Pk.

Pk = {b←}, Pl = {not a←}, Pj = {not a← not a},
Pi = {a←}.

There is no good world in ⊕K. 2

Assumptions from more preferred programs do not
override facts from the less preferred programs:

Example 48 Consider Example 10. We have ob-
served a conflict between nonmonotonic assumption
not a in the root of a ρU -path and the literal a de-
pendent on the empty interpretation in P . Overrid-
ing of e2 = ({not a,not b}, w⊥) ∈ ρP by e1 =
({not a}, {not a,not b}) ∈ ρU has been blocked by
the ρP -path 〈∅, {b,not ¬b}, {b,not ¬b, a,not ¬a}〉. 2

The proposition 50 claims that Kripkean semantics is
immune to irrelevant (in a sense) updates.

Definition 49 Let Π be a multiprogram, S be an in-
terpretation. Let RejR(Π, S) be a set of rules rejected
according to a semantics based on rejection of rules. If
RejR(Π, S) 6= ∅ and there is L1 ∈ S carefully falsified
by some L2 then RejR(Π, S) is an irrelevant update. 2

An irrelevant update is caused by a rather free choice
of an interpretation in the frame of a semantics based
on rejection of rules. In Kripkean semantics each world
w containing a carefully falsified literal is the source of
an edge (w,w⊥).

Proposition 50 Let w be a good world in Kj. Let L1 ∈
w be carefully falsified by L2. Then w is not a good
world in ⊕K.

Example 21 illustrates the following observation.

Observation 51 Kripkean semantics of updates en-
ables to recognize some conflicts between programs that
are not identifiable on the level of conflicts between
rules. In such cases some edges are rejected, but there
is no reason to reject a rule. 2

Finally, we refer to (Šefránek 2004) where a dependency
theory is proposed, true because of is defined and pos-
tulates for solving conflicts between dependencies are
introduced. Our Kripkean semantics is an instance of
the dependency theory.

Theorem 52 The update operation on Kripke struc-
tures satisfies the postulates of (Šefránek 2004) for de-
pendencies rejection. 2

Conclusions
Summary of the results.

A significantly modified Kripkean semantics of logic
program updates is presented. The semantics enables
to solve the problem of cyclic and irrelevant updates.
It is able to identify the conflicts not distinguishable
by the causal rejection principle. The basic feature of
the semantics is an inclusion of dependencies between
beliefs and belief sets into the semantics.

Discussion.
A dependency theory introduced in (Šefránek 2004)

provides a more abstract background for evaluation of
our semantics. Some postulates for rational rejections
of dependencies are presented in the dependency theory.

We believe that a semantic investigation of rejec-
tions is of fundamental importance for understanding
of (nonmonotonic) reasoning. The dependency theory
represents an attempt to proceed from an analysis of
problematic examples to some fundamental principles
which enable to evaluate solutions of such examples.

On the other hand, different formalization can serve
for different goals. Some differences between formal-
izations may be explained by a clash of intuitions, but
various intuitions behind various formalizations may be
acceptable. Anyway, an explicit formulation of princi-
ples and postulates should help to clear the field.

Kripkean semantics of logic program updates.
The Kripkean semantics presented in this paper rep-

resents a continuation of our research. Nevertheless, it
is fundamentally modified. The most important new
features are based on the concept of blocking. That
feature enables to recognize conflicts not identifiable on
the level of conflicts between rules. A discussion of the
semantics from the viewpoint of the troubles connected
to the approaches based on the causal rejection princi-
ple is also a new one.

An attempt to give a Kripkean semantics for logic
program updates is given in (Šefránek 2000). The se-
mantics was defined only for two programs. More im-
portantly, features of blocking has been not understood
and no comparison to the approaches based on causal
rejection of rules has been given. A modified and gen-
eral semantics was proposed in (Mariničová 2001). The
notion of attacked edges was introduced. However, the
feature of blocking was not understood and conflicts be-
tween belief sets were not recognized. No attention has
been devoted to the troubles connected to semantics
based on rejection of rules.

Open problems, future plans.
A more detailed comparison of the presented ap-

proach to the approaches based on rejection of rules.
An elaboration of the dependency theory and investiga-
tion of the relation of the dependency theory to strong
(and uniform) equivalence of logic programs. An on-
going research is devoted to an implementation and to
investigation of computational aspects of the approach
(Galbavý, to appear). Our results in dependency theory
(Šefránek 2004) indicate possibilities of updated Kripke
structures pruning.

Acknowledgments: I would like to thank Martin
Homola, Martin Baláž, Jozef Šǐska and Tomáš Galbavý
for inspiration and for the remarks to earlier versions of
this paper. I am also thankful to anonymous referees for
valuable comments. This work was partially supported
by grant VEGA 1/0173/03.

References

Alferes, J.J., Pereira,L.M. Update-programs can update
programs. LNAI 11126, Springer 1996
Alferes, J.J., Leite, J.A., Pereira, L.M., Przy-
musinska, H., Przymusinski, T.C. Dynamic Up-
dates of Non-Monotonic Knowledge Bases. The Jour-

nal of Logic Programming 45 (1-3):43-70, Septem-
ber/October 2000
Alferes, J., Banti, F., Brogi, A., Leite, J. Semantics
for dynamic logic programming: a principled based ap-
proach. In V. Lifschitz and I. Niemel, (eds.), Procs. of
the 7th International Conference on Logic Program-
ming and Nonmonotonic Reasoning, Springer-Verlag,
LNAI, 2004.
Eiter, T., Fink, M., Sabbatini, G., Tompits, H. On
properties of update sequences based on causal rejec-
tion. Theory and Practice of Logic Programming 2(6),
711-767, 2002
Galbavý, T., Master Thesis, to be finished in 2005.
Gelfond, M., Lifschitz, V. The Stable Model Semantics
for Logic Programming. Proc. of 5th ICLP, MIT Press,
1988, 1070-1080
Gelfond, M., Lifschitz, V. Logic programs with classical
negation. Proc. of 7th ICLP, MIT Press, 1990, 579-597
Homola, M. On Relations of the Various Seman-
tic Approaches in Multidimensional Dynamic Logic
Programming. Mater Thesis, Comenius University,
Bratislava
Leite, J. Evolving Knowledge Bases. IOT Press, 2003.
Leite, J., Pereira, L. Generalizing Updates: from mod-
els to programs. In LNAI 1471, 1997
Leite, J., Pereira, L. Iterated Logic Programs Updates.
In Proc. of JICSLP98
Leite, J.A., Alferes, J.J., Pereira, L.M. Multi-
dimensional dynamic knowledge representation. In:
Eiter, T., Faber, W., Truszczynski (Eds.): Procs. of
the 6th International Conference on Logic Program-
ming and Nonmonotonic Reasoning, 2001, Springer,
365-378
Marek, W., Truszczynski, M. Revision Programming.
Theoretical Computer Science, 190 (1998), 241-277
Mariničová, E. Semantic Characterization of Dynamic
Logic Programming. Diploma Thesis, Comenius Uni-
versity, Bratislava, 2001
Przymusinski, T., Turner, H. Update by means of in-
ference rules. The Journal of Logic Programming, 30,
2, 125-143, 1997
Šefránek, J. A Kripkean Semantics for Dynamic Logic
Programing. Logic for Programming and Automated
Reasoning, Springer, 2000
Šefránek, J. Logic program updates: a seman-
tics of rejection. http://www.ii.fmph.uniba.sk/ se-
franek/online/rejects.ps
Šefránek, J. A dependency theory for logic program up-
dates, submitted
Šǐska, J. Refined Semantics for Multidimensional Dy-
namic Logic Programming. Master Thesis, Comenius
University, Bratislava, 2004.

