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Abstract

A logic is defined which in addition to propositional calculus
contains several types of probabilistic operators which are ap-
plied only to propositional formulas. For everys ∈ S, where
S is the unit interval of a recursive nonarchimedean field,
an unary operatorP≥s(α) and binary operatorsCP=s(α, β)
andCP≥s(α, β) (with the intended meaning ”the probability
of α is at leasts”, ”the conditional probability ofα givenβ is
s, and ”the conditional probability ofα givenβ is at leasts”,
respectively) are introduced. SinceS is a non-archimedean
field, we can also introduce a binary operatorCP≈1(α, β)
with the intended meaning ”probabilities ofα ∧ β andβ are
infinitely close”. Possible-world semantics with a probabil-
ity measure on an algebra of subsets of the set of all possible
worlds is provided. A simple set of axioms is given but some
of the rules of inference are infinitary. As a result we can
prove the strong completeness theorem for our logic. For-
mulas of the formCP≈1(α, β) can be used to model default
statements. We discuss some properties of the corresponding
default entailment. We show that, if the language of defaults
is considered, for every finite default base our default con-
sequence relation coincides with the system P. If we allow
arbitrary default bases, our system is more expressive than P.
Finally, we analyze properties of the default consequence re-
lation when we consider the full logic with negated defaults,
imprecise observation etc.

Introduction
Different approaches to logics in which reasoning about
probability is possible have been proposed. In some of them
probabilities with finite ranges are allowed only (-Dord̄evíc,
Rǎskovíc, & Ognjanovíc 2004; Ognjanovíc & Rǎskovíc
2000; Rǎskovíc 1993). In the others arbitrary probabili-
ties are considered. In (Fagin, Halpern, & Megiddo 1990;
Fagin & Halpern 1994) finite axiomatizations for various
probabilistic logics were proposed. In that case the com-
pactness theorem does not hold for the logics. Since the
compactness theorem follows easily from the extended com-
pleteness theorem (’every consistent set of formulas is satis-
fiable’), one cannot hope for the extended completeness hav-
ing a finitary axiomatic system. On the other hand, in (Ogn-
janovíc & Rǎskovíc 1999; 2000) an infinitary rule (from

∗This work is supported by Ministartstvo nauke i zaštiteživotne
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β → P≥s−1/kα, for everyk, inferβ → P≥sα, whereP≥sα
means probability ofα is at leasts) was added to axiomatic
systems and the corresponding extended completeness the-
orems were proven.

In (Ognjanovíc & Rǎskovíc 2000) two kinds of proba-
bilistic logics were distinguished: in the first logic higher
order probabilities were allowed, while in the second one
probabilities of classical formulas were considered only. In
the later case the propositional connectives can be applied to
probabilistic formulas, but mixing of classical propositional
and new probabilistic formulas and iteration of probabilistic
operators are not allowed. In the sequel, we concentrate on
the later kind of logics. The new logic, denotedLPPS (L
for logic, the firstP for propositional, the secondP for prob-
ability, whileS denotes a set which will be described later),
is similar to the logicLPP2 from (Ognjanovíc & Rǎskovíc
2000), with the above mentioned infinitary rule fromLPP2

replaced by a new one. With this new infinitary rule it is
possible to determine the range of probability measure syn-
tactically. We note that a similar rule was given in (Alechina
1995). The main novelty here is that we also introduce con-
ditional probabilities in the syntax, together with the appro-
priate simple axioms. Namely, in addition to unary proba-
bilistic operators of the typeP≥sα, for every elements of a
syntactically defined setS, we also introduce binary opera-
tors of the typesCP=s(α, β),CP≥s(α, β) andCP≈1(α, β)
with the intended meaning ”the conditional probability of
α given β is s”, ”at least s”, and ”infinitely close to 1”,
respectively. The other novelty is that we specify, already
in the syntax, that the range of the probability function is
non-standard, in the sense that it contains infinitesimals. Al-
though non-standard analysis is unfamiliar to most people,
we should point out that it is essentially the original ap-
proach of Leibnitz and Newton, reworked into a consistent
mathematical theory in 60’s by A. Robinson using model
theory. There is an elementary presentation for freshman
(Keisler 1986), where everything is reduced to starting with
nonarchimedean field, instead of the usual archimedean field
of real numbers. This means that there exist infinite num-
bers, e.g., a numberK, such thatK > n and0 < 1

K < 1
n

for every natural numbern. We call 1
K an infinitesimal. Ev-

erything else is obtained using freshman mathematics. An-
other approach, less elementary but still simple for anyone
proficient in standard analysis, is presented in (Benferhat,



Saffiotti, & Smets 2000, Section 2.4). The rationale for in-
troducing non-standard analysis is that this is the simplest
way of making precise statement like ”probabilities ofα∧β
andβ are almost the same”, which in turn represents a de-
fault entailment ”ifβ then, usuallyα”. In our system this
will be represented by the operatorCP≈1(α, β).

