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Abstract

It is well accepted that inconsistency may exist in a database
system or an intelligent information system (Benferhat et
al. 1993a; 1993b; 1997b; 1998; Benferhat & Kaci 2003;
Elvang-Gøransson & Hunter 1995; Gabbay & Hunter 1991;
Lin 1994; Priest et al. 1989; Priest 2001). Inconsistency
can either appear in the given knowledge bases or as a re-
sult of combination or revision. In this paper, we will pro-
pose two different methods to combine individually inconsis-
tent possibilistic knowledge bases. The first method, called
an argument-based method, is a generalization of the merg-
ing method introduced in (Benferhat & Kaci 2003). When
the knowledge bases to be merged are self-consistent, this
method coincides with the original one. The second method,
called a multiple-operator based method, combines the con-
sistent and the conflict information using different operators.
This method is more reasonable than the argument-based
method because it differentiates the consistent and conflict
information.

Introduction
In some cases, we may confront the problem of merging in-
dividually inconsistent knowledge bases. It is well accepted
that an agent may have inconsistent beliefs (Benferhat et
al. 1993a; 1993b; 1997b; 1998; Benferhat & Kaci 2003;
Elvang-Gøransson & Hunter 1995; Gabbay & Hunter 1991;
Lin 1994; Priest et al. 1989; Priest 2001). Inconsistency
can appear in a given knowledge base. Many researchers,
especially those working on paraconsistent logic and argu-
mentation, argued that inconsistency was not a bad thing and
proposed some methods to deal with or handle the inconsis-
tency (Elvang-Gøransson & Hunter 1995; Gabbay & Hunter
1991; Lin 1994; Priest et al. 1989). Even if the original
knowledge basesKi are individually consistent, the result
of combination by conjoining them (Benferhat et al. 1995)
or merging them using the method introduced in (Benferhat
& Kaci 2003) may be inconsistent.

As far as we know, there does not exist a merging method
that handles individually inconsistent knowledge bases ex-
plicitly. It is always assumed (this assumption may be im-
plicit) that the original knowledge bases are self-consistent
when we confront the problem of merging (Baral et al.
1992; Benferhat et al. 1997a; 2001; Benferhat & Kaci
2003; Liberatore & Schaerf 1998; Lin & Mendelzon 1998;

Konieczny & Pino Ṕerez 1998). Since the original knowl-
edge bases are individually inconsistent and may preserve
some useful information about the real world, the result
of combination is not required to be a consistent knowl-
edge base. In the classical logic framework, given sev-
eral individually inconsistent knowledge bases, we may
conjoin the original knowledge bases, i.e., take the union
of the original knowledge bases as the result of merg-
ing. But when the original knowledge bases are priori-
tized, i.e., formulas are ordered according to their priori-
ties, it is not advisable to conjoin them. For example, sup-
pose there are two prioritized knowledge bases where one
of them is inconsistentB1 = {(¬φ, 0.7), (φ, 0.6), (γ, 0.8)}
and B2 = {(φ, 0.6), (γ, 0.8)}, where φ, ¬φ and γ are
classical propositions and the weights assigned to the for-
mulas denote certainty degrees of the formulas. Then
by conjoining them we obtain a knowledge baseB =
{(¬φ, 0.7), (φ, 0.6), (γ, 0.8)}. Clearly, information pro-
vided byB2 is ignored. Sinceγ is strongly supported by
both sources, its certainty degree should increase, i.e., there
is a reinforcement betweenB1 andB2 for γ. For formulas
φ and¬φ, they are involved in the inconsistency ofB1∪B2,
so their necessity degrees in general should not increase.

The importance of priorities in belief revision and infor-
mation fusion has been addressed by many researchers in
recent years (Benferhat et al. 1998; Gärdenfors 1988; Lin &
Mendelzon 1998). Possibilistic logic (Dubois et al. 1994)
provides a good framework to express priorities. In possi-
bilistic logic, each classical first order formula is attached
with a number or weight, denoting the necessity degree of
the formula. The necessity degrees can be interpreted as the
priorities of formulas. A possibilistic knowledge base is aset
of possibilistic formulas. Possibilistic logic also provides a
good framework to deal with inconsistency. From a (partial)
inconsistent possibilistic knowledge base we can infer some
nontrivial consequences using the possibilistic consequence
relation (also calledπ-consequence relation).

In (Benferhat & Kaci 2003), a method to merge possibilis-
tic knowledge bases was introduced. The result of merg-
ing may be an inconsistent possibilistic knowledge base, al-
though the original possibilistic knowledge bases were as-
sumed to be individually consistent. This method could
also be used to merge individually inconsistent knowledge
bases. However, the merging method was constrained by the



π-consequence relation, which had been criticized for the
“drowning problem”. Namely, theπ-consequence relation
only uses those formulas whose necessities are greater than
the inconsistency degree, so some useful information may
be lost. In this paper, we extend theπ-consequence rela-
tion based merging method with an argument-based method.
When the original knowledge bases are individually consis-
tent, our revised merging method is reduced to the original
method (Benferhat & Kaci 2003). However, if the original
knowledge bases are individually inconsistent, it contains
more useful information than the original one. A deficiency
of the revised method is that it cannot differentiate between
consistent and conflict information. To overcome this, we
also propose a multiple-operator based method, which com-
bines consistent and conflict information using different op-
erators.

