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Abstract

This paper presents a new form of abduction called
global abduction. Usual abduction in logic program-
ming is used to complement unknown information and
used in one derivation path in a search tree. We call
this kind of abduction local abduction. In this paper,
we propose another abduction which is used over paths
in a search tree for search control. As far as we know,
this is the first attempt to formalize a search control in
a logical way. We discuss applications of global abduc-
tion by using examples; a formalization of don’t-care
nondeterminism and a formalization of reuse of the
previously obtained result in a different search path.
Then, we give a correct proof procedure for global ab-
duction. The correctness is defined as “all’s well that
ends well” principle meaning that the results obtained
from a global abduction proof procedure are exactly
the same as the ones which are logically true from the
augmented program with the last set of abduced atoms.

Introduction
In the previous abductive logic programming frame-
work (Kakas and Mancarella, 1990; Denecker and De
Schreye, 1998), we use abduction to complement un-
known information when the derivation of a goal needs
such hypotheses. However, these hypotheses are valid
only in the derivation path to achieve the goal and there
is no effect to the other search path. We call this type
of abduction local abduction.

In this paper, we propose another type of abduction
which can be accessed from any search path and used
to control the search. We sometimes want to pass in-
formation which is obtained in one derivation path to
another path for search control. For example, to ex-
press don’t care nondeterminism where we commit only
one derivation, we need to tell the other derivations
that one derivation is already selected. In a formal-
ism of concurrent logic languages such as (Saraswat,
1993), meta-control “commitment operator” is intro-
duced to a program, but there is no logical semantics
for the “commitment operator”. As another example,
we use a tabling technique to keep a result obtained in
one derivation which will be used for other derivations.
However, to implement the technique, we can use “as-
sert” command, but there is no logical semantics for the

command so far. In this paper, we propose an abduc-
tive method called global abduction in order to formalize
information passing over derivation paths. As far as we
know, this is the first attempt to formalize a search
control in a logical way. Moreover, we believe that
global abduction is useful in cognitive robotics (Cogni-
tive Robotics Workshop, 2002). In cognitive robotics,
we perform planning under incomplete information and
execute actions with side-effect in an interleaving man-
ner. Suppose that we execute a plan, but fail because of
some change of outside environments. Then, we need
to revise our plan if possible, but in order to make a
new plan, we need to consider the previous side-effects
caused by some actions in the previous plan. If we tried
to implement this revision of planning in a usual back-
tracking mechanism used in Prolog system, we would
not be able to pass the information of such side-effects
in other alternatives. However, we can use global ab-
duction to pass these information in our framework.

For global abduction, we introduce two annotations,
announce(P ) and hear(P ). announce(P ) asserts a
ground literal P in the global belief state. After
announce(P ) is executed, P becomes true globally as if
it were asserted in the beginning of the execution. This
means P is abduced not only in the search path where
the announcement is done, but also propagated to the
other search paths as if it were true in the beginning.
hear(P ) is used to access a global belief state. If P is
asserted in the global belief state, hear(P ) is succeeded.
If P is not asserted yet or P is contradictory with the
current belief state, then the execution suspends and
other derivation path will be traversed. Moreover, we
keep a track on the hearing literal so that if the global
belief is changed and the internal belief used by a pro-
cess contradicts the new global belief, the process will
be suspended.

In this paper, we propose a semantics w.r.t. these
annotations. In the semantics, we require that the ob-
tained result from global abduction must be logically
derived from a program which is obtained by adding
the assumed annotated atoms to the original program.
Therefore, we call the semantics in the paper “all’s well
that ends well” principle (AWW principle for short)
since correctness is formalized w.r.t. the original pro-



gram plus the last belief state.
The structure of the paper is as follows. We firstly

give a framework of global abduction and then dis-
cuss applications of global abduction; a formalization of
don’t-care nondeterminism and a formalization of reuse
of the different search path. Then, we give a correct
proof procedure for global abduction and examples of
execution by the proof procedure.