In the seminal papers (Kraus, Lehmann, & Magidor 1990;
Lehmann & Magidor 1992) a set of properties which form a
core of default reasoning and the corresponding formal sys-
tem denoted P (or KLM) are proposed, while the default
consequence relation is described in terms of preferential
and rational models. In recent years many semantics for de-
fault entailment have been introduced and proven to be char-
acterized by P (Friedman & Halpern 2001). Some of them
are more or less close to our approach. In (Adams 1975;
Lehmann & Magidor 1992) default rules are interpreted in
terms of high conditional probabilities. In this paper we give
a sound and complete axiomatization for a logic which ex-
tends those systems. It allows us to syntactically describe
the behavior of the defaults in a probabilistic framework.
A qualitative approach to nonstandard probabilities which
uses only the power of the most significant term in the poly-
nomialpw(ε) (denoting the probability of a possible world
w, ε is an infinitesimal) is proposed in (Goldszmidt & Pearl
1996) as a tool to work with defaults. In (Benferhat, Saf-
fiotti, & Smets 2000) belief functions with extreme values
are used to give semantics to default rules. We will show
that, thanks to our probabilistic semantics, the default en-
tailment defined in our system is different from all those
approaches. The language of our logic allows one to ex-
press negated defaults, imprecise observation etc. (similarly
as in the framework of conditional logic (Burghess 1981;
Friedman & Halpern 2001), but we do not have nested de-
faults) and to deal with problems that are even not definable
in the usual default systems.

The rest of the paper is organized as follows. We start
with the syntax and semantics of our logic. Then we give a
sound and complete axiomatic system. In the main part of
the paper we describe in detail how our system can be used
to model default reasoning and analyze properties of the cor-
responding default consequence relation. In the conclusion
we summarize our results and mention some possible direc-
tions for further investigation. A sketch of the proof of the
completeness theorem is presented in the appendix.

Syntax
Let S be the unit interval of a recursive nonarchimedean
field containing all rational numbers. An example of such
field is the Hardy fieldQ[ε]. Q[ε] contains all rational func-
tions of a fixed infinitesimalε which belongs to a nonstan-
dard elementary extensionR∗ of the standard real numbers
(Robinson 1966). We useε1, ε2, . . . to denote infinitesimals
fromS. Note that every positive member ofS is of the form

εk
∑n

i=0 aiε
i∑m

i=0 biε
i
,

wherea0 · b0 6= 0, which means that for every infinitesimal
εi ∈ Q[ε], εi ≤ cεk for some positive rational numberc and

integerk. Note that there is no positive infinitesimalεi ∈ S
such that for every positive integerk, εi ≤ εk.

Let {s0, s1, . . .} be an enumeration ofS. The language of
the logic consists of:

• a denumerable setVar = {p, q, r, . . .} of propositional
letters,

• classical connectives¬, and∧,

• a list of unary probabilistic operators(P≥s)s∈S ,

• a list of binary probabilistic operators(CP≥s)s∈S ,

• a list of binary probabilistic operators(CP=s)s∈S and

• a binary probabilistic operatorsCP≈1.

The setForC of classical propositional formulas is the
smallest setX containingVar and closed under the forma-
tion rules: ifα andβ belong toX, then¬α andα∧β, are in
X. Elements ofForC will be denoted byα, β, . . . The set
ForS

P of probabilistic propositional formulas is the smallest
setY containing all formulas of the forms:

• P≥sα for α ∈ ForC , s ∈ S,

• CP=s(α, β) for α, β ∈ ForC , s ∈ S,

• CP≥s(α, β) for α, β ∈ ForC , s ∈ S and

• CP≈1(α, β) for α, β ∈ ForC .

and closed under the formation rules: ifA andB belong to
Y , then¬A, andA ∧ B are inY . Formulas fromForS

P
will be denoted byA, B, . . . Note that we use the prefix
notationCP≥s(α, β) (and similarly forCP=s(α, β) and
CP≈1(α, β)) rather than the corresponding infix notation
αCP≥sβ (αCP=sβ, αCP≈1β).

As it can be seen, neither mixing of pure propositional
formulas and probability formulas, nor nested probabilistic
operators are allowed. For example,α∧P≥sβ andP≥sP≥rα
are not well defined formulas.

The other classical connectives (∨, →, ↔) can
be defined as usual, while we denote¬P≥sα by
P<sα P≥1−s¬α by P≤sα, ¬P≤sα by P>sα, P≥sα ∧
¬P>sα by P=sα, ¬P=sα by P6=sα, ¬CP≥s(α, β) by
CP<s(α, β), CP<s(α, β) ∨ CP=s(α, β) by CP≤s(α, β),
andCP≥s(α, β) ∧ ¬CP=s(α, β) byCP>s(α, β).