This paper is organized as follows. Section 2 introduces
some basic definitions in possibilistic logic. In Section 3,we
review a merging method introduced in (Benferhat & Kaci
2003) and compare it with related methods. In Section 4,
we present two methods to combine possibilistic knowledge
bases that may be individually inconsistent. Finally, we give
the conclusion in Section 5.

Some Basic Definitions in Possibilistic Logic
In this section, we introduce some basic definitions in pos-
sibilistic logic (Dubois et al. 1994). We only consider a
finite propositional language denoted byL. The classical
consequence relation is denoted as|=. φ, ψ, γ,... represent
classical formulas.

In possibilistic logic, at the semantic level, the basic no-
tion is a possibility distribution, denoted byπ, which is a
mapping from a set of interpretationsΩ to the interval [0,1].
π(ω) represents the possibility degree of the interpretationω
with the available beliefs. From apossibility distributionπ,
two measures defined on a set of propositional or first order
formulas can be determined. One is the possibility degree of
formulaφ, denoted asΠ(φ) = max{π(ω) : ω |= φ}. The
other is the necessity degree of formulaφ, and is defined as
N(φ) = 1 − Π(¬φ).

At the syntactic level, a formula, called apossibilistic for-
mula, is represented by a pair(φ, α) whereφ is a classi-
cal first-order, closed formula andα ∈ [0, 1]. Uncertain
pieces of information can then be represented by apossi-
bilistic knowledge basewhich is a finite set ofpossibilistic
formulasof the formB = {(φi, αi) : i = 1, ..., n}. A pos-
sibilistic formula(φi, αi) means that the necessity degree
of φi is at least equal toαi, i.e. N(φi) ≥ αi. The classi-
cal base associated withB is denoted asB∗, namelyB∗ =
{φi|(φi, αi) ∈ B}. The formulas inB can be rearranged
by setting their weights such thata1 = 1>a2>...>an>0.
Then B can be equivalently expressed as a layered belief
baseΣ = S1∪...∪Sn, whereSi = {φ : (φ, ai)∈B}, that
is, eachSi is associated with a weightai. Σ is called the
stratification ofB.

Definition 1 (Dubois et al. 1994)Let B be a possibilistic
base, andα ∈ [0, 1]. We call theα-cut (respectively strict
α-cut) ofB, denoted byB≥α (respectivelyB>α), the set of

classical formulas inB having a necessity degree at least
equal toα (respectively strictly greater thanα).

The inconsistency degreeof B, which defines the level of
inconsistency ofB, is defined as (Dubois et al. 1994):

Inc(B) = max{αi|B≥αi
is inconsistent}.

Definition 2 (Dubois et al. 1994)Let B andB′ be two pos-
sibilistic knowledge bases. B andB′ are said to be equiva-
lent, denoted byB ≡s B′, iff

∀ a ∈ [0, 1], B≥a≡B′
≥a.

In (Benferhat et al. 1993b), some consequence relations
in possibilistic logic are defined to deal with inconsistency.

Definition 3 Let Σ = S1∪...∪Sn be a layered belief base
stratified from a possibilistic knowledge base. A formulaφ
is said to be aπ-consequence ofΣ with weightai, denoted
byΣ `π (φ, ai), if and only if:

1. S1∪...∪Si is consistent,
2. S1∪...∪Si ` φ, and
3. ∀j<i, S1∪...∪Sj 6` φ.

Definition 4 A subbaseΣi of Σ is said to be an argument
for a formulaφ with weight a, denoted byΣi `A (φ, a) if it
satisfies the following conditions.

1. Σi 6` ⊥ (consistency)
2. Σi`π(φ, a) (relevance)
3. ∀ (ψ, b) ∈ Σi, Σi − {(ψ, b)}6`π(φ, a) (economy)

Another consequence relation which is ”stronger” than
theπ-consequence was defined as follows (Benferhat et al.
1993b).

Definition 5 A formula φ is said to be an argumentative
consequence1of Σ, denoted byΣ `A (φ, a), if and only if:

1. there exists an argument for(φ, a) in Σ, and
2. for each argument of(¬φ, b) in Σ, we haveb<a.

Given apossibilistic base B, a uniquepossibility distri-
bution, denoted byπB , can be obtained by the principle of
minimum specificity. For allω ∈ Ω,

πB(ω) =

{

1 if ∀(φi, αi) ∈ B, ω |= φi,
1 − max{αi|ω 6|= φi, (φi, αi) ∈ B} otherwise.

(1)

π-consequence Relation based Merging
Method

Definition of the π-consequence relation based
merging method
In (Benferhat & Kaci 2003), the authors introduced a syntac-
tic method to merge a set ofn consistentpossibilistic knowl-
edge basesB1, ..., Bn, where the result of merging can be
inconsistent. A possibilistic merging operator, denoted by
⊕, which is a function from [0,1]n to [0,1], is used to merge
the certainty degrees associated with pieces of information

1The argumentative consequence defined here is identical to the
argued consequence in (Benferhat et al. 1998).



provided by different sources. The result of the combination
of Bi is B⊕ such that (see also Fig.1),

B⊕ = {(φ,⊕(a1, ..., an)) : Bi `π (φ, ai)}. (2)

Since the merging method defined by Equation (2) is re-
stricted by theπ-consequence relation, for convenience, we
call it aπ-consequence relation based method in this paper.

