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Abstract B — Pss_1/,q, for everyk, infer 3 — P a, wherePs ;a
means probability ofv is at leasts) was added to axiomatic
systems and the corresponding extended completeness the-
orems were proven.

A logic is defined which in addition to propositional calculus
contains several types of probabilistic operators which are ap-
plied only to propositional formulas. For evesye S, where

S is the unit interval of a recursive nonarchimedean field, In (Ognjanove & Raskovic 2000) two kinds of proba-
an unary operatoPs ; () and binary operator§' P—; (., 3) bilistic logics were distinguished: in the first logic higher
andC'P>(a, 8) (with the intended meaning "the probability order probabilities were allowed, while in the second one
of ais at least”, "the conditional probability ofx given 3 is probabilities of classical formulas were considered only. In

s, and "the conditional probability af given is at leasts”,

respectively) are introduced. Singeis a non-archimedean the later case the propositional connectives can be applied to

field, we can also introduce a binary opera@Pe: (a. 3) probabilistic form_ulas, but mixing of_clas§|cal proposm.qnal
with the intended meaning "probabilities afA 3 and3 are and new probabilistic formulas and iteration of probabilistic
infinitely close”. Possible-world semantics with a probabil- operators are not allowed. In the sequel, we concentrate on
ity measure on an algebra of subsets of the set of all possible  the later kind of logics. The new logic, denotéd P~ (L
worlds is provided. A simple set of axioms is given but some for logic, the firstP for propositional, the secon for prob-

of the rules of inference are infinitary. As a result we can ability, while S denotes a set which will be described later),
prove the strong completeness theorem for our logic. For- is similar to the logicL PP, from (OgnjanovE & RaSkovic
mulas of the formC' P~ (v, 8) can be used to model default ~ 2000), with the above mentioned infinitary rule frdn® P,
statements._We discuss some properties of the corresponding replaced by a new one. With this new infinitary rule it is
default entailment. We show that, if the language of defaults — qqipja to determine the range of probability measure syn-
is considered, for every finite default base our default con- tactically. We note that a similar rule was given in (Alechina

sequence relation coincides with the system P. If we allow . . .
arbitrary default bases, our system is more expressive than P, 1999). The main novelty here is that we also introduce con-

Finally, we analyze properties of the default consequence re-  ditional probabilities in the syntax, together with the appro-
lation when we consider the full logic with negated defaults, priate simple axioms. Namely, in addition to unary proba-
imprecise observation etc. bilistic operators of the typ#> ;«, for every elemens of a
syntactically defined se&f, we also introduce binary opera-
: tors of the type€' P_; («, ), CP>s(a, 3) andC Py (v, 8)
) lntrOdugtlo.n ] ) with the intended meaning "the conditional probability of
Different approaches to logics in which reasoning about ., given 3 is s”, "at least s”, and "infinitely close to 17,

probability is possible have been proposed. In some of them respectively. The other novelty is that we specify, already

probabilities with finite ranges are allowed onBdfdew, in the syntax, that the range of the probability function is
Raskovic, & Ognjanove 2004; Ognjanodi & Raskovic  non-standard, in the sense that it contains infinitesimals. Al-
2000; Ra&kovic 1993). In the others arbitrary probabili-  though non-standard analysis is unfamiliar to most people,

ties are considered. In (Fagin, Halpern, & Megiddo 1990; e should point out that it is essentially the original ap-
Fagin & Halpern 1994) finite axiomatizations for various proach of Leibnitz and Newton, reworked into a consistent
probabilistic logics were proposed. In that case the com- mathematical theory in 60's by A. Robinson using model
pactness theorem does not hold for the logics. Since the theory. There is an elementary presentation for freshman
compactness theorem follows easily from the extended com- (keisier 1986), where everything is reduced to starting with
pleteness theorem (‘every consistent set of formulas is satis- nonarchimedean field, instead of the usual archimedean field
fiable’), one cannot hope for the extended completeness hav- of real numbers. This means that there exist infinite num-
ing a finitary axiomatic system. On the other hand, in (Ogn- pers, e.g., a numbeék, such that’ > n and0 < % <1
janovic & Raskovic 1999; 2000) an infinitary rule (from for every natural numbes. We call% an infinitesimal. Eril-
*This work is supported by Ministartstvo nauke stigeZivotne erything else is obtained using freshman mathematics. An-

sredine Republike Srbije, through MatengatiInstitut Beograd, other approach, less elementary but still simple for anyone
grant number 1379. proficient in standard analysis, is presented in (Benferhat,