Let ForS = ForC ∪ ForS
P . ϕ, ψ, . . . will be used to

denote formulas from the setForS . For α ∈ ForC , and
A ∈ ForS

P , we abbreviate both¬(α → α) and¬(A → A)
by⊥ letting the context determine the meaning.

Semantics
The semantics forForS will be based on the possible-world
approach.

Definition 1 An LPPS-model is a structure〈W,H, µ, v〉
where:

• W is a nonempty set of elements called worlds,
• H is an algebra of subsets ofW ,
• µ : H → S is a finitely additive probability measure, and
• v : W ×Var → {true, false} is a valuation which asso-

ciates with every worldw ∈ W a truth assignmentv(w)
on the propositional letters.



The valuationv is extended to a truth assignment on all
classical propositional formula. LetM be anLPPS model
andα ∈ ForC . The set{w : v(w)(α) = true} is denoted
by [α]M .

Definition 2 AnLPPS-modelM is measurable if[α]M is
measurable for every formulaα ∈ ForC (i.e., [α]M ∈ H).
AnLPPS-modelM is neat if only the empty set has the zero
probability.

In this paper we focus on the classLPPS
Meas,Neat of all

neat and measurableLPPS-models.

Definition 3 The satisfiability relation |=⊂
LPPS

Meas,Neat × ForS is defined by the following
conditions for everyLPPS

Meas,Neat-modelM :

1. if α ∈ ForC ,M |= α if (∀w ∈W )v(w)(α) = true,
2. M |= P≥sα if µ([α]M ) ≥ s,
3. M |= CP≥s(α, β) if eitherµ([β]M ) = 0 or µ([β]M ) > 0

and µ([α∧β]M )
µ([β]M ) ≥ s,

4. M |= CP=s(α, β) if either µ([β]M ) = 0 and s = 1 or
µ([β]M ) > 0 and µ([α∧β]M )

µ([β]M ) = s,

5. M |= CP≈1(α, β) if eitherµ([β]M ) = 0 or µ([β]M ) > 0
and for every positive integern, µ([α∧β]M )

µ([β]M ) ≥ 1− 1
n .

6. ifA ∈ ForS
P ,M |= ¬A if M 6|= A,

7. ifA,B ∈ ForS
P ,M |= A ∧B if M |= A andM |= B.

Note that the condition 5 is equivalent to saying that the
conditional probability equals1 − εi for some infinitesimal
εi ∈ S.

A formula ϕ ∈ ForS is satisfiable if there is an
LPPS

Meas,Neat-modelM such thatM |= ϕ; ϕ is valid if for
everyLPPS

Meas,Neat-modelM , M |= ϕ; a set of formulas
is satisfiable if there is a model in which every formula from
the set is satisfiable. A formulaϕ ∈ ForS is a semantical
consequence of a set of formulasT (T |= ϕ) if ϕ holds in
everyLPMeas,Neat-model in which all formulas fromT are
satisfied.

A sound and complete axiomatization
The set of all valid formulas can be characterized by the fol-
lowing set of axiom schemata:

1. allForC-instances of classical propositional tautologies

2. allForS
P -instances of classical propositional tautologies

3. P≥0α

4. P≤sα→ P<rα, r > s

5. P<sα→ P≤sα

6. P≥1(α↔ β) → (P=sα→ P=sβ)
7. (P=sα∧P=rβ ∧P≥1¬(α∧β)) → P=min(1,s+r)(α∨β)

8. CP=r(α, β) → ¬CP=t(α, β), r 6= t

9. P=0β → CP=1(α, β)
10. (P=rβ ∧ P=s(α ∧ β)) → CP=s/r(α, β), r 6= 0

11. CP=r(α, β) → ¬CP≥t(α, β), r < t

12. CP=r(α, β) → CP≥t(α, β), r ≥ t

13. CP=r(α, β) → (P=tr(α ∧ β) ↔ P=tβ), t 6= 0

14. CP≈1(α, β)→CP≥r(α, β), for every rationalr ∈ [0, 1)

15. CP=1(α, β) → CP≈1(α, β)

and inference rules:

1. Fromϕ andϕ→ ψ inferψ.

2. If α ∈ ForC , fromα inferP≥1α.

3. FromA→ P6=sα, for everys ∈ S, inferA→ ⊥.

4. FromA→ (P=tr(α∧β) ↔ P=rβ), for everyr ∈ S\{0},
inferA→ CP=t(α, β).

5. FromA → CP>r(α ∧ β), for every rationalr 6= 1, infer
A→ CP≈1(α, β).

We denote this axiomatic system byAxLPP S . Let us briefly
discuss it. Axiom 3 says that every formula is satisfied in a
set of worlds of the probability at least 0. By substituting
¬α for α in Axiom 3, the formulaP≤1α (= P≥0¬α) is ob-
tained. This formula means that every formula is satisfied
in a set of worlds of the probability at most 1. Let us de-
note it by 3’. Axiom 6 means that the equivalent formulas
must have the same probability. Axiom 7 corresponds to
the property of the finite additivity of probability. It says
that, if the sets of worlds that satisfyα andβ are disjoint,
then the probability of the set of worlds that satisfyα ∨ β is
the sum of the probabilities of the former two sets. Axiom
13 and Rule 4 express the standard definition of conditional
probability, while the axioms 14 and 15 and Rule 5 describe
the relationship between the standard conditional probabil-
ity and the conditional probability infinitesimally close to
1. From Axiom 3’ and Rule 2 we obtain another infer-
ence rule: fromα infer P=1α. The rules 3 – 5 are infini-
tary. Rule 3 guarantees that the probability of a formula
belongs to the setS. Rule 4 corresponds to the standard
meaning of the conditional probability, and Rule 5 syntac-
tically defines the notion ”infinitesimally close to 1”. We
should point out that, although infinitary rules might seem
undesirable, especially to a computer scientist, similar types
of logics with infinitary rules were proved to be decidable
(Ognjanovíc & Rǎskovíc 2000). On the other hand, since
the compactness theorem does not hold for our logic (there
exists countably infinite set of formulas that is unsatisfiable
although every finite subset is satisfiable: for instance, con-
sider{¬P=0α} ∪ {P<εnα : n is a positive integer}) involv-
ing infinitary rules in the axiomatic system is the only way
to obtain the extended completeness, as it is explained in the
introduction.

A formula ϕ is deducible from a setT of formulas (de-
notedT `AxLP P S

α) if there is an at most denumerable
sequence (called proof) of formulasϕ0, ϕ1, . . . , ϕ, such
that everyϕi is an axiom or a formula from the setT , or
it is derived from the preceding formulas by an inference
rule. A formulaϕ is a theorem (̀ ϕ) if it is deducible
from the empty set. A setT of formulas is consistent if
there are at least a formula fromForC , and at least a for-
mula from ForS

P that are not deducible fromT . Now,
following the ideas from (Ognjanović & Rǎskovíc 1999;



2000) we can prove the extended completeness theorem for
the class ofLPPS

Meas,Neat-models:

Theorem 1 (Extended completeness theorem)A set T
of formulas is consistent if and only ifT has an
LPPS

Meas,Neat-model.

A sketch of the proof is provided in the appendix. In the
usual manner we can derive the following corollary:

Corollary 1 For every setT of formulas and every formula
ϕ, T |= ϕ if and only ifT ` ϕ.

Modeling default reasoning
The central notion in the field of default reasoning is the no-
tion of default rules. A default rule, which can be seen as
a sentence of the form ’ifα, then generallyβ’, can be writ-
ten as1 α � β. A default base∆ is a set of default rules.
Default reasoning is described in terms of the corresponding
consequence relation|∼, i.e., we are interested in determin-
ing the set of defaults that are the consequences of a default
base. Then, ifα is a description of our knowledge and∆|∼
α � β, we (plausibly) conclude thatβ is the case. There
are a number of papers which describe|∼ in terms of classes
of models and the corresponding satisfiability relations|=
such that∆|∼ α � β if for every modelM satisfying∆,
M |= α � β. In (Kraus, Lehmann, & Magidor 1990;
Lehmann & Magidor 1992) a set of properties which form a
core of default reasoning, and the corresponding formal sys-
tem denoted P are proposed. The system P is based on the
following axiom and rules (|= denotes classical validity):

• α � α (Reflexivity)

• from |= α ↔ α′ andα � β, inferα′ � β (Left logical
equivalence)

• from |= β → β′ andα � β, inferα � β′ (Right weak-
ening)

• from α � β andα � γ, inferα � β ∧ γ (And)

• from α � γ andβ � γ, inferα ∨ β � γ (Or)

• from α � β andα � γ, infer α ∧ β � γ (Cautious
monotonicity).

Then, for a default base∆, ∆ `P α � β if α � β is
deducible from∆ using the above axiom and rules. De-
fault consequence relation is also described in terms of
preferential models. A preferential model is a structure
M = 〈W, l,<〉, whereW is a set of states,l is a valu-
ation which associates with each state a truth assignment
on propositional letters, and< is a strict partial order on
W such that every set definable by formulas ([α] = {s ∈
W : s |= α}) satisfies the following condition: for ev-
ery t ∈ [α] either there is minimalu ∈ [α] suchu < t
or t is itself minimal in [α]. A default α � β holds
in a preferential modelM if for every s minimal in [α],
s |= β. It is proved in (Kraus, Lehmann, & Magidor 1990;

1Note that the other authors use different symbols (→, |∼, for
example) to denote the ’default implication’. In our opinion those
symbols can cause confusion, so we prefer to introduce a new sym-
bol here.