The operator⊕ should satisfy the following properties.
(Mer1)⊕(0, ..., 0) = 0.
(Mer2) If ∀ i = 1, ..., n, ai≥bi then ⊕(a1, ..., an)≥ ⊕
(b1, ..., bn). (unanimity property)

B1 . . . . . . . . . . . . . . . . . . . . Bn

(φ, a1) . . . . . . . . . . . . .(φ, an)
? ?
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⊕

(φ,⊕(a1, ..., an))

Fig. 1. Merging possibilistic bases.

Given two possibilistic knowledge bases, a simplification
of the computation ofB⊕ can be obtained by the following
lemma (Benferhat & Kaci 2003).

Lemma 1 Let B1 = {(φi, ai) : i = 1, ..., n} and B2 =
{(ψj , bj) : j = 1, ...,m} be two possibilistic bases. LetB⊕

be the result of mergingB1 andB2 using⊕ andB⊕ follows
Equation (2). Then,B⊕ is equivalent to:

Bπ
⊕ = {(φi,⊕(ai, 0)) : (φi, ai)∈B1} ∪ {(ψj ,⊕(0, bj)) :

(ψj , bj)∈B2} ∪ {(φi ∨ ψj ,⊕(ai, bj)) : (φi, ai)

∈B1 and (ψj , bj) ∈ B2}.

TheBπ
⊕ in Lemma 1 provides an easy way to computeB⊕

defined by Equation (2).
As criticized in (Benferhat et al. 1993a), theπ-

consequence relation will ignore the formulas whose ne-
cessity degrees are lower than the inconsistency degree.
So whenB1 or B2 are individually inconsistent, theπ-
consequence relation based method has to delete some for-
mulae from the original knowledge base. More precisely,
suppose the weights of formulas inB1 andB2 have been or-
dered such thata1>a2>...>an andb1>b2>...>bm. Before
applying Lemma 1,Bi = {(φk, ak) : k = 1, ..., n} will be
replaced byB′

i = {(φk, ak) : k = 1, ..., j − 1}∪{(⊥, aj)},
whereaj = Inc(Bi).

The following corollary follows from Lemma 1 and the
discussion above.

Corollary 1 Let B1 = {(φi, ai) : i = 1, ..., n} and
B2 = {(ψj , bj) : j = 1, ...,m} be two individually
inconsistent possibilistic bases, wherea1>a2>...>an and
b1>b2>...>bm. Supposeak = Inc(B1) andbl = Inc(B2).
Let B′

1
= {(φi, ai) : i = 1, ..., k − 1} ∪ {(⊥, ak)} and

B′
2

= {(ψj , bj) : j = 1, ..., l − 1} ∪ {(⊥, bl)}. Then,Bπ
⊕ in

Lemma 1 is revised to:

B′π
⊕ = {(φi,⊕(ai, 0)) : i = 1, ..., k − 1} ∪

{(ψj ,⊕(0, bj)) : j = 1, ..., l − 1} ∪

{(φi ∨ ψj ,⊕(ai, bj)) : i = 1, ..., k − 1

and j = 1, ..., l − 1} ∪ {(⊥,⊕(ak, bl))}. (3)

Corollary 1 shows that the formulas with weights less than
the inconsistency degree of each knowledge base do not ap-
pear in the result of merging using Equation (2) when the
original knowledge bases are individually inconsistent.

Comparison with other merging methods
Since each possibilistic knowledge baseB can be associ-
ated with a unique possibilistic distribution through Equa-
tion (1), mergingn possibilistic knowledge bases could also
be performed at the semantic level by merging the corre-
spondingπBi

. An approach to mergingn consistent possi-
bilistic knowledge bases is to apply theminimumoperator to
πBi

asπ = min(πBi
) whereπ is the possibility distribution

associated with the merged knowledge baseB. The syntac-
tic equivalence ofπ = min(πBi

) is B = ∪(Bi) (Benferhat
et al. 1997a).

More generally, the following proposition reveals the rela-
tionship between the semantic combination and its syntactic
counterpart (Benferhat et al. 2001).

Proposition 1 Let B1 and B2 be two possibilistic knowl-
edge bases. Letπ⊕′ be the combination ofπB1

and πB2

based on the operator⊕′. Thenπ⊕′ is associated with the
following belief base:

B1⊕
′B2 = {(φi, 1 − ((1 − ai)⊕

′1)) : (φi, ai)∈B1} ∪

{(ψj , 1 − (1⊕′(1 − bj))) : (ψj , bj)∈B2} ∪

{(φi ∨ ψj , ⊕
′(ai, bj))|(φi, ai) ∈ B1, and

(ψj , bj)∈B2}, (4)

When ⊕′ = min, it is easy to check thatB1⊕
′B2 =

B1∪B2.