Saffiotti, & Smets 2000, Section 2.4). The rationale for in- integerk. Note that there is no positive infinitesimale S

troducing non-standard analysis is that this is the simplest such that for every positive integere; < €*.

way of making precise statement like "probabilitiesof 3 Let{so, s1, ...} be an enumeration &f. The language of

and 3 are almost the same”, which in turn represents a de- the logic consists of:

fault entailment "if 5 then, usuallya”. In our system this _ it

will be represented by the operatoie; (a. 3). . ?Et?eerr;umerable séfar = {p,q,r,...} of propositional
In the seminal papers (Kraus, Lehmann, & Magidor 1990; - )

Lehmann & Magidor 1992) a set of properties which forma ® classical connectives, andA,

core of default reasoning and the corresponding formal sys- e a list of unary probabilistic operatof#s;)ses,

tem denoted P (or KLM) are proposed, while the default : : —

consequence relation is described in terms of preferential *a I!St of b!nary probabflfstfc OPeratore' P> )ses

and rational models. In recent years many semantics for de- ® & list of binary probabilistic operatof§’P—;),cs and

fault entailment have been introduced and proven to be char- e a binary probabilistic operatorsPx .

acterized by P (Friedman & Halpern 2001). Some of them

are more or less close to our approach. In (Adams 1975;

Lehmann & Magidor 1992) default rules are interpreted in

terms of high conditional probabilities. In this paper we give

a sound and complete axiomatization for a logic which ex-

tends those systems. It allows us to syntactically describe

the behavior of the defaults in a probabilistic framework.

A qualitative approach to nonstandard probabilities which ® P>safora € Forc,s € S,

uses only the power of the most significant term in the poly- o CP_,(a, 8) for o, 8 € Fore, s € S,

nomial p,,(¢) (denoting the probability of a possible world

w, € is an infinitesimal) is proposed in (Goldszmidt & Pearl *® CPzs(a, ) fora, § € Forc, s € S and

1996) as a tool to work with defaults. In (Benferhat, Saf- e CP~1(a, ) fora, 5 € Forc.

fiotti, & Smets 2000) belief functions with extreme values  anq closed under the formation rules:Afand B belong to

are used to give semantics to default rules. We will show y then—A, and A A B are inY. Formulas fromFors,

that, thanks to our probabilistic semantics, the default en- \yjj| pe denoted by4, B, ...Note that we use the prefix

tailment defined in our system is different from all those notation C' P, (a, 3) (and similarly for CP_,(a, ) and
approaches. The language of our logic allows one to ex- C P~ (o, 3)) rather than the corresponding infix notation
press negated defaults, imprecise observation etc. (similarly ,cp._ 3 (aCP_,3, aC Py ).

as in the framework of conditional logic (Burghess 1981, As it can be seen, neither mixing of pure propositional
Friedman & Halpern 2001), but we do not have nested de- formulas and probability formulas, nor nested probabilistic
faults) and to deal with problems that are even not definable gperators are allowed. For exampiey P ;3 and P, P-.a

in the usual default systems. _ are not well defined formulas.

with the syntax and semantics of our logic. Then we give & pe defined as usual, while we denoteP-.a by

sound and complete axiomatic system. In the main partof p_  p., o by P-,a, =Posa by Peo,a, Posa A

the paper we describe in detail how our system can be used .p_ o by P_.a, —P_,a by Piea, ~CPsq(a,3) by

to model default reasoning and analyze properties of the cor- cp__ (a, 3), CP-(a,3) v CP.(a, 8) by CP<.(a, ),

responding default consequence relation. In the conclusion andC P, (, 3) A ~C P—s(av, 3) by C P~ (av, B).

we summarize our results and mention some possible direc- oS s ;

tions for further investigation. A sketch of the proof of the Let For® = Foro U Forp. ¢, ¢, ... will be used to
completeness theorem is presented in the appendix.

The setFore of classical propositional formulas is the
smallest sefX' containingVar and closed under the forma-
tion rules: ifa andg belong toX, then—« anda A 3, are in
X. Elements off'orc will be denoted by, 3, ... The set
For% of probabilistic propositional formulas is the smallest
setY containing all formulas of the forms:

denote formulas from the sétor®. Fora € Forg, and
A € Fory, we abbreviate both(a — o) and—(A — A)
by L letting the context determine the meaning.