Framework of Global Abduction
Definition 1 A global abductive framework GA is the
following tuple 〈B,P, IC〉 where
• B is a set of predicates called belief predicates. Let A

be an atom with belief predicate. We call A a positive
belief literal, or a belief atom and ¬A a negative be-
lief literal. We call a literal of the above form belief
literal. Let Q be an belief literal. We introduce an-
notated literals announce(Q) and hear(Q) called an-
nouncing literal and hearing literal respectively. We
say that announce(Q) contains Q and hear(Q) con-
tains Q.

• P is a set of rules of the form:

H: −B1, B2, ..., Bn.

where
– H is an ordinary atom, in other words, an atom

with a predicate which is neither a belief predicate
nor an equality predicate.

– each of B1, ..., Bn is an ordinary atom, or an anno-
tated literal, or an equality literal of the form t = s,
or a disequality literal of the form t 6= s.

We call H a head denoted as head(R) and B1, ..., Bn

a body denoted as body(R). If there are no atoms in
the body, body(R) = ∅.

• IC is a set of integrity constraints of the form:

false: −B1, B2, ..., Bn.

where false expresses falsity and each of B1, ..., Bn

is a belief literal or an equality literal or a disequality
literal.

Integrity constraints are used to control announcing lit-
erals. Intuitively, annotated literals have the following
meaning.
• Announcing literal announce(L) is an assertion of a

ground positive/negative belief L to the global belief
state. This means while we traverse a search space to
achieve goal, some of the fact are added by the pro-
gram itself. Then, from another search path, we can
access this addition using a hearing literal. Therefore,
L is “globally” abduced by announce(L). Moreover,
due to the integrity constraint, we sometimes fail to
announce L.

• Hearing literal hear(L) is a check of a ground posi-
tive/negative belief L in the current belief state. If
L is included in the current belief state hear(L) co-
incides with the truth value of L w.r.t. the current

belief state. Else if L is not included in the current
belief state, the truth value of hear(L) is undefined
and the evaluation is postponed. According to an
update of the belief state, hear(L) changes its truth
value according to the current belief state.
In the following examples, we show applications of

global abduction.
Example 1 The following predicate
merge(X,Y, Z, P id) means a don’t-care nondeter-
ministic merge of two list X and Y resulting a unique
merged list Z.

The example can be formalized as the following global
abductive framework GA = 〈B,P, IC〉 where
• B = {cut} where cut(Pid, RN) means that the goal

with a goal identification term Pid is unified with
the RN -th rule. The goal identification term, 1, is
attached as an additional argument in the top level
goal and the other identification term for an ordi-
nary literal in the body of a rule is represented as
c(Pid,RN,LN) where Pid is the goal identification
term for the parent goal and RN is the rule number
of the rule containing the ordinary literal and LN is
the literal number of the literal in the body of the rule
which is used in order to construct a unique Pid term
for each call in a rule.

• IC = {false: −cut(Id, R1), cut(Id, R2), R1 6= R2.}
• P is the following program:

merge(X,Y,Z,Pid):-
X=[A|X1],
announce(cut(Pid,1)),
Z=[A|Z1],
merge(X1,Y,Z1,c(Pid,1,1)).

merge(X,Y,Z,Pid):-
Y=[A|Y1],
announce(cut(Pid,2)),
Z=[A|Z1],
merge(X,Y1,Z1,c(Pid,2,1)).

merge(X,Y,Z,Pid):-
X=[ ],
announce(cut(Pid,3)),
Z=Y.

merge(X,Y,Z,Pid):-
Y=[ ],
announce(cut(Pid,4)),
Z=X.

We add one extra argument Pid for each merge call
in order to ensure that each call is identified by using
Pid and RN .

We assume that all the rules whose head unify with
the current goal are selected in a parallel manner and
that the execution of the body is done from the left
to the right. Then, the above program only gives
one merge result because of the announcing literal
announce(cut(...)) and the above integrity con-
straint.

We can combine announcing literal and hearing lit-
eral as the following example shows. The example



avoids a redundant check in the alternative path us-
ing announcement of the already obtained result of the
check.