Lehmann & Magidor 1992) that the system P is sound and
complete with respect to the class of all preferential models:

Theorem 2 ∆|∼ α � β with respect to the class of all
preferential models if and only if∆ `P α � β.

A special subclass of preferential models, the class of ratio-
nal (or ranked) models, is also considered in (Lehmann &
Magidor 1992). A preferential model is rational if the cor-
responding set of states can be partitioned into equivalence
classes (or ranks) such that states in a class are mutually<-
incomparable and the classes are totally ordered. However,
although rational models satisfy the property called rational
monotonicity (ifα � β, and it is notα � ¬γ, thenα∧γ �
β) it is shown that the system P is sound and complete with
respect to the class of all rational models as well (when
the language of defaults is considered). It turns out that
many other approaches to default reasoning (Adams 1975;
Benferhat, Dubois, & Prade 1997; Benferhat, Saffiotti, &
Smets 2000; Goldszmidt & Pearl 1996) are characterized
by P. It is explained in (Friedman & Halpern 2001) that the
classes of models of all those systems can be mapped into
the so-called rich classes of qualitative plausibility structures
such that the following (weak) completeness theorem holds:

Theorem 3 ((Friedman & Halpern 2001) Theorem 5.8)
A setT of qualitative plausibility structures is rich if and
only if for all finite default base∆ and defaultsα � β,
∆ |=T α � β implies∆ `P α � β.

It is also argued that that the finiteness constraint for∆ can
be overcome (which leads to the strong completeness), but
the proof is not given there.

In this section we describe how our system can be used to
model default reasoning. As it is noted in the Introduction,
the ideas of using probabilities and infinitesimals in default
reasoning are not new (see, for example (Adams 1975; Ben-
ferhat, Saffiotti, & Smets 2000; Goldszmidt & Pearl 1996;
Lehmann & Magidor 1992; Satoh 1990)). In (Lehmann &
Magidor 1992) a family of nonstandard (R∗) probabilistic
models characterizing the default consequence relation de-
fined by the system P, is proposed. AnR∗-probabilistic
model is a tripleM = 〈W,H, µ〉, whereW is a set of possi-
ble worlds (truth assignments to propositional letters),H is
an algebra of subsets ofW containing all sets definable by
propositional formulas, andµ : H → R∗ is a finitely addi-
tiveR∗-valued probability measure. A defaultα � β holds
in anR∗-probabilistic model if either the probability ofα
is 0 or the conditional probability ofβ givenα is infinitesi-
mally close to1. Obviously, that class of models is a super-
class ofLPPS

Meas,Neat since in our approach the range of
probabilities is a countable subset of the unit interval ofR∗.

We can useCP≈1(β, α) to syntactically describe the be-
havior of the defaultα � β. In the sequel, we will use
α � β both in the original context of the system P and
to denote the corresponding translationCP≈1(β, α). In the
case of a finite default base our approach produces the same
result as the other mentioned approaches, namely it is equiv-
alent to P.

Theorem 4 For every finite default base∆ and for every



defaultα � β

∆ `P α � β iff ∆ `AxLP P S
α � β.

Proof. First, since (the corresponding translation of) all
axioms and rules (e.g.(CP≈1(β, α) ∧ CP≈1(γ, α)) →
CP≈1(β ∧ γ, α) corresponds to And rule) of the system P
are valid in the class of nonstandard probability models from
(Lehmann & Magidor 1992), andLPPS

Meas,Neat is a sub-
class of that class, P is sound with respect toLPPS

Meas,Neat.
On the other hand, following the ideas from (Lehmann

& Magidor 1992, Lemma 4.9), we can show that for every
finite default base∆ and for every defaultα � β, if ∆ 6`P

α � β then∆ 6`AxLP P S
α � β. The key step in the

proof is that there is a finite rational modelM = 〈W, l,<〉
which satisfies∆ and does not satisfyα � β. M can be
transformed to anLPPS

Meas,Neat-modelM ′ such that for
every defaultd, M |= d iff M ′ |= d. The transformation
can be as follows. For an arbitrary infinitesimalε′ ∈ S a
probability distributionµ onW can be defined so that:

• µ(wn+1)
µ(wn) = ε′, wherewn andwn+1 are the sets of all states

of the rankn andn+ 1 respectively, and

• all states of the same rank have equal probabilities.