Syntax
Let S be the unit interval of a recursive nonarchimedean Semantics
field containing all rational numbers. An example of such  Thg semantics foForS will be based on the possible-world
field is the Hardy field?[e]. Qe] contains all rational func- approach.

tions of a fixed infinitesimat which belongs to a nonstan- o .
dard elementary extensid®* of the standard real numbers ~ Definition 1 An LPP%-model is a structurgW, H, i, v)
(Robinson 1966). We usg, e, .. . to denote infinitesimals ~ Where:

from S. Note that every positive member §fis of the form

e IV is a nonempty set of elements called worlds,
S e e H is an algebra of subsets of,
ekﬁ e 1 : H — Sis afinitely additive probability measure, and
=0 " °

v: W x Var — {true, false} is a valuation which asso-
whereag - by # 0, which means that for every infinitesimal ciates with every worldv € W a truth assignment(w)
€; € Q[e], e; < ce* for some positive rational numberand on the propositional letters.



classical propositional formula. Lét/ be anL PP model
anda € Fore. The sef{w : v(w)(a) = true} is denoted
by [Oé]]u.
Definition 2 An LPP*-modelM is measurable ifa]y, is
measurable for every formula € Fore (i.e., [a]y € H).
An LPPS-modelM is neat if only the empty set has the zero
probability.

In this paper we focus on the claé$* Py, . ycq; Of all
neat and measurableP P°-models.
Definition 3 The satisfiability relation =C
LPPy s near X For® is defined by the following
conditions for ever)LPPJ@msyNeat—modelM:

1. ifa € Fore, M = aif (Yw € W)v(w)(a) = true,
2. M E P> aif p(la]ar) > s,
3. M = CP-. (0 9) if either p([Blar) = 0 0r ([5]ar) > 0

(oA Blar)
and =,y

4. M E CP_(a,B) if either u([8]ar) = 0ands = 1 or

p([anB]m)
w([B]a) > 0 and w([Bla1)

5. M = CPxi (o, B) ifeither u([B]ar) = 00r u([B]ar) > 0

Hiva p([anB]m) _
and for every positive integer, LB 2 1

6. if A Ford, M = ~Aif M £ A,
7. A, B€ For$, M= AABif M = AandM |= B.

> s,

:S,

1
=

Note that the condition 5 is equivalent to saying that the
conditional probability equals — ¢; for some infinitesimal
€ € 8S.

A formula ¢ € For® is satisfiable if there is an
LPPy.qs Near-ModelM such thatMl |= ; o is valid if for

everyLP Py .« neai-MOdelM, M | ¢; a set of formulas
is satisfiable if there is a model in which every formula from
the set is satisfiable. A formula € For® is a semantical
consequence of a set of formul@s(T" = ) if ¢ holds in
everyL Pheqs, Neat-Model in which all formulas frorfi” are
satisfied.

A sound and complete axiomatization

The set of all valid formulas can be characterized by the fol-
lowing set of axiom schemata:

1. all Forc-instances of classical propositional tautologies
all For3-instances of classical propositional tautologies
Psoa

Pcsao— Poyo,r > s

Posa — P<so

Pxi(a < f) — (Posa — P-sf3)

(P=sa AN P_,BAP>1=(aNfB)) = Poping1,s4r)(aV 3)
CP_,.(a,) = ~CP—¢(c,B), r #1

P—o8 — CP=1(c, B)

- (P=pB A P=s(a A B)) = CP—g/r(c, B), 7 # 0

. CP=(a,8) = =CP>¢(a, B), r <t

© © N T s~

=
[N )

The valuationv is extended to a truth assignment on all 12. CP_,(
(

CY,,B) - CPZt(a>5)! r 2 t
13. CP— (o, ) = (P=tr(a A B) < P—13),t # 0
14. CPxi(a, B) — CPsy(a, 3), for every rationat € [0, 1)

15. CP-;(a, B) — CPxi(a, B)

and inference rules:
. Fromy andy — 9 infer .

N

If « € Forc, froma infer Psjo.
FromA — P, foreverys € S,inferA — L.

FromA — (P—¢.(aAB) < P—,(3), foreveryr € S\{0},
infer A — CP_(av, ).