Example 2 Consider the following global abductive
framework GA = 〈B,P, IC〉 where

• B = {cut, alreadychecked} where cut(...)
is the same as the previous example and
alreadychecked(X) is the information that in-
stance X is already checked by time-consuming
predicate timeconsumingcheck(X) in the different
search path.

• IC = {false: −cut(Id, R1), cut(Id, R2), R1 6= R2.}
• P is the following program:

main(X,Y,Pid):-
q(X,Y),
check(X,c(Pid,1,1)).

main(X,Y,Pid):-
r(X,Y),
check(X,c(Pid,2,1)).

q(a,b).
r(a,c).
check(X,Pid):-

hear(alreadychecked(X)),
announce(cut(Pid,1)).

check(X,Pid):-
announce(cut(Pid,2)),
timeconsumingcheck(X),
announce(alreadychecked(X)).

Suppose that we ask main(X,Y,1). We assume that the
execution of the body is done from left to right. Suppose
that we have obtained X=a,Y=b from the first rule of
main and during computation of the first answer, we
made a time-consuming check. Then, suppose that we
start an execution of the second rule of main. Then,
thanks to the announcement of the check result for the
first answer, the second answer (X=a,Y=c) is obtained
without a time-consuming process.

Semantics

We give a semantics of the global abduction based on
the extension of the three-valued least model seman-
tics (Fitting, 1985; Przymusinski, 1990). We use the
three-valued semantics since the truth value of the be-
lief literals can be undefined when the current belief
state does not decide their truth values. We extend the
three-valued least model so that the semantic of the
global abduction is indexed w.r.t. a belief state.

In the following, we basically follow the way of the
definitions in (Przymusinski, 1990). Firstly, we define
the three-valued interpretation and the three-valued
least model semantics (Fitting, 1985). We denote t as
truth, f as falsity, and u as undefinedness. We say a
rule is ordinary if a rule consists of ordinary atoms, or
equality atoms, or disequality atoms. Similarly, we say
that a program is ordinary if a program consists of or-
dinary rules.

Definition 2 A three-valued Herbrand interpretation I
of an ordinary program P is any pair 〈T ; F 〉 where T
and F are disjoint subsets of the Herbrand base for P .
We define TRUE(I) as T and FALSE(I) as F . The truth
value of a ground atom A w.r.t. I, val(A, I), is defined
as follows:

• If A is an equality atom t = s, val(A, I) = t if and
only if t and s are identical terms.

• If A is a disequality atom t 6= s, val(A, I) = t if and
only if t and s are not identical terms.

• If A is an ordinary atom
val(A, I) = t if A ∈ TRUE(I)
val(A, I) = f if A ∈ FALSE(I)
val(A, I) = u otherwise.

Definition 3 Let R be a ground ordinary rule of the
form

H: −B1, B2, ..., Bn.

R is satisfied w.r.t. a three-valued interpretation I if
one of the following condition is satisfied.

• There is an atom Bi in body(R) such that
val(Bi, I) = f .

• For every atom Bi in body(R), val(Bi, I) = t and
val(H, I) = t.

• There is an atom Bi in body(R) such that
val(Bi, I) = u and for every other atom Bj

in body(R) other than Bi, val(Bj , I) = t or
val(Bj , I) = u and val(H, I) = t or val(H, I) = u.

Definition 4 We say that a three-valued interpretation
I is a model of an ordinary program P if every ground
instance of every rule in P is satisfied w.r.t. I.

Let I be a model of P . We say that a model is the
least if there is no model J of P such that I 6= J and
TRUE(I) ⊇ TRUE(J) and FALSE(I) ⊆ FALSE(J).

Note that thanks to the result of (Przymusinski, 1990),
for every program consisting of ordinary atom, P has
the least model.

Now, we define an assumption-based three-valued
model for a global abductive framework 〈B,P, IC〉. An
assumption-based three-valued model is defined by aug-
menting ordinary least model with the interpretation of
annotated literals.

Definition 5 Let BS be a pair of disjoint subsets of
ground belief atoms, 〈BST ;BSF 〉. We call BS a belief
state. We define TRUE(BS) as BST and FALSE(BS) as
BSF .
For a belief literal L, we say that L is true in BS if one
of the following conditions is satisfied.