SinceM |= ∆ andM 6|= α � β, the same holds for
M ′, and from the completeness ofAxLPP S we obtain that
∆ 6`AxLP P S

α � β. �
Finally, as it is noted in (Lehmann & Magidor 1992, The-

orem B.12), using the similar arguments as above we can
also prove a stronger version of Theorem 4:

Theorem 5 If the language of a default base∆ is finite, then
for every defaultα � β, ∆ `P α � β if and only if
∆ `AxLP P S

α � β.

Theorem 5 cannot be generalized to an arbitrary default
base∆, as it is illustrated by the following example. It is
proved in (Lehmann & Magidor 1992, Lemma 2.7) that the
infinite set of defaultsT = {pi � pi+1, pi+1 � ¬pi},
wherepi’s are propositional letters for every integeri ≥ 0,
has only non well-founded preferential models (a preferen-
tial model containing an infinite descending chain of states)
in which p0 6� ⊥, i.e., p0 is consistent. It means that
T 6`P p0 � ⊥. On the other hand,T `AxLP P S

p0 � ⊥
since the following holds. Let anLPPS

Meas,Neat-model
M = 〈W,H, µ, v〉 satisfy the setT . If µ([pi]) = 0, for
somei > 0, then it must beµ([p0]) = 0, andM |= p0 � ⊥.
Thus, suppose thatµ([pi]) 6= 0, for everyi > 0. Then:

µ([pi ∧ pi+1])
µ([pi])

≈ 1 and
µ([¬pi ∧ pi+1])

µ([pi+1])
≈ 1,

i.e.,

µ([pi ∧ pi+1])
µ([pi])

= 1− ε1 and
µ([¬pi ∧ pi+1])

µ([pi+1])
= 1− ε2,

for some infinitesimalsε1 andε2, and for everyi ≥ 0. A
simple calculation shows that

µ([pi ∧ pi+1]) = ε2µ([¬pi ∧ pi+1]),

µ([pi ∧ ¬pi+1]) = ε1µ([pi ∧ pi+1])
and

µ([pi]) ≤ ε0µ([pi+1]),
for everyi ≥ 0, whereε0 ≤ {ε1, ε2}. Since, for somec and
k, ε0 ≤ cεk, it follows that for everyi > 0,

0 ≤ µ([p0]) ≤ εi.

Sinceµ([p0]) ∈ S and there is no positive element ofS with
such property, it follows that

µ([p0]) = 0, [p0] = ∅ andM |= p0 � ⊥.

SinceM is an arbitraryLPPS
Meas,Neat-model,T `AxLP P S

p0 � ⊥. Note that the above explanation whyµ([p0]) = 0
does not hold in the case when the range of the probability
is the unit interval ofR∗ becauseR∗ is ω1-saturated (which
means that the intersection of any countable decreasing se-
quence of nonempty internal sets must be nonempty). As
a consequence, thanks to the restricted ranges of probabili-
ties that are allowed inLPPS

Meas,Neat-class of models, our
system goes beyond the system P, when we consider infinite
default bases.

There are some weaknesses of the system P. The most no-
table are that it suffers from the problems of irrelevance and
inheritance blocking from classes to exceptional subclasses
(Benferhat, Saffiotti, & Smets 2000; Goldszmidt & Pearl
1996). To overcome these problems the following approach
is usually taken: considering a default base, one determines
a subset of the corresponding class of models and reasons
about the behavior of defaults in that subclass only. For ex-
ample, the system Z (Goldszmidt & Pearl 1996) is based
on the class which contains only one model of the consid-
ered default base. That model is distinguished because the
corresponding ranking function is minimal. In the system
Z the irrelevance problem is correctly addressed. Similarly,
the system Z∗ from (Goldszmidt & Pearl 1996) solves the
drawback of the inheritance blocking. Since ranking func-
tions that are used in those systems are qualitative approx-
imations of nonstandard probabilities, it is not hard to see,
having in mind the procedure for the probability calculation
mentioned in the proof of Theorem 4, that those systems can
be described in the semantical framework given by our ap-
proach.

All the above remarks do not take into account that the
language of our system is rich enough not only to express
formulas that represents defaults but also to describe more:
probabilities of formulas, negations of defaults, combina-
tions of defaults with the other (probabilistic) formulas etc.
Let us now considerer some situations where these possibil-
ities allow us to obtain more conclusions than in the frame-
work of the language of defaults.