Proposition 2 Let B1 and B2 be two possibilistic knowl-
edge bases. If the operator⊕ in Equation (2) is the max-
imum operator and the operator⊕′ in Equation (4) is the
minimum operator, then we have

Bπ
⊕ ≡s B1⊕

′B2, (5)

Proof.
If ⊕=max, then by Lemma 1,Bπ

⊕≡sB1∪B2. Therefore,
by Proposition 1,Bπ

⊕ ≡s B1⊕
′B2.

Definition 6 Let⊕1 and⊕2 be two merging operators sat-
isfying (Mer1) and (Mer2).⊕1 and⊕2 are said to be dual if
and only if⊕1(a, b) = 1 − (1 − a)⊕2(1 − b).

The typical dual merging operators are T-norm and T-
conorm in (Klement et al. 2000).

The following proposition follows from Proposition 1 and
Definition 6.

Proposition 3 Let B1 and B2 be two possibilistic knowl-
edge bases. Let⊕1 and⊕2 be two dual operators, then we
have

Bπ
⊕1

≡s B1⊕2B2,



Proposition 3 shows that theπ-consequence relation based
method is equivalent to the corresponding syntactic method
in (Benferhat et al. 2001) when the merging operators used
are dual.

Combining Individually Inconsistent
Prioritized Knowledge Bases

Most merging methods assume that the original knowledge
bases are individually consistent. But in practice, we may
confront the problem of combining individually inconsistent
knowledge bases. Inconsistency can appear in given knowl-
edge bases as well as resulting from combination or revision
(Benferhat et al. 1995; Priest 2001). In this section, we
will propose two different methods for combining individu-
ally inconsistent prioritized knowledge bases, where priori-
ties between formulas are handled in the framework of pos-
sibilistic logic. The first method is called an argument-based
merging method which extends theπ-consequence relation
based method introduced in Benferhat & Kaci 2003. The
other method is called a multiple-operator based method,
which combines consistent and conflict information using
different operators.

Argument-based merging method
Definition of the argument-based merging method
The merging method introduced in the last section is not
advisable for combining individually inconsistent knowl-
edge bases. Because this method is constrained by theπ-
consequence relation. When it is applied to inconsistent
knowledge bases, some information will have to be deleted
before merging. In this section, we will define an argument-
based merging method by replacing theπ-consequence rela-
tion with the argument-based consequence relation in Equa-
tion (2). By Definition 4, we know that the argument-based
consequence relation will keep all the information in the
knowledge baseΣ because every formula inΣ has an ar-
gument for it. Therefore, the revised merging method will
not delete any information in the original knowledge bases.
This is reasonable, because all the formulas, including for-
mulas in conflict, are viewed to be useful.

Definition 7 Let B = {B1, ..., Bn} be a set of n individu-
ally inconsistent possibilistic knowledge bases, then there-
sult of merging the bases inB by a merging operator⊕ is

B⊕ = {(φ,⊕(a1, ..., an)) : ΣBi
`A (φ, ai)} (6)

whereΣBi
is the layered belief base associated withBi.

This method will not ignore any formula inBi even ifBi is
inconsistent.

The following lemma provides a method to computeB⊕

defined by Equation (6).

Lemma 2 Let B1 = {(φi, ai) : i = 1, ..., n} and B2 =
{(ψj , bj) : j = 1, ...,m} be two inconsistent possibilis-
tic bases. The merging resultB⊕ of B1 and B2 following
Equation (6) is equivalent to

BA
⊕ = {(φi,⊕(ai, 0)) : (φi, ai)∈B1 and φi 6∈ B2

∗} ∪

{(ψj ,⊕(0, bj)) : (ψj , bj)∈B2 and ψj 6∈ B1

∗} ∪

{(φi ∨ ψj ,⊕(ai, bj)) : (φi, ai)∈B1 and (ψj , bj)

∈ B2}. (7)

Proof.
The proof of Lemma 2 is similar to that of Lemma 1 in

Benferhat & Kaci 2003. We first showBA
⊕ ⊆ B⊕.

(1) Let (φi,⊕(ai, 0)) (resp. (ψj ,⊕(0, bj)) be a formula
in BA

⊕, where (φi, ai)∈B1 and φi 6∈ B2

∗. Since
(φi, ai)∈B1, there exists an argument for(φi, ai) in ΣB1

.
Althoughφ 6∈ B2

∗, we can add(φj , 0) to B2, the revised
possibilistic knowledge base is equivalent toB2. So we
have found an argument(φi, 0) for φi in ΣB2

. Therefore,
by Equation (6),(φi,⊕(ai, 0)) ∈ B⊕.

(2) Let (φi ∨ ψj ,⊕(ai, bj)) be a formula inBA
⊕, where

(φi, ai)∈B1 and (ψj , bj)∈B2. Since(φi, ai)∈B1, there
must exist an argument for(φi ∨ ψj , a) s.t.a≥ai in ΣB1

.
Similarly, we can show that there exists an argument for
(φi ∨ ψj , b) s.t. b≥bj in ΣB2

. Then, by Equation (6), we
have(φi ∨ ψj ,⊕(a, b)) ∈ B⊕. Following the unanimity
property of⊕, we have⊕(a, b)≥ ⊕ (ai, bj). So we can
equivalently add⊕(a, b)≥⊕ (ai, bj) toB⊕.

Next, we will show that∀ (φ, b), if (φ, b) ∈ B⊕ (and
we supposeb>Inc(B⊕), for otherwise,(φ, b) must be sub-
sumed byB⊕) and (φ, b) 6∈ BA

⊕, then (φ, b) is subsumed
by B⊕. Since(φ, b) ∈ B⊕, there must exist an argument
for (φ, a1) in ΣB1

and an argument for(φ, a2) in ΣB2
s.t.

b = ⊕(a1, a2), with a1≥0 anda2≥0.

(1) Supposea1 = 0 anda2 = 0, and since⊕(0, 0) = 0, then
b=0. So(φ, b) can be deleted fromB⊕.

(2) Supposea1>0 and a2 = 0 (resp. a1 = 0 and a2>0),
thenb = ⊕(a1, 0). Suppose S is an argument for(φ, a1)
in ΣB1

, then by Definition 3 and Definition 4, there exists
a subset of S, denoted byS1, which is also an argument
for (φ, a1) and the necessity degrees of all the formulas
in S1 are greater thana1. SinceBA

⊕ ⊆ B⊕, each for-
mulaφi with necessity degreeai in S1 belongs toB⊕ with
the necessity degree at least⊕(ai, 0). By the unanimity
property of⊕, ⊕(ai, 0)≥⊕ (a1, 0), for each(φi, ai)∈S1.
We have assumed thatb = ⊕(a1, 0)>Inc(B⊕), so
⊕(ai, 0)>Inc(B⊕), for each (φi, ai)∈S1. Therefore,
there is a formula(φ, a) s.t a≥ ⊕ (a1, 0) in B⊕, and so
the formula(φ,⊕(a1, 0)) is subsumed inB⊕.

(3) Supposea1>0 and a2>0. Let S1 is an argument for
(φ, a1) in ΣB1

andS2 be an argument for(φ, a2) in ΣB2

such that the necessity degrees of formulas inS1 andS2

are greater thana1 anda2 respectively. SinceBA
⊕ ⊆ B⊕,

the disjunctions between formulas ofS1 and S2, which
entail φ, belong toB⊕ with the weight⊕(ai, aj), where
(φi, ai)∈S1 and (ψj , aj)∈S2. By the unanimity prop-
erty, ⊕(ai, aj)≥ ⊕ (a1, a2), for any (φi, ai)∈S1 and
(ψj , aj)∈S2. Therefore,φ is subsumed inB⊕.

In Equation (7), the formula(φi,⊕(ai, 0)) belongs toBA
⊕

because there is an argument(φi, ai) for φi in B1 and
no argument exists forψj in B2. The same explanation
applies to the formula(ψj , bj). Moreover, the formula
(φi ∨ ψj ,⊕(ai, bj)) is in BA

⊕ because it has an argument
(φi, ai) in B1 and an argument(ψj , bj) in B2.



BA
⊕ is different fromB1⊕

′B2 defined by Equation (4),
where⊕′ is the dual operator of⊕, this can be seen in terms
of two aspects.

1. For each formulaφ, if (φ, a)∈B1 and(φ, b)∈B2, where
a, b>0, it belongs toBA

⊕ with the weight⊕(a, b). By con-
trast, it will appear inB1⊕

′B2 with three different forms,
i.e., (φ,⊕(a, 0)), (φ,⊕(0, b)) and (φ,⊕(a, b)). It is clear
that(φ,⊕(a, 0)) and(φ,⊕(0, b)) are redundant information
and we can delete them to make the knowledge base simpler.

Example 1 Let B1 = {(φ, 0.4), (ψ, 0.5), (¬φ, 0.7),
(γ, 0.7)} and B2 = {(φ, 0.2), (ψ ∨ γ, 0.6)} be two
possibilistic knowledge bases. If we take the “bounded
sum”, which is defined as⊕b(a, b) = min(1, a + b),
as the merging operator, then by Lemma 2, the result of
mergingB1 andB2 is BA

⊕b
= {(φ, 0.6), (ψ, 0.5), (¬φ, 0.7),

(γ, 0.7), (ψ ∨ γ, 0.6), (φ ∨ ψ ∨ γ, 1), (ψ ∨ γ, 1), (φ ∨
ψ, 0.7), (¬φ ∨ ψ ∨ γ, 1), (γ ∨ φ, 0.9), (γ ∨ ψ, 1)}.
By contrast, if we combineB1 and B2 using Equa-
tion (4) with the “Łukasiewicz t-norm” (⊕L(a, b) =
max(0, a + b − 1)), the result of merging isB1⊕LB2 =
{(φ, 0.6), (φ, 0.4), (φ, 0.2), (ψ, 0.5), (¬φ, 0.7), (γ, 0.7), (ψ∨
γ, 0.6), (φ ∨ ψ ∨ γ, 1), (ψ ∨ γ, 1), (φ ∨ ψ, 0.7), (¬φ ∨ ψ ∨
γ, 1), (γ ∨ φ, 0.9), (γ ∨ ψ, 1)}.

In Example 1,φ appears inBA
⊕b

with weight 0.6, however,
it appears inB1⊕LB2 with three different weights 0.6, 0.4,
and 0.2 respectively. The formulas(φ, 0.4) and(φ, 0.2) are
redundant information, because we have combined(φ, 0.4)
in B1 and(φ, 0.2) in B2 into (φ, 0.6) and we have no reason
to keep(φ, 0.4) and(φ, 0.2) in the result of merging.

2. In (Benferhat et al. 2001), some merging opera-
tors were introduced to combine two possibilistic knowl-
edge bases using Equation (4). It has been pointed
out that themaximumoperator is appropriate when the
sources are highly conflicting with each other and themin-
imum operator is meaningful when the sources are con-
sistent. When themaximumoperator is chosen, the re-
sult of merging isB1⊕maxB2 = {(φi∨ψj ,min(ai, bj)) :
(φi, ai)∈B1 and (ψj , bj)∈B2}. ClearlyB1⊕maxB2 is too
weakfor the result of merging, i.e., a lot of information is
lost. The reason that themaximumoperator is chosen is be-
cause the inconsistency is viewed as a bad thing and needs
to be avoided in (Benferhat et al. 2001). However, if we
believe that the inconsistency may contain some important
information and keep it, we will not choose themaximum
operator. Therefore, we think it is implicitly assumed that
the original knowledge bases are self-consistent or at least
the inconsistency need to be avoided by choosing appropri-
ate merging operators in (Benferhat et al. 2001). By con-
trast, our method is applied to merge inconsistent knowledge
bases explicitly and we want to keep all the information in
the original knowledge bases after merging.

Properties of the argument-based method
In this subsection, we discuss the relationship between the
argument-based method and the original method in (Ben-
ferhat & Kaci 2003). The following two propositions show
that the argument-based method is a generalization of the
π-consequence relation based merging method.

Proposition 4 LetB = {B1, ..., Bn} be a set of n individu-
ally consistent possibilistic knowledge bases, then the result
of mergingBi satisfying Equation (6) is the same as that
satisfying Equation (2).

Proof.
WhenBi (i = 1, ..., n) are consistent, for any possibilis-

tic formula (φ, ai), Bi `π (φ, ai) iff there exists an argu-
ment for(φ, ai) in ΣBi

. Therefore, the result ofBi satisfying
Equation (6) is the same as that satisfying Equation (2).

Proposition 5 Let B1 and B2 be two possibilistic knowl-
edge bases, ifBA

⊕ is the the result of mergingBi satisfying
Equation (7) andB′π

⊕ is the result of mergingBi satisfying
Equation (3), thenB′π

⊕≡sB
A
⊕ and(B′π

⊕ )∗⊆(BA
⊕)∗.

Proof.
By Lemma 1, Lemma 2 and Corollary 1, it is easy to

check thatB′π
⊕≡sB

A
⊕. By Equation (3) and Equation (7),

it is clear (B′π
⊕ )∗⊆(BA

⊕)∗. To show the converse is not
true, let us consider the following counter-example. Let
B1 = {(φ, 0.7), (¬φ, 0.5), (γ, 0.5)} andB2 = {(ψ, 0.6)}.
SinceInc(B1) = 0.5, γ cannot appear inB′π

⊕ . However, we
have(γ,⊕(0.5, 0)) ∈ BA

⊕.

Proposition 5 shows that the merging result obtained by the
argument-based method contains some information that is
ignored by theπ-consequence relation based method. In the
counter-example, the formulaγ is not in conflict with other
formulas, so it is not advisable to delete it. In fact,γ may
be important information and can be recovered fromB′A

⊕ by
some inconsistency-tolerant consequence relations in (Ben-
ferhat et al. 1993b; 1998). For example, it is easy to show
thatγ is an argumentative consequence ofBA

⊕.
The following proposition compareBA

⊕ andB1⊕
′B2.

Proposition 6 Let B1 and B2 be two possibilistic knowl-
edge bases. IfBA

⊕ is the the result of mergingB1 and B2

satisfying Equation (7) andB1⊕
′B2 is the result of merg-

ing B1 andB2 satisfying Equation (4), where⊕′ is the dual
operator of⊕, thenBA

⊕≡sB1⊕
′B2 andBA

⊕⊆B1⊕
′B2.

The proof of Proposition 6 is obvious, so we will not provide
it here.

Multiple-operator based method
The merging methods introduced above use only a single op-
erator to define the combination of possibilistic knowledge
bases even if some information in it is in conflict. Let us use
the following example to see the problem of a single opera-
tor based merging methods.

Example 2 Let B1 = {(φ, 0.7), (ψ, 0.7), (ξ, 0.8)} and
B2 = {(¬φ, 0.8), (φ, 0.5), (ψ, 0.8), (ξ, 0.6), (γ, 0.4)} be
two independent knowledge bases.ψ and ξ are supported
by bothB1 and B2 with high degrees and they are not in-
volved in inconsistency ofB1∪B2, so there should be a
reinforcement effect for them. Suppose the merging oper-
ator is the probabilistic sumdefined as⊕(a, b) = a +
b − ab, which is a common used operator with reinforce-
ment effect. By Lemma 2, the result of combination of
B1 and B2 is BA

⊕ = {(¬φ, 0.8), (γ, 0.4), (φ, 0.85), (φ ∨
ψ, 0.94), (φ ∨ ξ, 0.88), (φ ∨ γ, 0.82), (¬φ ∨ ψ, 0.94), (φ ∨



ψ, 0.85), (ψ, 0.94), (ψ ∨ ξ, 0.88), (ψ ∨ γ, 0.82), (¬φ ∨
ξ, 0.96), (φ∨ ξ, 0.9), (ψ ∨ ξ, 0.94), (ξ, 0.92), (ξ ∨ γ, 0.88)}.

In this example, the necessity degrees ofψ andξ increase be-
cause theprobabilistic sumhas reinforcement effect. How-
ever, formulasφ and¬φ are strongly in conflict and so they
should counteract with each other. Therefore, the necessity
degrees of bothφ and¬φ should be lower than the original
ones. On the contrary, the necessity degree ofφ increases to
0.85 and the necessity degree of¬φ remains high (0.8) af-
ter the combination, which is unreasonable. This problem is
caused by using only a single operator to combine both the
consistent and conflict formulas.

Let B1 andB2 be two possibilistic knowledge bases from
two different sources. For those formulas that are involved
in the conflict inB1∪B2, their necessity degrees should de-
crease after combination because they will counteract with
each other. By contrast, the necessity degree should increase
for those formulas that are supported by both sources.

Before giving the definition of the multiple-operator
based merging method, let us introduce a merging operator
in Benferhat & Kaci 2003.

Definition 8 An operator⊕ is said to be strongly conjunc-
tive on [0,1] if for all (a1, ..., an)

⊕(a1, ..., an)≥max(a1, ..., an).

A strongly conjunctive operator has many favourable prop-
erties because it satisfies most postulates2 that are in-
troduced in (Benferhat & Kaci 2003) to characterize a
merging operator. If a strongly conjunctive operator
satisfies⊕(a1, ..., an)>max(a1, ..., an) when∀ai 6=1, and
⊕(a1, ..., an) = 1 when∃i such thatai = 1, it is called a
reinforcementoperator. A strongly conjunctive operator is
suitable to merge formulas that are not involved in conflict,
especially those supported by both sources.

We propose another operator as follows.

Definition 9 An operator⊕ is said to be an up-averaging
operator if for all (a1, ..., an)

⊕(a1, ..., an)≤max(a1, ..., an).

This operator reflects that a merging result cannot be greater
than the greatest of all. An example of an up-averaging op-
erator is aweighted average, which is defined as⊕(a, b) =
xa + yb, wherex, y∈[0, 1] andx + y = 1. Whenx = y =
1/2, this operator is the standard average operator and when
x > y (or x < y), the source associated withx is given
more credit than the other source (or vice versa). If an up-
averaging operator satisfies⊕(a1, ..., an)<max(a1, ..., an)
when∃i, ai 6=0, it is called acounteractoperator. An up-
averaging operator is suitable to merge formulas that are in-
volved in conflict.

2A strongly conjunctive operator satisfies the postulatesAi,
i=1,...,5. Only the postulateA6 which refers to a decomposition
of one group into two groups are satisfied by a strongly conjunc-
tive operator is not satisfied by a strongly conjunctive operator.

Definition 10 (Benferhat et al. 1997b)A subbase B of a
classical knowledge baseΣ is said to be minimally incon-
sistent (mI-subbase for short) if and only if it satisfies the
following two requirements:

• B|=false, and
• ∀φ∈B, B−{φ} 6|= false.

Definition 11 A formulaφ is said to be in conflict in a clas-
sical knowledge baseΣ iff it belongs to some minimally in-
consistent subbase ofΣ. The set of formulas in conflict inΣ
is denoted asConflict(Σ).

Now we provide our multiple-operator based merging
method. We always assume that if a formulaφ does not
appear in a possibilistic knowledge baseB, then(φ, 0) has
been added toB.

Definition 12 Let B1 = {(φi, ai) : i = 1, ..., n} andB2 =
{(ψj , bj) : j = 1, ...,m} be two possibilistic knowledge
bases. Let⊕s and⊕a be a strong conjunctive operator and
an up-averaging operator respectively. The combination of
B1 andB2 is defined as∆⊕s,⊕a

(B1, B2) = C∪D, where

C = {φ,⊕a(a, b)|φ∈(Conflict(B1∪B2))
∗, (φ, a) ∈ B1

and (φ, b) ∈ B2},

D = {φ,⊕s(a, b)|φ6∈(Conflict(B1∪B2))
∗, (φ, a) ∈ B1

and (φ, b) ∈ B2}

In Definition 12, we use two operators, one is a strongly con-
junctive operator and the other is an up-averaging operator,
to merge the possibilistic knowledge bases. For those formu-
las that are not in conflict inB1∪B2, we choose the strongly
conjunctive operator to combine them. But for those formu-
las that are in conflict, we use the up-averaging operator to
combine them.

Another important point in favour of Definition 12 is that
∆⊕s,⊕a

(B1, B2) only contains the formulas inB1 andB2

and does not consider the formulas that can be inferred from
B1 or B2. In practice, when an agent needs to combine the
information given by some different agents, he or she will
not always consider the implicit information, i.e., the infor-
mation that can be inferred from a source, because some-
times the amount of information is vast, it may not be fea-
sible to spend that much time on inferring all the conse-
quences. Moreover, considering only the formulas in each
knowledge base makes the computation easy because we do
not need to compute the formulas inferred from the original
knowledge bases.

Example 3 (Continue Example 2) Suppose the merg-
ing operators are ⊕s(a, b) = a + b − ab and
⊕a(a, b) = (a + b)/2. By Definition 12, the result of
the combination ofB1 and B2 is ∆⊕s,⊕a

(B1, B2) =
{(φ, 0.6), (¬φ, 0.4), (ψ, 0.82), (ξ, 0.5), (γ, 0.4)}.

In Example 3, the necessity degrees of bothφ and¬φ de-
crease and the necessity degree ofφ is greater than¬φ after
combination. The necessity degrees of other formulas in Ex-
ample 3 are the same as those in Example 2. However, those
formulas appearing in disjunctive form in Example 2 do not



exist in Example 3. Although we can only infer such formu-
las from∆⊕s,⊕a

(B1, B2) with necessity degrees lower than
those in Example 2,∆⊕s,⊕a

(B1, B2) is much simpler than
BA
⊕ in Example 2.
In Definition 12, all the conflict formulas are weakened to

have lower necessity degrees after combination. However,
in some cases, it may be more reasonable to have the neces-
sity degrees of some formulas in conflict increased. For ex-
ample, suppose we have two possibilistic knowledge bases
B1 = {(φ, 0.7), (ψ, 0.7)} andB2 = {(¬φ, 0.4), (φ, 0.7),
(ψ, 0.4), (ξ, 0.5), (γ, 0.4)} from two sources of information.
Clearly, φ is supported byB1. Although φ is involved in
conflict in B2, the necessity degree ofφ is greater than that
of ¬φ, soφ can be considered to be supported byB2 as a
whole. Therefore, both sourcessupportφ and then the ne-
cessity degree ofφ should increase.

Definition 13 Let B be an inconsistent knowledge base. A
formulaφ that is in conflict inB is said to be weakly sup-
ported byB if and only if∃(φ, a)∈B such thata>b for all
(¬φ, b)∈B.

Definition 14 LetB1 andB2 be two possibilistic knowledge
bases. A formulaφ is said to be in weak conflict with regard
to B1 and B2 if and only if φ is weakly supported byB1

andB2 separately. The set of formulas in weak conflict with
regard toB1∪B2 is denoted as Weak(B1∪B2).

Now we define another multiple-operator based method.

Definition 15 Let B1 = {(φi, ai) : i = 1, ..., n} andB2 =
{(ψj , bj) : j = 1, ...,m} be two possibilistic knowledge
bases. Let⊕s and⊕a be a strong conjunctive operator and
an up-averaging operator respectively. The combination of
B1 andB2 is defined as∆′

⊕s,⊕a
(B1, B2) = C∪D, where

C = {(φ,⊕a(a, b))|φ∈(Conflict(B1∪B2)\Weak

(B1∪B2))
∗, (φ, a) ∈ B1 and (φ, b) ∈ B2},

D = {(φ,⊕s(a, b))|φ6∈(Conflict(B1∪B2))
∗ or φ∈

(Weak(B1∪B2))
∗, (φ, a) ∈ B1 and (φ, b) ∈ B2}

In ∆′
⊕s,⊕a

(B1, B2), necessity degrees of those formulas
that are in conflict and are not weakly supported by both
sources will decrease. By contrast, the necessity degrees of
the formulas that are not involved in conflict or weakly sup-
ported by both sources will increase.

Example 4 Let B1 = {(φ, 0.6), (ψ, 0.7)} and B2 =
{(¬φ, 0.4), (φ, 0.7), (ψ, 0.4), (ξ, 0.5), (γ, 0.4)}. Suppose
the merging operators are⊕s(a, b) = a + b − ab
and ⊕a(a, b) = (a + b)/2. Since φ is in conflict
weak with regard toB1∪B2, by Definition 15, the result
of merging is∆′

⊕s,⊕a
(B1, B2) = {(φ, 0.88), (¬φ, 0.2),

(ψ, 0.82), (ξ, 0.5), (γ, 0.4)}.

Although the result of the second multiple-operator based
merging method is more reasonable than that of the first
one, it is computationally more expensive because it needs
to check whether a formula is weakly supported by two
sources.

Conclusions
In this paper, we proposed two different methods to merge
several possibilistic knowledge bases. The first method,
called an argument based method, is a revision of the merg-
ing method in Benferhat & Kaci 2003. This method is
proved to be more advisable than the method in Benferhat
& Kaci 2003 to merge individually inconsistent knowledge
bases. The single operator based methods combines all the
formulas using one operator. Therefore, we can not differ-
entiate the consistent formulas and conflict formulas. More-
over, the combination is applied to the belief set, i.e., theset
of formulas closed under some consequence relation. This is
computationally too expensive. The second method, called a
multiple-operator based method, has two different versions,
both of them deploy two operators for consistent and con-
flict formulas respectively. In the first version, one operator
decreases the degree of belief of a formula in the conflict set
and another increases the degree of belief of a formula be-
long to the consistent set. In the second version, the operator
that deals with the conflict formulas is revised to decrease
those formulae that areindeedconflict, whilst the rest of the
so-called conflict formulas are merged using the second op-
erator, since both sources show the support for them.
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