• If L is a positive literal then L ∈ TRUE(BS).
• If L is a negative literal of the form ¬L′ then L′ ∈

FALSE(BS).

For a belief literal L, we say that L is false in BS if one
of the following conditions is satisfied.

• If L is a positive literal then L ∈ FALSE(BS).



• If L is a negative literal of the form ¬L′ then L′ ∈
TRUE(BS).

For a belief literal L, we say that L is undefined in BS
if L is neither true in BS nor false in BS.

We also need evaluation of equality atoms and dise-
quality atoms in a belief state for evaluation of integrity
constraints. But, this evaluation is actually indepen-
dent on a belief state.

Definition 6 Let BS be a belief state and L be an
equality atom or a disequality atom. we say that L is
true in BS if one of the following conditions is satisfied
otherwise we say that L is false in BS.

• If L is an equality atom t = s, then t and s are
identical terms.

• If L is a disequality atom t 6= s, then t and s are not
identical terms.

For the evaluation of rules, we need the following eval-
uation of annotated literals.

Definition 7 Let BS be a belief state and L be an an-
notated literal. We define the truth value of L w.r.t.
BS, val(L,BS), as follows. Let L be of the form either
hear(L′) or announce(L′).

• val(L,BS) = t if L′ is true in BS.
• val(L,BS) = f if L′ is false in BS.
• val(L,BS) = u if L′ is undefined in BS.

From now on, we introduce special atoms true, and
undef as well as false. For every interpretation I,
we assume that TRUE(I) always contains true and
FALSE(I) always contains false and neither TRUE(I)
nor FALSE(I) contains undef. This means that true
(false, undef, respectively) always has the truth value
of t (f , u, respectively).

For a program P and a set of integrity constraints
IC, we denote ground program of P and a set of ground
integrity constraints of IC as ΠP and ΠIC respectively.

Let BS be a belief state. Then for a program P, we
define ΠP/BS as the following program:

ΠP/BS =
{H: −tr(B1, BS), ..., tr(Bn, BS)|

H: −B1, ..., Bn ∈ ΠP}
where

• if Bi is an ordinary atom, or an equality atom or a
disequality atom, tr(Bi, BS) = Bi.

• if Bi is an annotated literal,

– tr(Bi, BS) = true if val(Bi, BS) = t.
– tr(Bi, BS) = false if val(Bi, BS) = f .
– tr(Bi, BS) = undef if val(Bi, BS) = u.

Please note that the least 3-valued model of an ordinary
program without any belief literal is the same as the
least 2-valued model, but if we introduce a belief literal
into a program, then the interpretation of the belief
literal is 3-valued and therefore, we need to consider
the least 3-valued model for such a program.

Definition 8 Let GA be a global abductive framework
〈B,P, IC〉 and BS be a belief state and I be a pair of
disjoint subsets of ground ordinary atoms defined from
the Herbrand term of P.

I is an assumption-based three-valued model w.r.t.
P, IC and BS if the following conditions are satisfied.

• There is no integrity constraint
“false: −L1, ..., Ln”∈ ΠIC such that for every literal
Li, Li is true in BS.

• I is the least three-valued model of ΠP/BS.

The above semantics has the following intuitive mean-
ing. Firstly, the truth values of an announcing literal
and a hearing literal are defined by the belief state and
then we recursively propagate the truth value using
rules as follows. Also note that if the body of an in-
tegrity constraint is satisfied with the current BS, then
there is no model.

• If there is a rule such that every literal in the body
is true, then the head of the rule, H, becomes true.

• If there is a rule for an ordinary atom H such that
there is a literal L in its body whose truth value is
undefined and every other literal in its body has the
truth value of t or u, then H becomes undefined.

• Otherwise H becomes false.

Proof Procedure

In this section we give a correct proof procedure which
is correct in the above semantics. The execution of
global abductive framework is based on process reduc-
tion. Intuitively, processes are created when a choice
point of computation is encountered like case splitting.
A process terminates successfully if all the computation
is done and the belief literals used in the process are not
contradictory with the last belief state. As the subse-
quent theorem shows, if we reflect the last belief state
BS to the program P by considering P/BS, then the
same result is obtained. Therefore, we call this principle
“all’s well that ends well” principle.