For example, the translation of rational monotonicity,
((α � β) ∧ ¬(α � ¬γ)) → ((α ∧ γ) � β), is
LPPS

Meas,Neat-valid since rational monotonicity is satis-
fied in everyR∗-probabilistic model, andLPPS

Meas,Neat
is a subclass of that class of models. The same holds for
the formula¬(true � false) corresponding to another
property called normality in (Friedman & Halpern 2001). In
(Benferhat, Saffiotti, & Smets 2000) the following example



is presented. Let the default base consist of the following
two defaultss � b and s � t, wheres, b and t means
swedes, blond and tall, respectively. Because of the inheri-
tance blocking problem, in some systems (for example in P)
it is not possible to conclude that swedes who are not tall are
blond ((s ∧ ¬t) � b). Since our system and P coincide if
the default base is finite, the same holds in our framework.
In fact, there are someLPPS

Meas,Neat-models in which the
previous formula is not satisfied. Avoiding a discussion of
intuitive acceptability of the above conclusion, we point out
that by adding an additional assumption to the default base
we can entail that conclusion too. The assumption says that
the probability ofs ∧ ¬t ∧ ¬b is at least an order of magni-
tude lower than the probability ofs ∧ ¬t, which means that
there are significantly more short swedes than short swedes
that are not blond. It can be expressed in our logic as the
set{P≤r(s ∧ ¬t) → P≤r/n(s ∧ ¬t ∧ ¬b) : for everyr ∈
S, n > 0}. An easy calculation which respects that assump-
tion shows that(s ∧ ¬t) � b follows from the new knowl-
edge base.

Conclusion

In this paper we consider a language, a class of probabilis-
tic model and a sound and complete axiomatic system (at a
price of introducing infinitary deduction rules). In the for-
malization most parts of field theory are moved to the meta
theory, so the axioms are rather simple. Our system allow us
to model default reasoning. The corresponding entailment is
characterized by the following:

• if we consider the language of defaults and finite default
bases, the entailment coincides with the one in the system
P,

• if we consider the language of defaults and arbitrary de-
fault bases, more conclusions can be obtained in our sys-
tem than in the system P,

• when we consider our full language, we can express ratio-
nal monotonicity, normality and the other properties that
can not be formulated in the usual systems for default rea-
soning,

• it is not sensitive to the syntactical form which repre-
sents the available knowledge (for example, duplications
of rules in the knowledge base).

There are many possible directions for further investiga-
tions. First of all, the question of decidability of our logic
naturally arises. We believe that the ideas from (Ognjanović
& Raškovíc 2000) can help us in obtaining axiomatization
of the logic with higher order conditional probabilities and
the corresponding first order logic. It would be interesting to
compare such a logic and the random world approach from
(Grove, Halpern, & Koller 1996). Finally, although some
approaches which avoid the problems of irrelevance and in-
heritance blocking may be (for someone) not completely in-
tuitively acceptable, it is clear that deeper comparison of our
probabilistic framework and those systems can help us to
better understand default entailment proposed in this paper.
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Appendix. Proof of Theorem 1
Soundness of our system follows from the soundness of
propositional classical logics, as well as from the proper-
ties of probabilistic measures. The arguments are of the
type presented in the proof of Theorem 13 in (Marković,
Ognjanovíc, & Rǎskovíc 2003). In the proof of the com-
pleteness theorem the following strategy is applied. We start
with a form of the deduction theorem. In the next step we
show how to extend a consistent setT of formulas to a max-
imal consistent setT ∗. Finally, a canonicalLPPS

Meas,Neat-
modelM is constructed out of the formulas from the setT ∗

such thatM |= ϕ iff ϕ ∈ T ∗.
Theorem 6 (Deduction theorem) If T is a set of formulas
andT ∪ {ϕ} ` ψ, thenT ` ϕ → ψ, where eitherϕ,ψ ∈
ForC or ϕ,ψ ∈ ForS

P .

Proof. We use the transfinite induction on the length of the
proof of ψ from T ∪ {ϕ}. For example, letψ = C → ⊥
is obtained fromT ∪ {ϕ} by an application of Rule 3, and
ϕ ∈ ForS

P . Then:
T, ϕ ` C → P6=sδ, for everys ∈ S
T ` ϕ→ (C → P6=sδ), for everys ∈ S, by the induction

hypothesis
T ` (ϕ ∧ C) → P6=sδ, for everys ∈ S
T ` (ϕ ∧ C) → ⊥, by Rule 3
T ` ϕ→ ψ.

The other cases follow similarly. �
A consistent setT of formulas is said to be maximal con-

sistent if the following holds:

• for everyα ∈ ForC , if T ` α, thenα ∈ T andP≥1α ∈
T , and

• for everyA ∈ ForS
P , eitherA ∈ T or¬A ∈ T .

A set T is deductively closed if for everyϕ ∈ ForS , if
T ` ϕ, thenϕ ∈ T .

Theorem 7 Every consistent setT can be extended to a
maximal consistent set.