5. FromA — CP-,.(a A (3), for every rational # 1, infer
A — CPyy(a, B).

We denote this axiomatic system By ; pps. Let us briefly
discuss it. Axiom 3 says that every formula is satisfied in a
set of worlds of the probability at least 0. By substituting
- for a in Axiom 3, the formulaP<; o (= P>o—¢) is ob-
tained. This formula means that every formula is satisfied
in a set of worlds of the probability at most 1. Let us de-
note it by 3. Axiom 6 means that the equivalent formulas
must have the same probability. Axiom 7 corresponds to
the property of the finite additivity of probability. It says
that, if the sets of worlds that satisty and 3 are disjoint,
then the probability of the set of worlds that satisfy’ g is

the sum of the probabilities of the former two sets. Axiom
13 and Rule 4 express the standard definition of conditional
probability, while the axioms 14 and 15 and Rule 5 describe
the relationship between the standard conditional probabil-
ity and the conditional probability infinitesimally close to
1. From Axiom 3’ and Rule 2 we obtain another infer-
ence rule: fromx infer P_1«. The rules 3 — 5 are infini-
tary. Rule 3 guarantees that the probability of a formula
belongs to the sef. Rule 4 corresponds to the standard
meaning of the conditional probability, and Rule 5 syntac-
tically defines the notion "infinitesimally close to 1". We
should point out that, although infinitary rules might seem
undesirable, especially to a computer scientist, similar types
of logics with infinitary rules were proved to be decidable
(Ognjanove & Raskovic 2000). On the other hand, since
the compactness theorem does not hold for our logic (there
exists countably infinite set of formulas that is unsatisfiable
although every finite subset is satisfiable: for instance, con-
sider{—P—_pa} U {P<na : n is a positive integey) involv-

ing infinitary rules in the axiomatic system is the only way
to obtain the extended completeness, as itis explained in the
introduction.

A formula ¢ is deducible from a sef’ of formulas (de-
notedT Faz, os «) if there is an at most denumerable
sequence (caﬂed proof) of formulas), ©1, ..., ¢, such
that everyyp; is an axiom or a formula from the s&t, or
it is derived from the preceding formulas by an inference
rule. A formulay is a theoremHK ) if it is deducible
from the empty set. A setf’ of formulas is consistent if
there are at least a formula frofor, and at least a for-
mula from Fory that are not deducible fror’. Now,
following the ideas from (Ognjanoi& RaSkovic 1999;

W



2000) we can prove the extended completeness theorem forLehmann & Magidor 1992) that the system P is sound and

S .
the class oL PPy, ¢ neq,-Models:

Theorem 1 (Extended completeness theorem) set T
of formulas is consistent if and only i’ has an
LPP}} 04 Nea-Mmodel.

A sketch of the proof is provided in the appendix. In the
usual manner we can derive the following corollary:

Corollary 1 For every sefl" of formulas and every formula
o, T = pifand only if T + .

Modeling default reasoning

The central notion in the field of default reasoning is the no-
tion of default rules. A default rule, which can be seen as
a sentence of the form 'if, then generally3’, can be writ-

ten ad oo — (. A default base\ is a set of default rules.

complete with respect to the class of all preferential models:

Theorem 2 A|~ « — (3 with respect to the class of all
preferential modelsifand only ik -p o — (.

A special subclass of preferential models, the class of ratio-
nal (or ranked) models, is also considered in (Lehmann &
Magidor 1992). A preferential model is rational if the cor-
responding set of states can be partitioned into equivalence
classes (or ranks) such that states in a class are mutaally
incomparable and the classes are totally ordered. However,
although rational models satisfy the property called rational
monotonicity (ifa — 3, anditis notw — —, thenaAy —

() it is shown that the system P is sound and complete with
respect to the class of all rational models as well (when
the language of defaults is considered). It turns out that
many other approaches to default reasoning (Adams 1975;

Default reasoning is described in terms of the corresponding Benferhat, Dubois, & Prade 1997; Benferhat, Saffiotti, &

consequence relatigr, i.e., we are interested in determin-

Smets 2000; Goldszmidt & Pearl 1996) are characterized

ing the set of defaults that are the consequences of a defaultby P. It is explained in (Friedman & Halpern 2001) that the

base. Then, ifv is a description of our knowledge add~

a — (3, we (plausibly) conclude that is the case. There
are a number of papers which describén terms of classes
of models and the corresponding satisfiability relatigas
such thatA|~ « — g if for every modelM satisfyingA,

M E a — B. In (Kraus, Lehmann, & Magidor 1990;
Lehmann & Magidor 1992) a set of properties which form a

core of default reasoning, and the corresponding formal sys-
tem denoted P are proposed. The system P is based on th

following axiom and rulesk denotes classical validity):
e o — « (Reflexivity)

e from = a < o/ anda — g, infera’ — [ (Left logical
equivalence)

e from [ 8 — B anda — (3, infera — 3’ (Right weak-
ening)

e froma — (B anda — ~, infera — B A~y (And)
e froma — v andg — ~, infera Vv g — ~ (Or)

e froma — [Fanda — ~, infera A 5 »— ~ (Cautious
monotonicity).

Then, for a default bas@a, A Fp a — Sif a — Fis
deducible fromA using the above axiom and rules. De-

classes of models of all those systems can be mapped into
the so-called rich classes of qualitative plausibility structures
such that the following (weak) completeness theorem holds:

Theorem 3 ((Friedman & Halpern 2001) Theorem 5.8)

A setT of qualitative plausibility structures is rich if and
only if for all finite default baseA and defaultsae — g,
A Era— gimpliesAtp a— 3.

8t is also argued that that the finiteness constraint¥aran

be overcome (which leads to the strong completeness), but
the proof is not given there.

In this section we describe how our system can be used to
model default reasoning. As it is noted in the Introduction,
the ideas of using probabilities and infinitesimals in default
reasoning are not new (see, for example (Adams 1975; Ben-
ferhat, Saffiotti, & Smets 2000; Goldszmidt & Pearl 1996;
Lehmann & Magidor 1992; Satoh 1990)). In (Lehmann &
Magidor 1992) a family of nonstandard{) probabilistic
models characterizing the default consequence relation de-
fined by the system P, is proposed. Ai-probabilistic
model is a tripleM = (W, H, u), whereW is a set of possi-
ble worlds (truth assignments to propositional lettefs)is
an algebra of subsets &f containing all sets definable by

fault consequence relation is also described in terms of Propositional formulas, and : H — R* is a finitely addi-

preferential models. A preferential model is a structure
M = (W,l,<), whereW is a set of stated, is a valu-

tive R*-valued probability measure. A default— ( holds
in an R*-probabilistic model if either the probability af

ation which associates with each state a truth assignment iS 0 Or the conditional probability of givena is infinitesi-

on propositional letters, ang is a strict partial order on
W such that every set definable by formulds](= {s €
W : s = «}) satisfies the following condition: for ev-
eryt € [«] either there is minimak € [o] suchu < ¢
or ¢ is itself minimal in [a]. A defaulta — (3 holds
in a preferential model\/ if for every s minimal in [«],
s E . Itis proved in (Kraus, Lehmann, & Magidor 1990;

!Note that the other authors use different symbels (~, for
example) to denote the 'default implication’. In our opinion those

symbols can cause confusion, so we prefer to introduce a new sym-

bol here.

mally close tol. Obviously, that class of models is a super-
class of LPPyy,,, nea SiNCE in our approach the range of
probabilities is a countable subset of the unit intervaRof

We can use&’' P (0, o) to syntactically describe the be-
havior of the defaultx — (3. In the sequel, we will use
«a — 3 both in the original context of the system P and
to denote the corresponding translat@®~; (5, ). In the
case of a finite default base our approach produces the same
result as the other mentioned approaches, namely it is equiv-
alentto P.

Theorem 4 For every finite default basé and for every



defaulta — g3
ArFpa— g iff Abag, ¢ @ p.

Proof. First, since (the corresponding translation of) all
axioms and rules (e.9.(CP~1(8,a) A CPyi(y,a)) —
CPx1(8 N 7, «) corresponds to And rule) of the system P
are valid in the class of nonstandard probability models from
(Lehmann & Magidor 1992), an@ PPy, .. nea: IS @ SUD-

class of that class, P is sound with respedt Py, . year-

On the other hand, following the ideas from (Lehmann
& Magidor 1992, Lemma 4.9), we can show that for every
finite default basé\ and for every defaultv — £, if A /p
a — pthenA 4, .o a — (3. The key step in the
proof is that there is a finite rational model = (W, 1, <)
which satisfiesA and does not satisfg — (3. M can be
transformed to arL. PPy, n..,-Model M’ such that for
every defaultd, M | d iff M’ = d. The transformation
can be as follows. For an arbitrary infinitesimale S a
probability distribution: on W can be defined so that:

o HlWnt1) _ o , wherew,, andw,, 1 are the sets of all states
w(wn,

of the rankn andn + 1 respectively, and
o all states of the same rank have equal probabilities.

SinceM = Aand M [~ « — 3, the same holds for

M’, and from the completeness dfr; s we obtain that

A |7(A.L Q= 6 U
F|naI[I§/, as itis noted in (Lehmann & Magidor 1992, The-

orem B.12), using the similar arguments as above we can

also prove a stronger version of Theorem 4:

Theorem 5 If the language of a default bageis finite, then
for every defaulty, — 3, A Fp a — g if and only if
a— f.

Theorem 5 cannot be generalized to an arbitrary default
baseA, as it is illustrated by the following example. It is
proved in (Lehmann & Magidor 1992, Lemma 2.7) that the
infinite set of defaultsl’ = {p; — pit1,Pi+1 — —Pi}s
wherep;’s are propositional letters for every integer 0,
has only non well-founded preferential models (a preferen-
tial model containing an infinite descending chain of states)
in which py 4~ 1, i.e., po is consistent. It means that
T tp po — L. On the other hand[’ Faz, ,ps PO — L
since the following holds. Let ah.P Py, x..-model
M = (W, H,u,v) satisfy the sefl’. If u([p;]) = 0, for
somei > 0, then it must be:([po]) = 0, andM = py — L.
Thus, suppose that([p;]) # 0, for everyi > 0. Then:

pllpi Apital) L and P Apisa]) 1

H([Pi]) M([Piﬂ]) 7
ie.,
p(lpi Apisi]) . p=pi Apia]) .
W) T e T

for some infinitesimalg; ande,, and for everyi > 0. A
simple calculation shows that

w([pi A piti]) = e2u([=pi A pisa]),

w([pi A =piva]) = exp([pi A pita])
and
1([pi]) < eopr([pi+al),
for everyi > 0, whereeg < {e1,€2}. Since, for some and
k, eo < ce, it follows that for everyi > 0,

0 < p(lpo]) <€

Sinceu([po]) € S and there is no positive element®fvith
such property, it follows that

#([po]) = 0, [po] = P andM = po — L.
SinceM is an arbitraryLP Py, neq,-ModelT Fa, o

po — L. Note that the above explanation whay[po]) = 0

does not hold in the case when the range of the probability
is the unit interval ofR* becauseR* is w;-saturated (which
means that the intersection of any countable decreasing se-
guence of nonempty internal sets must be nonempty). As
a consequence, thanks to the restricted ranges of probabili-
ties that are allowed ||iLPPMmg Near-Class of models, our
system goes beyond the system P, when we consider infinite
default bases.

There are some weaknesses of the system P. The most no-
table are that it suffers from the problems of irrelevance and
inheritance blocking from classes to exceptional subclasses
(Benferhat, Saffiotti, & Smets 2000; Goldszmidt & Pearl
1996). To overcome these problems the following approach
is usually taken: considering a default base, one determines
a subset of the corresponding class of models and reasons
about the behavior of defaults in that subclass only. For ex-
ample, the system Z (Goldszmidt & Pearl 1996) is based
on the class which contains only one model of the consid-
ered default base. That model is distinguished because the
corresponding ranking function is minimal. In the system
Z the irrelevance problem is correctly addressed. Similarly,
the system Z from (Goldszmidt & Pearl 1996) solves the
drawback of the inheritance blocking. Since ranking func-
tions that are used in those systems are qualitative approx-
imations of nonstandard probabilities, it is not hard to see,
having in mind the procedure for the probability calculation
mentioned in the proof of Theorem 4, that those systems can
be described in the semantical framework given by our ap-
proach.

All the above remarks do not take into account that the
language of our system is rich enough not only to express
formulas that represents defaults but also to describe more:
probabilities of formulas, negations of defaults, combina-
tions of defaults with the other (probabilistic) formulas etc.
Let us now considerer some situations where these possibil-
ities allow us to obtain more conclusions than in the frame-
work of the language of defaults.

For example, the translation of rational monotonicity,
(@ = B)A—(a = ) = (@A) — f) s
LPPA%M’Neat-valid since rational monotonicity is satis-
fied in every R*-probabilistic model, and. PPy, year
is a subclass of that class of models. The same holds for
the formula—(true — false) corresponding to another
property called normality in (Friedman & Halpern 2001). In
(Benferhat, Saffiotti, & Smets 2000) the following example



is presented. Let the default base consist of the following
two defaultss — b ands — t, wheres, b and¢ means
swedes, blond and tall, respectively. Because of the inheri-
tance blocking problem, in some systems (for example in P)
it is not possible to conclude that swedes who are not tall are
blond (s A —t) »— b). Since our system and P coincide if
the default base is finite, the same holds in our framework.
In fact, there are SOMBP Py, .. neq:-Models in which the
previous formula is not satisfied. Avoiding a discussion of
intuitive acceptability of the above conclusion, we point out
that by adding an additional assumption to the default base
we can entail that conclusion too. The assumption says that
the probability ofs A =t A —b is at least an order of magni-
tude lower than the probability f A —t, which means that
there are significantly more short swedes than short swedes
that are not blond. It can be expressed in our logic as the
set{P<,(s A —t) — P<./n(s A=t A —b) : foreveryr €

S,n > 0}. An easy calculation which respects that assump-
tion shows thats A —t) — b follows from the new knowl-
edge base.

Conclusion

In this paper we consider a language, a class of probabilis-
tic model and a sound and complete axiomatic system (at a
price of introducing infinitary deduction rules). In the for-
malization most parts of field theory are moved to the meta
theory, so the axioms are rather simple. Our system allow us
to model default reasoning. The corresponding entailment is
characterized by the following:

o if we consider the language of defaults and finite default
bases, the entailment coincides with the one in the system
Pl

o if we consider the language of defaults and arbitrary de-
fault bases, more conclusions can be obtained in our sys-
tem than in the system P,

e when we consider our full language, we can express ratio-
nal monotonicity, normality and the other properties that
can not be formulated in the usual systems for default rea-
soning,

e it is not sensitive to the syntactical form which repre-
sents the available knowledge (for example, duplications
of rules in the knowledge base).

There are many possible directions for further investiga-
tions. First of all, the question of decidability of our logic
naturally arises. We believe that the ideas from (Ognjanovi
& Raskovic 2000) can help us in obtaining axiomatization
of the logic with higher order conditional probabilities and
the corresponding first order logic. It would be interesting to
compare such a logic and the random world approach from
(Grove, Halpern, & Koller 1996). Finally, although some
approaches which avoid the problems of irrelevance and in-
heritance blocking may be (for someone) not completely in-
tuitively acceptable, it is clear that deeper comparison of our
probabilistic framework and those systems can help us to
better understand default entailment proposed in this paper.
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Appendix. Proof of Theorem 1

4. for every: > 0, if T; is enlarged by a formula of the form

P_pa, add—ato T; U { P_pa} as well.
We have to show that every; is a consistent setTj is
consistent because it is a set of consequences of a con-
sistent set. Suppose th@},;.; is obtained by the step 2

Soundness of our system follows from the soundness of Of the above construction and that neitffey U {A;}, nor
propositional classical logics, as well as from the proper- T5; U {—A;} are consistent. It follows by the deduction the-

ties of probabilistic measures. The arguments are of the orém thatly; = A; A —A;, which is a contradiction. The

type presented in the proof of Theorem 13 in (Markovi
Ognjanove, & Raskovic 2003). In the proof of the com-

proof proceeds by analyzing possible cases in the other steps
of the construction. We continue by showing that the set

pleteness theorem the following strategy is applied. We start 7~ = U:T: is a deductively closed set which does not con-

with a form of the deduction theorem. In the next step we
show how to extend a consistent $evf formulas to a max-
imal consistent sét™. Finally, a canonicaLPPJ@m’Neat—
model M is constructed out of the formulas from the $&t
such thatM |= ¢ iff p € T*.

Theorem 6 (Deduction theorem)If T is a set of formulas
andT U {¢} F ¢, thenT + ¢ — 1, where eitherp, ¢ €
Forcorp, v e Forlsp.

Proof. We use the transfinite induction on the length of the
proof of ¢ from T' U {¢}. For example, let) = C — L
is obtained fromil" U {¢} by an application of Rule 3, and
¢ € Fory. Then:

T, o= C — Pxi6, foreverys € S

TF ¢ — (C— Pxi6),foreverys € S, by the induction
hypothesis

TF (pANC) — Pxsd, for everys € S

TH(eANC)— L,byRule3

THp— .
The other cases follow similarly. d

A consistent sef” of formulas is said to be maximal con-
sistent if the following holds:

o foreverya € Fore, if T F «, thena € T andP>1a €
T, and

o foreveryA € Fory, eitherA € Tor—A € T.

A set T is deductively closed if for every ¢ For®, if
TF ¢, thenp € T

Theorem 7 Every consistent sef’ can be extended to a
maximal consistent set.

Proof. Let T be a consistent sefinc(T') the set of all clas-
sical formulas that are consequencesipfAdy, A;, ...an

enumeration of all formulas frorﬂori andag, aj, ...an

enumeration of all formulas front'oro. We define a se-
guence of set¥;,7 =0, 1, 2, ...such that:

LTy =TUCnc(T)U{Ps>1a:a € Cnc(T)}

2. for everyi > 0, if Ty; U {A;} is consistent, then
Toi1 = To; U {A;}; otherwise, if 4; is of the form
A — CP:S(Oé,ﬁ), thenT27;+1 = T, U {ﬁAi,A —
—(P_st(a A B) < P_:p)}, for somet > 0; otherwise,
if A;is of the formA — CPxyi(a, (), thenTy; 11 =
To; U{—A4;, A — -CPs,(a,3)}, for some rational num-
berr € [0,1); otherwise T 11 = Ta; U {—A;},

3. for everyi > 0, Tyito = Tai41 U {P=ra; }, for some
r € S, so thatly, 1 is consistent,

tain all formulas, and, as a consequence, fftats consis-

tent. For example, if a formula € Fore, by the construc-

tion of Ty, @ and -« cannot be simultaneously if,, and

if T* I «, then by the construction df, o, P>1ac € T,

Finally, according to the above definition of a maximal set,

the construction guarantees that is maximal. a
Now, usingT™ we can define a tuplé/ = (W, {[a]a :

a € Forg}, p,v), where:

o W = {w | Cne(T)} contains all the classical propo-
sitional interpretations that satisfy the get(T") of all
classical consequences of the Fet

o oy ={weW:wkal,

o for every worldw and every propositional lettgre Var,
v(w)(p) = trueiff w = p, and

e i is defined on{[a]ys : o € Forc} by u([a]ar) = s iff
P_,oaeT*.

The next theorem states thitis anLP Py, y...-model.

Theorem 8 Let M = (W, {[a]y : « € Forc},u,v) be
defined as above. Then, the following hold:

1. u is a well-defined function.

2. {[a]m : @ € Forc} is an algebra of subsets o .

3. uis afinitely additive probability measure.

4. for everya € Forg, p([a]y) = 0iff [a]p = 0.

Proof of Theorem 1. The («<)-direction follows from the
soundness of the above axiomatic system. In order to prove
the (&)-direction we construct théPP]ﬁea&Neat-model

M as above, and show that for evepyc For®, M = ¢
iff ¢ € T*. For example, letp = CPxi(a, 3). Sup-
pose thatC' P (o, 3) € T*. If u([B]a) = 0, it follows
that M = CP~i(a, 8). Next, suppose that([8]ar) # O.
From Axiom 14, we have that for every rationak [0, 1)
CPs,(a,8) € T*, and CP-.(o,8) ¢ T*. It means
that for every rationat € [0,1), M = CP>,(«, (), and
M ¥ CP-.(«a,p), i.e. that for every positive integer,
wllorBla) > 1 — Lt follows that M = C P (a, §).

w((Blm)

Let CPui(e,8) & T*. If p([Blm) = 0, thenM E
CP_1(c,8), CP—1(a,8) € T*, and using Axiom 15
CPxi(a, 3) € T*, a contradiction. Thus, lgt([5]as) # 0.
By the step 2 of the construction @f*, there is some ra-
tional number- € [0,1) such that-C P~ (o, 8) € T*. It
means that there is some rational numbeg [0, 1) such

that M = CPs,(«a,3), and it does not hold that for every
positive integem, % >1- % Thus, we have that

M £ CPer(a, B). O