In the procedure, we reduce an active process into a
new process. Reduction for an ordinary atom is a usual
goal reduction in logic programming and reduction for
an announcing literal corresponds with an update of
the belief state and reduction for a hearing literal cor-
responds with an inquiry to the belief state.

Updating the belief state by an announcing literal
may result in the suspension of the current executed
process and change of the execution to an alternative
process.

Preliminary Definitions
We introduce the following for explanation of the proof
procedure.

Definition 9 A process is the following tuple
〈GS, BA, ANS〉 which consists of
• GS: A set of atoms to be proved called a goal set.



• BA: A set of ground belief literals called belief as-
sumptions.

• ANS: A set of instantiations of variables in the ini-
tial query.

A process expresses an execution status in a path in the
search tree. The intuitive meaning of the above objects
is as follows:
• GS expresses the current status of computation.
• BA is a set of belief assumptions used during a pro-

cess.
• ANS gives an answer for variables in the initial query.

We use the following two sets for process reduction.
Definition 10
• A process set PS is a set of processes.
• A current belief state CBS is a belief state.

PS is a set of processes which express all the alter-
native computations considered so far, and CBS is the
current belief state which expresses the agent’s current
belief.
Definition 11 Let 〈GS,BA,ANS〉 be a process and
CBS be a current belief state. A process is active w.r.t.
CBS if for every L ∈ BA, L is true in CBS and a
process is suspended w.r.t. CBS otherwise.
If BA contradicts CBS, the execution of process is con-
sidered to be useless at the current belief state and
therefore, the process will be suspended.

Description of Proof Procedure
In the following reduction, we specify only changed
PS, CBS as NewPS, NewCBS; otherwise each
PS, CBS is unchanged.
Initial Step: Let GS be the initial goal set.

We give 〈GS, ∅, ANS〉 to the proof procedure where
ANS is a set of variables in GS. That is, PS =
{〈GS, ∅, ANS〉}. and let CBS be the initial set of
belief literals.

Iteration Step: Do the following.
Case 1 If there is an active process 〈∅, BA,ANS′〉

w.r.t. CBS in PS, return instantiation for vari-
ables ANS′ and the current belief state CBS.

Case 2 If PS is empty, return “failure”.
Case 3 Select an active process 〈GS,BA, ANS〉

w.r.t. CBS from PS and select a literal L (an or-
dinary atom, or an equality atom, or a disequality
atom, or an annotated literal) in GS which satis-
fies one of the conditions in the following subcase.
If there is no such process, return “floundering”.
Let PS′ = PS − {〈GS, BA, ANS〉} and GS′ =
GS − {L}.
Case 3.1 If L is an ordinary atom,
NewPS =

PS′ ∪ {〈({body(R)} ∪GS′)θ, BA, ANSθ〉|
R ∈ P and ∃most general unifier(mgu) θ

s.t. head(R)θ = Lθ}

Case 3.2 If L is an equality atom t = s,
Case 3.2.1 if there is an mgu θ between t and s,
then NewPS = PS′ ∪ {〈GS′θ, BA, ANSθ〉}

Case 3.2.2 else if there is no such mgu, then
NewPS = PS′.

Case 3.3 If L is an disequality atom t 6= s, and t
and s is ground,
Case 3.3.1 if t and s are different ground terms
then NewPS = PS′ ∪ {〈GS′, BA, ANS〉}

Case 3.3.2 else if t and s are identical terms,
then NewPS = PS′.

Case 3.4 If L is a hearing literal hear(Q) and Q
is ground and Q is in CBS, then NewPS = PS′∪
{〈GS′, BA ∪ {Q}, ANS〉}.

Case 3.5 If L is an announcing literal
announce(A) and A is ground and there is no
integrity constraint “false: −L1, ..., L, ..., Ln”∈
ΠIC containing L such that for every literal
Li other than L, Li is true in CBS, then
NewPS = PS′ ∪ {〈GS′, BA ∪ {A}, ANS〉}, and
do the following:
• If A is a positive literal, then

NewCBS =
〈TRUE(CBS) ∪ {A}; FALSE(CBS)\{A}〉

• If A is a negative literal of the form ¬A′, then
NewCBS =
〈TRUE(CBS)\{A′}; FALSE(CBS) ∪ {A′}〉

Note that a belief state can be updated by announcing
literals and some processes becomes active or suspended
according to the update. In (Satoh et al., 2000), we
provide an efficient implementation of this check. We
introduce a list of suspended processes and record the
cause of the suspension for each suspended process and
every time an update is performed, a suspended pro-
cess which is relevant to the update will be checked if
the suspended process should be resumed or not. We
can use this technique for the above procedure for an
efficient handling of suspension and resumption of pro-
cesses, but, in this paper, we present an abstract version
for simplicity.

Note that we do not specify any strategy of selec-
tion of a literal L. However, the theorem shown in the
subsequent section guarantees that if we have an an-
swer from the above proof procedure in any arbitrary
strategy, the result is always correct.

Note also that the initial belief state is not necessarily
an empty set, but can be any arbitrary set of belief lit-
erals.If the set is not empty, belief literals of the initial
belief state can be regarded as default values of these
belief literals. We used this idea to implement spec-
ulative computation (Satoh et al., 2000; Satoh, 2002;
Satoh and Yamamoto, 2002). Therefore, this work can
be seen as a formalization of speculative computation
as well. The difference between the present paper and
the previous research on speculative computation is in
that a belief state is updated from outside in the previ-
ous research whereas we can use announce annotation
to update a belief dynamically within a program.



Correctness of the Proof Procedure
The following theorem shows correctness of the above
procedure. The theorem intuitively means that when
we receive an answer of execution, the answer is correct
in the assumption-based three-valued model w.r.t. the
program and the returned belief state. This is an idea
of AWW principle.

Let ANS′ be an instantiation of the variables and
GS be the initial goal. We write GS ◦ANS′ as the goal
obtained from GS by replacing variables in GS by cor-
responding term in ANS′. Let M be the assumption-
based three-valued model and {L1, ..., Ln} be a set of
ground literals. We write M |= {L1, ..., Ln} if Li is in
M .
Theorem 1 Let GA be a global abductive framework
〈B,P, IC〉. Let GS be an initial goal set. Suppose
that an instantiation of the variables ANS′ and the
current belief state CBS are returned. Let M be the
assumption-based three-valued model w.r.t. P, IC and
CBS. Then, M |= GS ◦ANS′.
Sketch of proof: By the assumption that ANS′ is
returned, we can construct a derivation of G from P and
the current belief state CBS. This is done by observing
reduction steps in the procedure from 〈G, ∅, ANS〉 to
〈∅, BA, ANS′〉 where ANS is a set of variables in GS
and BA is a set of literals contained in hearing literals
which are assumed during the execution.

The derivation corresponds with a derivation defined
in (Kowalski et al., 1998) and according to the result
of (Kowalski et al., 1998), it is correct for a stratified
logic program augmented with the belief state.

Then, we can easily extend the above result to
show that every reduction step is correct in terms of
assumption-based three-valued model w.r.t. P, IC and
CBS.

Execution of Global Abduction
Don’t-care nondeterminism
Suppose that we ask merge([1,2],[3,4],Z,1) to the
program in Example 1. The following is an execution
trace for the above goal. We abbreviate merge as m and
announce as a. In the following, we omit the evaluation
of equality. We assume that an active process for a
reduction is selected randomly. We underline a selected
literal in the selected active process and show PS, CBS
only when a change occurs.
1. PS = {〈{m([1, 2], [3, 4], Z, 1)}, ∅, {Z}〉}.

CBS = 〈∅; ∅〉.
2. PS = {〈{a(cut(1, 1)), m([2], [3, 4], Z1, c(1, 1, 1))},

∅, {[1|Z1]}〉,
〈{a(cut(1, 2)), m([1, 2], [4], Z2, c(1, 2, 1))},

∅, {[3|Z2]}〉}.
3. PS = {P1,

〈{m([1, 2], [4], Z2, c2)}, ∅, {[3|Z2]}〉}1.
CBS = 〈{cut(1, 2)}; ∅〉.
1We abbreviate a process

4. PS = {P1,
〈{a(cut(c2, 1))), m([2], [4], Z3, c(c2, 1, 1))},

∅, {[3, 1|Z3]}〉,
〈{a(cut(c2, 2))), m([1, 2], [ ], Z4, c(c2, 2, 1))},

∅, {[3, 4|Z4]}〉}.
5. PS = {P1,

〈{m([2], [4], Z3, c21)}, ∅, {[3, 1|Z3]}〉, P2}2.
CBS = 〈{cut(1, 2), cut(c2, 1)}; ∅〉.

6. PS = {P1,
〈{a(cut(c21, 1)), m([ ], [4], Z5, c(c21, 1, 1))},

∅, {[3, 1, 2|Z5]}〉,
〈{a(cut(c21, 2)), m([2], [ ], Z6, c(c21, 2, 1))},

∅, {[3, 1, 4|Z6]}〉, P2}〉}.
7. PS = {P1,

〈{m([ ], [4], Z5, c211)}, ∅, {[3, 1, 2|Z5]}〉,
P3, P2}3.

CBS = 〈{cut(1, 2), cut(c2, 1), cut(c21, 1)}; ∅〉.
8. PS = {P1,

〈{a(cut(c211, 2)), m([ ], [ ], Z7, c(c211, 2))},
∅, {[3, 1, 2, 4|Z7]}〉,

〈{a(cut(c211, 3))}, ∅, {[3, 1, 2, 4]}〉,
P3, P2}.

9. PS = {P1,
〈{a(cut(c211, 2)), m([ ], [ ], Z7, c(c211, 2))},

∅, {[3, 1, 2, 4|Z7]}〉,
〈∅, ∅, {[3, 1, 2, 4]}〉,
P3, P2}.

CBS = 〈{ cut(1,2),cut(c2,1),
cut(c21,1),cut(c211,3) }; ∅〉.

10. Since 〈∅, ∅, {[3, 1, 2, 4]}〉 is found, Z = [3, 1, 2, 4] and
CBS = 〈{ cut(1,2),cut(c2,1),

cut(c21,1),cut(c211,3) }; ∅〉
is returned.

Note that other goals cannot be reduced because of the
integrity constraint

false: −cut(Id, R1), cut(Id, R2), R1 6= R2.

It is interesting to note that cut literals actually repre-
sent a search path to lead to the result of Z = [3, 1, 2, 4].
So, in some cases, the global abduction would be not
only useful for a search control but also for a trace of
execution.

Reuse of the result in the different search
path
Suppose that we ask main(X,Y,1) to the program in
Example 2. The following is an execution trace for

〈{a(cut(1, 1)), m([2], [3, 4], Z1, c1)}, ∅, {[1|Z1]}〉 as P1, and
c(1,2,1) as c2

2We abbreviate a process
〈{a(cut(c2, 2))), m([1, 2], [ ], Z4, c(c2, 2, 1))}, ∅, {[3, 4|Z4]}〉 as
P2, and c(c2,1,1) as c21

3We abbreviate c(c21,1,1) as c211, and a process
〈{a(cut(c21, 2)), m([2], [ ], Z6, c212)}, ∅, {[3, 1, 4|Z6]}〉, P2}〉 as
P3.



the above goal. We abbreviate main as m, check as
ch, alreaydchecked as al, timeconsumingcheck as t,
announce as a and hear as h. In the following, we omit
the evaluation of equality. We assume that the execu-
tion of the body is done from left to right.

1. PS = {〈{m(X, Y, 1)}, ∅, {X, Y}〉}. CBS = 〈∅; ∅〉.
2. PS = {〈{q(X, Y), ch(X, c(1, 1, 1))}, ∅, {X, Y}〉,

〈{r(X, Y), ch(X, c(1, 2, 1))}, ∅, {X, Y}〉}.
3. PS = {〈{ch(a, c1)}, ∅, {a, b}〉, P1}4.
4. PS = {〈{h(al(a)), a(cut(c1, 1))}, ∅, {a, b}〉,

〈{a(cut(c1, 2)), t(a), a(al(a))}, ∅, {a, b}〉, P1}.
5. PS = {P2, 〈{t(a), a(al(a))}, ∅, {a, b}〉, P1}5.

CBS = 〈{cut(c1, 2)}; ∅〉
6. Suppose a time-consuming check t(a) is executed.

PS = {P2, 〈{a(al(a))}, ∅, {a, b}〉, P1}.
7. PS = {P2, 〈∅, ∅, {a, b}〉, P1}.

CBS = 〈{cut(c1, 2), al(a)}; ∅〉
Since 〈∅, ∅, {a, b}〉 is found, X = a, Y = b and
CBS = 〈{cut(c1, 2), al(a)}; ∅〉 is returned.

8. We furtherly reduce the process P1.
PS = {P2, 〈{r(X, Y), ch(X, c2)}, ∅, {X, Y}〉}.

9. PS = {P2, 〈{ch(a, c2)}, ∅, {a, c}〉}.
10. PS = {P2, 〈{h(al(a)), a(cut(c2, 1))}, ∅, {a, c}〉,

〈{a(cut(c2, 2)), t(a), a(al(a))}, ∅, {a, c}〉}.
11. Since al(a) ∈ TRUE(CBS), h(al(a)) is succeeded.

PS = {P2, 〈{a(cut(c2, 1))}, ∅, {a, c}〉, P3}6.
12. PS = {P2, 〈∅, ∅, {a, c}〉, P3}.

CBS = 〈{cut(c1, 2), al(a), cut(c2, 1)}; ∅〉
Since 〈∅, ∅, {a, c}〉 is found, X = a, Y = c and
CBS = 〈{cut(c1, 2), al(a), cut(c2, 1)}; ∅〉 is re-
turned.

In this example, thanks to the announcement of al(a)
in the first search path, we do not need to compute
time-consuming check again for the second solution.

Related Work
There exists a similar operator to announcing annota-
tion in concurrent constraint languages such as cc lan-
guage (Saraswat, 1993) called tell. However, when a
constraint is asserted by tell operator, it is valid only
in the subsequent paths extended under the node where
the assertion was made. Dietzen and Pfenning (Dietzen
and Pfenning, 1991) or Dung (Dung, 1992) proposed
formalizations of assertions in terms of hypothetical rea-
soning. These approaches manipulate assertion during

4We abbreviate c(1,1,1) as c1, c(1,2,1) as c2, and a
process 〈{r(X, Y), ch(X, c2)}, ∅, {X, Y}〉 as P1.

5We abbreviate a process
〈{h(al(a)), a(cut(c1, 1))}, ∅, {a, b}〉, as P2.

6We abbreviate a process
〈{a(cut(c2, 2)), t(a), a(al(a))}, ∅, {a, c}〉 as P3.

the execution as hypotheses and use these hypotheses
in only the paths in the search tree extended under the
node where the hypotheses are assumed. Therefore,
this formalization is similar to an idea of tell opera-
tor.

On the other hand, the operator announce is like
“assert” command in PROLOG that in one path, after
announce(P ) is made, P becomes true in every path.

(Hayashi, 1998) gives a procedure of agent in plan-
ning where sensory data can be influenced even dur-
ing reasoning process. This is a kind of search control
coming from the outside world whereas our framework
concerns search control within a logic program.

Conclusion
The contributions of this paper are as follows.
• We propose global abduction in which we abduce a

belief literal and can use abduced belief in a different
search path.

• We formalize a semantics of global abduction as “all’s
well that ends well” principle.

• We discuss about the application of global abduction,
namely, don’t-care nondeterminism and reuse of the
result in the different search path.

We would like to purse the following research.
• For the above examples to work properly, we need to

assume the specific control structure and we need to
relax the assumption.

• Finding interesting applications furtherly for the
global abduction including formalizing actions with
side-effect and reactive planning using the global ab-
duction.

• Extension of language to include negation as failure
and manipulate a wider class of integrity constraints.
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