Proof. Let T be a consistent set,CnC(T ) the set of all clas-
sical formulas that are consequences ofT , A0, A1, . . . an
enumeration of all formulas fromForS

P andα0, α1, . . . an
enumeration of all formulas fromForC . We define a se-
quence of setsTi, i = 0, 1, 2, . . . such that:

1. T0 = T ∪ CnC(T ) ∪ {P≥1α : α ∈ CnC(T )}
2. for every i ≥ 0, if T2i ∪ {Ai} is consistent, then
T2i+1 = T2i ∪ {Ai}; otherwise, ifAi is of the form
A → CP=s(α, β), then T2i+1 = T2i ∪ {¬Ai, A →
¬(P=st(α ∧ β) ↔ P=tβ)}, for somet > 0; otherwise,
if Ai is of the formA → CP≈1(α, β), thenT2i+1 =
T2i∪{¬Ai, A→ ¬CP>r(α, β)}, for some rational num-
berr ∈ [0, 1); otherwise,T2i+1 = T2i ∪ {¬Ai},

3. for everyi ≥ 0, T2i+2 = T2i+1 ∪ {P=rαi }, for some
r ∈ S, so thatT2i+2 is consistent,

4. for everyi ≥ 0, if Ti is enlarged by a formula of the form
P=0α, add¬α to Ti ∪ {P=0α} as well.

We have to show that everyTi is a consistent set.T0 is
consistent because it is a set of consequences of a con-
sistent set. Suppose thatT2i+1 is obtained by the step 2
of the above construction and that neitherT2i ∪ {Ai}, nor
T2i ∪ {¬Ai} are consistent. It follows by the deduction the-
orem thatT2i ` Ai ∧ ¬Ai, which is a contradiction. The
proof proceeds by analyzing possible cases in the other steps
of the construction. We continue by showing that the set
T ∗ = ∪iTi is a deductively closed set which does not con-
tain all formulas, and, as a consequence, thatT ∗ is consis-
tent. For example, if a formulaα ∈ ForC , by the construc-
tion of T0, α and¬α cannot be simultaneously inT0, and
if T ∗ ` α, then by the construction ofT0, α, P≥1α ∈ T ∗.
Finally, according to the above definition of a maximal set,
the construction guarantees thatT ∗ is maximal. �

Now, usingT ∗ we can define a tupleM = 〈W, {[α]M :
α ∈ ForC}, µ, v〉, where:
• W = {w |= CnC(T )} contains all the classical propo-

sitional interpretations that satisfy the setCnC(T ) of all
classical consequences of the setT ,

• [α]M = {w ∈W : w |= α},
• for every worldw and every propositional letterp ∈ Var,
v(w)(p) = true iff w |= p, and

• µ is defined on{[α]M : α ∈ ForC} by µ([α]M ) = s iff
P=sα ∈ T ∗.

The next theorem states thatM is anLPPS
Meas,Neat-model.

Theorem 8 Let M = 〈W, {[α]M : α ∈ ForC}, µ, v〉 be
defined as above. Then, the following hold:
1. µ is a well-defined function.
2. {[α]M : α ∈ ForC} is an algebra of subsets ofW .
3. µ is a finitely additive probability measure.
4. for everyα ∈ ForC , µ([α]M ) = 0 iff [α]M = ∅.
Proof of Theorem 1. The (⇐)-direction follows from the
soundness of the above axiomatic system. In order to prove
the (⇒)-direction we construct theLPPS

Meas,Neat-model
M as above, and show that for everyϕ ∈ ForS , M |= ϕ
iff ϕ ∈ T ∗. For example, letϕ = CP≈1(α, β). Sup-
pose thatCP≈1(α, β) ∈ T ∗. If µ([β]M ) = 0, it follows
thatM |= CP≈1(α, β). Next, suppose thatµ([β]M ) 6= 0.
From Axiom 14, we have that for every rationalr ∈ [0, 1)
CP≥r(α, β) ∈ T ∗, and CP=r(α, β) 6∈ T ∗. It means
that for every rationalr ∈ [0, 1), M |= CP≥r(α, β), and
M 6|= CP=r(α, β), i.e. that for every positive integern,
µ([α∧β]M )

µ([β]M ) ≥ 1 − 1
n . It follows thatM |= CP≈1(α, β).

Let CP≈1(α, β) 6∈ T ∗. If µ([β]M ) = 0, thenM |=
CP=1(α, β), CP=1(α, β) ∈ T ∗, and using Axiom 15
CP≈1(α, β) ∈ T ∗, a contradiction. Thus, letµ([β]M ) 6= 0.
By the step 2 of the construction ofT ∗, there is some ra-
tional numberr ∈ [0, 1) such that¬CP>r(α, β) ∈ T ∗. It
means that there is some rational numberr ∈ [0, 1) such
thatM 6|= CP≥r(α, β), and it does not hold that for every
positive integern, µ([α∧β]M )

µ([β]M ) ≥ 1 − 1
n . Thus, we have that

M 6|= CP≈1(α, β). �


