
Adjusting Adjustments – An Algorithm for Knowledge Base Extraction

Alexander Nittka
Institut für Informatik, Universiẗat Leipzig, Leipzig, Germany
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Abstract

Many approaches have been proposed for reasoning based on
conflicting information in general and in particular onstrat-
ified knowledge bases, i.e. bases in which all pieces of in-
formation are assigned a rank. In this paper, we want to re-
flect on a particular family ofalgorithmicapproaches known
asAdjustments, which have been suggested for extracting a
consistent knowledge base from a possibly inconsistent strat-
ified one. We will point out counter-intuitive results pro-
vided by these approaches and develop an algorithm we call
Refined Disjunctive Maxi-Adjustment which does not have
these drawbacks.

Introduction
Reasoning based on conflicting information is one of the
main challenges of AI. The problem arises in belief or
database merging, belief revision and nonmonotonic rea-
soning, to name just a few areas. In fact, consistency can
never be assumed when modelling an agent interacting with
some environment, so inconsistency has to be dealt with.
Often the pieces of information available to the agent can
be assigned areliability, priority or a rank. In this spe-
cial case, the information can be represented by astrati-
fied knowledge baseS = (S1, . . . , Sn), a collection of sets
of formulae where each setSi contains formulae of equal
rank, perhaps corresponding to some notion of importance
etc. The sets themselves are totally ordered,Si being more
important thanSj for i < j. Several approaches to ex-
tract a consistent knowledge base from a stratified one have
been proposed, (Benferhatet al. 1993; 2004; Brewka 1989;
Williams 1994; 1996) to name a few. In this paper we
want to reflect on thealgorithmic presentation of the fam-
ily of Adjustments(Benferhatet al. 2004; Williams 1994;
1996) which construct the consistent knowledge base itera-
tively, considering oneSi at a time. This form of presen-
tation is especially useful because it makes explicit what
causes the decisions in favour or against a formula entering
the knowledge base. The most recent and most sophisticated
of the approaches isDisjunctive Maxi-Adjustment(DMA),
which is shown in (Benferhatet al. 2004) to be equiv-
alent to the lexicographic system (Benferhatet al. 1993;
Lehmann 1995).

As an example that this method can lead to counter-
intuitive results, consider the following case. Assume that

two equally and highly reliable sources provide an agent
with convincing evidence, one forb the other for¬b,
whereas a less reliable source gives justb. The lexicographic
system and DMA – in fact, Maxi-Adjustment (Williams
1996) as well – tell us thatb follows from the corresponding
stratified knowledge base({b,¬b}, {b}). But why should
this be the case? It could be argued that the two equally
but more reliable sources disagree and force the agent to be
agnostic on the matter and this agnosticism should not be
overruled by the information provided by the lesser source.
We believe this to be a major problem of these approaches
and want to address it in this paper. Consequently, we will
present a new algorithm called RDMA –refinedDMA.

For the stratified knowledge base({b,¬b}), DMA decides
that there is a tie betweenb and¬b. With the arrival of in-
formation b from a lesser level, this decision is forgotten,
allowing b to be inferred. In RDMA, we propose to remem-
ber decisions of this kind.

The plan of the paper is as follows. We start by briefly
reviewing the different Adjustments summarized in (Ben-
ferhat et al. 2004). After the development of our criti-
cism of these approaches, namely a questionable interpre-
tation of the priorities assigned to formulae belonging to a
stratum and the use of definitions inappropriate for the task,
we will present our solution to these points, leading to our
RDMA-algorithm. We then provide some results concern-
ing RDMA, its relation to the different Adjustments and its
use as definition for a contraction operation. The last section
concludes and suggests further work.

Throughout the paper, we assume a propositional lan-
guage with the usual connectives.a, b, . . . denote the propo-
sitional variables,ϕ,ψ, . . . formulae, K,KB,C, Si, . . .
sets of formulae and̀ the classical entailment. For sets
of formulaeK andK ′, Cn (K) denotes the set of conclu-
sions ofK, i.e. Cn(K) = {ϕ | K ` ϕ}, |K| the cardi-
nality ofK, andK \K ′ the set difference.⊥ abbreviates a
contradiction.S will usually be a stratified knowledge base
S = (S1, . . . , Sn).

Adjustments
For full details on the approaches recalled in this section we
refer the reader to (Benferhatet al. 2004; Williams 1994;
1996). Before presenting the approaches, we want to intro-
duce two important terms they use. Given a set of formulae



M , a minimally inconsistent set, i.e. a setC ⊆M such that
C `⊥ and∀C ′⊂C :C ′ 6` ⊥, is called aconflict in M . The
kernelof M is the union of all its conflicts, so it contains
the formulae ofM involved in a conflict. The basic idea
underlying all Adjustments is that the stratified knowledge
base is processed stratum by stratum starting with the most
important one. The following meta-algorithm illustrates this
idea – not all the steps occurring are implemented by every
Adjustment variation.

Given a stratified knowledge baseS = (S1, . . . , Sn):

1. initializeKB

2. for i← 1 to n do

(a) identify the consistent part ofSi

(b) weaken the remaining part ofSi

(c) updateKB

3. returnKB

Figure 1: meta-algorithm for Adjustments

We remark that for all the approaches presented in this
paper, the initial knowledge baseS is stratified, whereas the
resulting one – we will denote it byKB – is not, i.e. Adjust-
ment, (Disjunctive) Maxi-Adjustment and RDMA all calcu-
late a consistent set of formulae. For DMA and RDMA it
need not be a subset of formulae contained inS.

Adjustment

In the most basic approach, which is simply called Adjust-
ment (Williams 1994) (and which is closely related to (Pearl
1990)), information is added up, starting with the most im-
portant, until this would cause an inconsistency. Then the
process stops regardless of what is still to come. More for-
mally, if the union of all the strata inS = (S1, . . . , Sn) is
consistent, thenKBA = S1 ∪ · · · ∪ Sn. Otherwise, the
union of setsKBA = S1 ∪ · · · ∪ Sl with l chosen such that
KBA 6` ⊥ butKBA ∪ Sl+1 ` ⊥ is taken to be the knowl-
edge base. Relating this calculation to the meta-algorithm,
Adjustment instantiates steps 1, 2a, 2c and 3. It exits the for-
loop somewhat uncleanly. If the consistent part ofSi does
not coincide withSi, i is assignedn right away and there is
no further update ofKBA.

An argument against this approach is that too much in-
formation is discarded as in later sets there may still be in-
formation consistent with the base obtained so far. Maxi-
Adjustment was proposed to address this shortcoming.

Maxi-Adjustment

Maxi-adjustment (MA) (Williams 1996) instantiates 1, 2a,
2c, and 3, as well, but improves the unclean exit of the for-
loop. It is a refinement of Adjustment in that it does not
stop when the first inconsistency appears. Instead, only the
formulae causing the inconsistencies are discarded, the re-
maining ones are added to the knowledge base, and then the
next set is considered.

The calculation starts withKBMA = ∅ and i = 1. At
each step we check whetherSi can be consistently included.
If yes we do so (KBMA is updated toKBMA ∪ Si), if not
we add toKBMA only those formulae ofSi which are not
involved in any conflict, i.e. those formulae ofSi not con-
tained in the kernel ofKBMA ∪ Si, and then proceed in the
same way withSi+1 until the end of the sequence is reached.
This certainly keeps more information than the previous ap-
proach, but it can be argued that it still neglects too much of
it.

Disjunctive Maxi-Adjustment
In (Benferhatet al. 2004) DMA was proposed as an im-
provement to Maxi-Adjustment. Instead of discarding all
the information fromSi involved in a conflict, it is weak-
ened (via disjunction) until no conflicts occur anymore. This
modification to Maxi-Adjustment adds a further step (2b) to
the algorithm. So before proceeding withSi+1, the formu-
lae of Si involved in a conflict are considered once more.
They themselves cannot be included but weakened versions
might. At first all pairwise disjunctions which are not tau-
tologies are tried. If those can be added without causing
an inconsistency, this is done. Otherwise, all possible non-
tautological disjunctions with three elements are tried, and
so on.1

Problems with the Adjustments
There are two points concerning Maxi-Adjustment and
DMA that we want to criticise in this paper. We believe
that in some cases too much information is allowed to enter
the knowledge base. Further, we think that the definition of
a conflict used in the algorithms is inappropriate.

Inferring too much
We now give an example and the consistent knowledge bases
the three approaches calculate for it. We argue that here
Maxi-Adjustment and Disjunctive Maxi-Adjustment possi-
bly allow too much information to enter the knowledge base.

Example 1. Let S = (S1, S2, S3) where
S1 = {b→ a, c→ ¬a}, S2 = {b, c} andS3 = {b}.

ObviouslyS1 is consistent, but trying to add all ofS2

would lead to an inconsistency. So Adjustment acceptsS1

but stops its calculation right afterwards and returnsS1 as
result.

Maxi-Adjustment tries to identify the cause of the incon-
sistency by calculating the kernel ofS1 ∪ S2. In order to
do so, all its conflicts are calculated. In this case there is
only one, namelyS1 ∪ S2 itself. As all elements ofS2 are
involved in the conflict, all of them are discarded. The cal-
culation proceeds withS3, S1 being the intermediate knowl-
edge base. AsS1 ∪ S3 is consistent, this is the result.

Disjunctive Maxi-Adjustment weakens the conflicting in-
formation before proceeding withS3. The only possibility
to weakenS2 is to take the disjunction of its two elements.

1Other methods of weakening have been proposed in (Benfer-
hatet al. 2004), but as the focus of this paper is not on the weak-
ening, we will not go into detail here.



As b ∨ c is consistent withS1, it is included. So the calcula-
tion proceeds withS3, S1 ∪ {b ∨ c} being the intermediate
knowledge base. As beforeS3 does not cause an inconsis-
tency, so the final result isS1 ∪ {b ∨ c} ∪ S3.

Note thatb is element of the knowledge bases calculated
by both DMA and Maxi-Adjustment. We argue that there
are cases where this is counter-intuitive. The reason for this
is a slightly different interpretation of the sets of formulae.
Every formula ofS2 is more important than any ofS3. When
trying to incorporateS2 we were forced to leave out bothb
andc, because we could not decide in favour of one of them
as they have the same priority. In particular we could not
decide in favour ofb. In the next step, however,b is added.
This somehow means thatb wins overc although it has the
same (or less) priority.

The reason for this to happen is that Maxi-Adjustment and
Disjunctive Maxi-Adjustment forget that a (negative) deci-
sion concerningb has already been made. DMA is strongly
related to a lexicographic interpretation of the formulae.If
there is a tie between two or more on one level the next (and
less important one) may decide. From an argumentation
point of view this means that there are conflicting arguments
on the higher level but a further argument on a lower level
causes the defeat of one of them. We believe that there are
applications where such a tie should not be broken, i.e. the
argument is capable of defending itself against any possi-
ble defeater from lower levels. Such applications cannot be
handled with the approaches presented so far.

We want to elaborate on this point. The basic idea of the
lexicographic method is to compare two objects using a pri-
mary criterion. If one is better with respect to this criterion,
the case is decided, but if both are equally good we fall back
on a secondary criterion, and so on. Informally, this strategy
is valid if the further criteria add weight to the argument and
therefore justify the choice of one object over the other.

Imagine a support tool used to solve disagreements within
a family. The parents have equal priority, the child’s opin-
ion is less important. There is to be a nice Saturday dinner
with dessert. The mother wants ice cream (a), the father
does not (¬a), the child favours ice cream as well. The rep-
resentation would beS = ({a,¬a}, {a}) and using DMA,
the tool would suggest to have ice cream which seems rea-
sonable enough. Now consider the following scenario. The
lottery jackpot is astronomical. The father wants to raise a
large loan in order to buy as many tickets as possible (a), the
mother is totally opposed to that (¬a). The child (for some
reason) goes with the father (a). AgainS = ({a,¬a}, {a})
represents the situation, but would it be reasonable to let the
vote of the child decide the matter?

We believe that in the second scenario, the vote of the
child does not add force to the argument in favour ofa, so
the matter should be left undecided. The representation in
the stratified knowledge base is reasonable because the child
has an opinion and the opinion has less priority that that of
the parents. If a decision was necessary, it would be more in-
tuitive to consult sources with a higher priority – which are
not available in the scenario. The legal system provides a
further example where disagreements are generally resolved
by referring them to a higher court. In case of contradicting

diagnoses concerning a disease one would consult a special-
ist rather than a general practitioner.

Our intention is to modify the algorithm for DMA to make
it applicable to the second scenario. The problem is ad-
dressed by carrying along an additional setU . It will collect
the formulae which were not added to the knowledge base
because they were involved in a conflict. In addition to pre-
venting inconsistency, the algorithm will prevent formulae
contained inU from being inferable. This will ensure that
no formula for which a negative decision has been made on
the basis of a high priority stratum can be added because of
a lower stratum. In fact, such a set was already present in the
approaches presented so far, but it remained unchanged dur-
ing the entire calculation, containing a contradiction only.

Inappropriate definition of conflict
The second point of criticism is the use of what we hold to
be an inadequate definition of a conflict. A conflict in a set
M is defined as a minimally inconsistent subset ofM . This
definition presupposes that all elements ofM are treated as
equal, that any formula can be left out. This is not the case
where conflicts are used in (Disjunctive) Maxi-Adjustment.

The definition does not reflect the different status of the
setsKB, the intermediate knowledge base, and ofSi, the set
of formulae to be inserted next. In a sense,KB is fixed al-
ready – none of its members will leave the knowledge base
in the future. Only for elements ofSi is there an option.

Instead of calculating all minimally inconsistent subsets
of KB ∪Si, it would be more intuitive to calculate all mini-
mal subsets ofSi inconsistent withKB. The justification is
as follows: There is nothing to be done aboutKB – all its
elements are accepted to be true. In order to remain consis-
tent we cannot add any set inconsistent withKB. But why
only leave out the minimally inconsistent ones? The answer
is information economy. We want to keep as much informa-
tion as possible. Formulae should not be penalized without
justification.

Example 2. Let S = (S1, S2) where
S1 = {¬c, b→ a, c→ ¬a} andS2 = {b, c}.

The original definition of a conflict would mark bothb and
c as causing inconsistencies, because{b, c, b→ a, c→ ¬a}
and{c,¬c} are conflicts inS1 ∪ S2. Our proposed modifi-
cation would mark onlyc. Of course, there is an argument
which involvesb and leads to a contradiction, but it is based
on the assumption thatc holds which obviously is not the
case. And if this assumption is dropped, there is no fault to
be found withb, so in the original definitionb is penalized
because of the unjustified assumptionc.

For Maxi-Adjustment, the modification of the definition
would make a difference. This can easily be seen in Example
2. In one caseb will be left out of the knowledge base, in
the other it is included. Whether there are examples where
Disjunctive Maxi-Adjustment would return different results
is subject to future investigations2.

In Example 2, the original definition would eliminateb in
the first step, but as the weakeningb ∨ c is consistent with

2At least using the modified definition would dramatically re-
duce the number of sets to be considered as possible conflicts.



S1, this disjunction is introduced. Together with¬c, b will
be a consequence of the newly found knowledge base. It is
possible that this recovery via weakening takes care of the
formulae that otherwise might have been penalized, so why
bother?

There is no reason if we forget which choices we made
regarding which formulae to exclude, as the Adjustments
do. But as soon as we keep these choices in mind, as we
proposed in the last section, we must be careful to choose
correctly. If b andc were marked as causing conflicts and
therefore not to be inferable, the weakeningb ∨ c could not
be added as thenb would be inferable. We want to stress
that the counter-intuitive result just sketched is not caused
by our proposal not to check for consistency alone, but by
the inadequate definition of a conflict.

The question may arise why there should be different re-
sults for Example 1 and Example 2. Both seem to express
that b andc cannot go together, but both are equally good
options. But in factS1 in Example 2 makes a stronger state-
ment:c is not an option at all, so it is reasonable to chooseb.
S1 in Example 1 does not express a preference, this is why
no choice is possible.

Refined DMA
It should be clear that both points of criticism can be dealt
with at once or separately – depending on which views are
shared. We believe that both should be addressed. We will
first give the new definitions for a conflict and the kernel
which generalize the original ones. Besides extending the
term conflict to sets that make certainmarkedformulae in-
ferable, they will reflect the different status of two sets, one
that is fixed and one from which formulae can be eliminated.
Then we go on to the algorithm.

(K,U)-conflicts
Definition 1. LetK,M andU 6= ∅ be sets of formulae.

• A setC is a (K,U)-conflict iff
∃ψ∈U(C∪K `ψ)∧∀C ′∀ψ′∈U(C ′⊂C→C ′∪K 6`ψ′)

• A setD is (K,U)-consistentiff no subsetC ⊆ D is a
(K,U)-conflict.

• K isU -consistent iffCn (K) ∩ U = ∅.
• If M contains a(K,U)-conflict, then a setD ⊂ M is

maximally (K,U)-consistentiff D is (K,U)-consistent,
and every setD′ with D ⊂ D′ ⊆M contains a(K,U)-
conflict.

• The setkernel(K,U) (M) =
⋃

C ⊆ M is a
(K, U) -conflict

C is the (K,U)-

kernel of M.

That is, a(K,U)-conflictC ⊆ M is a minimal set such
that some formula contained inU is inferable fromK ∪ C.
The kernel collects all sentences ofM involved in such con-
flicts. TheU -consistency ofK expresses that no element
of U can be inferred fromK alone. So, it generalizes clas-
sical consistency in that it refers to arbitrary formulae and
not only to a contradiction. Usually we are not interested
in whether an arbitrary set is a conflict, but if some set of

propositionsM contains a conflict; so we will say thatC is
a conflict inM if C is a conflict andC ⊆M .

Example 3.

• Let K = {d ∨ a → b, b → c, a → ¬c} andU = {⊥}.
Then{a} is a (K,U)-conflict in {a, b, d}, whereas{b}
and{a, b} are not.

• LetK = {b → c, a → ¬c} andU = {c}. Then{b} is a
(K,U)-conflict in{a, b}, whereas{a} and{a, b} are not.

• LetK={c,¬c} andU={a, b}. Then∅ is the only(K,U)-
conflict in{a, b, c}.

• Let K = ∅, U = {¬a ∨ ¬b}. M = {a, b, c} contains
(K,U)-conflicts. a is a (K,U)-consistent subset ofM ,
but it is not maximally(K,U)-consistent.{a, c} on the
other hand is a maximally(K,U)-consistent subset ofM .

Proposition 2. K is U -consistent iff∅ is not a (K,U)-
conflict.

Note that if we investigate whether∅ is a(K,U)-conflict,
then the part right of the conjunction in the definition is al-
ways satisfied, as∅ does not have a proper subset. That is,
the question breaks down to whether∃ψ ∈ U : K ` ψ.

Proposition 3. M is (K,U)-consistent iffK ∪ M is U -
consistent.

Proof. • M is (K,U)-consistenty3

M does not contain any(K,U)-conflictM ′ ⊆M y

∀M ′ ⊆M¬∃ψ ∈ U : K ∪M ′ ` ψ y

¬∃ψ ∈ U : K ∪M ` ψ y

¬∃ψ ∈ U : K ∪M ∪ ∅ ` ψ y

∅ is not a(K ∪M,U)-conflicty
K ∪M isU -consistent

• M is not (K,U)-consistenty
there is a(K,U)-conflictM ′ ⊆M y

∃ψ ∈ U : K ∪M ′ ` ψ y

K ∪M ` ψ y

∅ is a(K ∪M,U)-conflicty
K ∪M is notU -consistent

Proposition 3 tells us that we can safely add a(K,U)-
consistent setM toK without affecting theU -consistency.
This plays an important part in the algorithm developed in
the next section. Propositions 4 and 5 relate our notion of
a conflict to the original definition as well asU -consistency
to classical consistency. They show that the definitions we
propose are reasonable.

Proposition 4. LetU 6= ∅. If K is U -consistent, thenK is
consistent.

Proof. Contraposition. AsU is non-empty∃ϕ ∈ U . From
K being inconsistent followsK ` ψ for anyψ. In particular
K ` ϕ. SoK is notU -consistent.

Proposition 5. LetK andU 6= ∅ be arbitrary sets. IfC is
inconsistent, thenC is not(K,U)-consistent.

3Phrases like ”this implies” are substituted by the symboly to
improve readability.



Note that for the two above propositions the converse does
not hold. A consistentK need not beU -consistent. For
example,{a} is not{a}-consistent and although{a} is not
(K,U∪{a})-consistent for arbitraryK andU, {a} is consis-
tent.

Proposition 6. M ∪{ϕ} is not(K,U ∪{ϕ})-consistent for
arbitrary M ,K andU .

This is a trivial result but it ensures that the algorithm we
are going to propose does not allow formulae left out of the
knowledge base at an earlier stage to be introduced later on.
This eliminates our first point of criticism concerning (Dis-
junctive) Maxi-Adjustment. The second one is dealt with by
the modified definition of a conflict. The special status of
the knowledge base calculated so far is reflected by the set
K in a (K,U)-conflict.

RDMA-algorithm
Before presenting the algorithm itself, we have marked in
boldface in Figure 2 which modifications to the Adjustment-
algorithms we propose.

Given a stratified knowledge baseS = (S1, . . . , Sn):

1. initializeKB and U

2. for i← 1 to n do

(a) identify the(KB, U)-consistent part
of Si

(b) weaken the remaining part ofSi

(c) updateKB and U

3. returnKB

Figure 2: meta-algorithm for RDMA

The initial idea is to carry along a setU is used to re-
member which formulae were excluded from entering the
knowledge base at earlier stages of the calculation. In fact,
the update of – or rather the addition of formulae to –U is
the only really new thing but this has a major impact on the
remaining essential parts of the algorithm. It should be clear
thatU -consistency replaces the classical consistency used in
the previous Adjustment-approaches.

Ensuring that the knowledge base (KB) remainsU -
consistent at all times has two effects. First, it will cause
the result of the calculation to be a (classically) consistent
set of formulae. This is due to Proposition 4 and the fact
thatU will never be empty during the calculation – because
it is initialized to be non-empty and at no point are elements
taken out ofU . Second, it implies that no formula excluded
before can be inferred fromKB. This is because formulae
will be excluded only if they are involved in a conflict which
results in their enteringU andU -consistency ofK means
that no formula ofU is inferable fromK.

Besides the kernel that was defined above, the algorithm
needs a further function implementing the weakening of
information. For now, we use the following weakening-
function, which is the same as used in DMA:dk (C) returns
the set of all non-tautological disjunctions of sizek between

different sentences ofC if there are any, otherwise the empty
set is returned.

Given a stratified knowledge baseS = (S1, . . . , Sn):

1. KB ← ∅
U ← {⊥}

2. for i← 1 to n do

(a) C ← kernel(KB,U) (Si)
N ← Si \ C

(b) k ← 2
while (k ≤ |C| anddk (C) is not

(KB ∪N,U ∪ C) -consistent)
do k ← k + 1
if k ≤ |C| thenN ← N ∪ dk (C)

(c) KB ← KB ∪N
U ← U ∪ C

3. returnKB

Figure 3: Refined Disjunctive Maxi-Adjustment algorithm

Example 4 is to illustrate what the algorithm does. Upper
indices indicate in which iteration of the for-loop the set was
calculated, e.g.C2 is the kernel calculated during the second
run. This indexing is useful especially for distinguishingthe
differentU andKB.

Example 4. Let S = (S1, S2, S3) where
S1 = {¬a ∨ ¬b,¬c,¬d}, S2 = {a, b, c, d, e} and
S3 = {¬e ∨ b}.
Before the for-loop is entered first, we haveKB0 = ∅

and U0 = {⊥} . Now the (∅, {⊥})-kernel ofS1 must be
calculated. AsS1 is consistent,C1 is empty,N1 = S1,
no weakening is necessary and we enter the next loop with
KB1 = S1 andU1 = {⊥}.
S2 is not

(

KB1, U1
)

-consistent. The
(

KB1, U1
)

-
conflicts are{c}, {d}, and{a, b}, so all these formulae enter
C2. The only formula not involved in a

(

KB1, U1
)

-conflict
is e which entersN2.
d2 ({a, b, c, d}) = {a ∨ b, a ∨ c, a ∨ d, b ∨ c, b ∨ d, c ∨ d}

is the first attempt to weakeningC2. Note that{c ∨ d} is
a ({¬a ∨ ¬b,¬c,¬d, e}, {⊥, c, d, a, b})-conflict. In fact, it
is not even consistent withKB1. So further weakening is
necessary.

Among other disjunctionsd3 ({a, b, c, d}) contains
{a∨c∨d} . This is a({¬a ∨ ¬b,¬c,¬d, e}, {⊥, c, d, a, b})-
conflict because{a ∨ c ∨ d} ∪ KB1 ` a and a ∈ U1.
Next d4 ({a, b, c, d}) = {a ∨ b ∨ c ∨ d} is consid-
ered. This set is({¬a ∨ ¬b,¬c,¬d, e}, {⊥, c, d, a, b})-
consistent, so it can be added toN2. Consequently, we have
KB2 = KB1 ∪N2 = {a ∨ b ∨ c ∨ d,¬a ∨ ¬b,¬c,¬d, e}
andU2 = {⊥, c, d, a, b}. As {¬e ∨ b} is a

(

KB2, U2
)

-
conflict and cannot be weakened, it is added toU2. KB2

remains unchanged, so we haveU3 = {⊥, c, d, a, b,¬e∨ b}
andKB3 = {a ∨ b ∨ c ∨ d,¬a ∨ ¬b,¬c,¬d, e} = KB.



This method of weakening viadk(C) is open to criticism.
First of all, it is questionable whether all combinations of
elements of the kernel should be considered. It seems more
intuitive to weaken only formulae which are somehow tied
together by conflicts. Secondly, note that the weakening
a∨b∨c∨d in the second for-loop breaks down toa∨b given
the knowledge base that contains¬c and¬d. a ∨ b was not
accepted directly as in that weakening step there was another
conflict. This reminds us of the re-introduction behaviour
we criticised in Disjunctive Maxi-Adjustment. The reason
for this problem is that we did not adjust the weakening-part
of the algorithm according to our interpretation. This is be-
yond the scope of this paper and a subject for future work.

Properties of RDMA
In this section, we give some properties concerning RDMA
and its relation to the family of Adjustments.

EnsuringU -consistency throughout the calculation will
cause the resulting knowledge base to be consistent in the
classical sense (Proposition 4). This is used to prove the next
result which tells us that RDMA does what it is supposed to
do.

Proposition 7. LetS = (S1, . . . , Sn) be a stratified knowl-
edge base. Then RDMA calculates a consistent knowledge
base.

Proof. We will show that during the calculationKB is U -
consistent at all times. It is easy to see that after the initial-
izationU ← {⊥},U is non-empty and can only grow during
the calculation. From Proposition 4 it then follows thatKB
will be consistent.

Obviously,∅ is {⊥}-consistent. SoKB0 isU0-consistent
after the initialization, just before the for-loop.

We will show by induction overi that KBi is U i-
consistent after exiting thei-th iteration of the for-loop. As
KB = KBn we will have shown the desired property.
The inductive assumption is thatKBi is U i-consistent af-
ter 1 ≤ i ≤ n runs of the for-loop – we already know that
KB0 isU0-consistent.

• If i = n KBn isUn-consistent and returned as the result
of the calculation.

• If i < nwe have to show thatKBi+1 is conflict-free after
the (i+ 1)-th iteration.
After step 2a,Ci+1 contains all elements ofSi+1 in-
volved in a

(

KBi, U i
)

-conflict andN i+1 those elements
not involved in a

(

KBi, U i
)

-conflict. We claim that
KBi ∪N i+1 is

(

U i ∪ Ci+1
)

-consistent.
AssumeKBi ∪ N i+1 is not

(

U i ∪ Ci+1
)

-consistent. It
is clear thatKBi ∪N i+1 is U i-consistent, for otherwise
there would be a contradiction to the assumption that no
element ofN i+1 is involved in a

(

KBi, U i
)

-conflict.
So there is aϕ ∈ Ci+1 such thatKBi ∪ N i+1 ` ϕ.
It holds thatKBi 6` ϕ, for otherwise there would be a
contradiction to the assumption ofϕ being an element of
Ci+1. This is because a formula can only be element of
a conflict if it is essential to it (minimality of a conflict).

If KBi ` ϕ, thenϕ could not be essential to any conflict
and necessarilyϕ ∈ N i+1.
ConsequentlyN i+1 is essential forKBi ∪ N i+1 ` ϕ.
Let N ′ ⊆ N i+1 be a (non-empty) minimal set such that
KBi ∪N ′ ` ϕ. LetK be a

(

KBi, U i
)

-conflict such that
ϕ ∈ K. Such aK must exist, otherwiseϕ could not be in
Ci+1.
K \ {ϕ} is

(

KBi, U i
)

-consistent (minimality of a con-
flict), butN ′∪K\{ϕ}must contain a

(

KBi, U i
)

-conflict
asKBi ∪ N ′ ` ϕ. Elements ofN ′ are essential to this
conflict which contradicts the assumption that no element
of N i+1 is involved in a

(

KBi, U i
)

-conflict. Conse-
quently,KBi ∪N i+1 is

(

U i ∪ Ci+1
)

-consistent.
Now consider the weakening-step (2b). There are two
possibilities fork after having left the while-loop: either
k ≤ |Ci+1| or k = |Ci+1|+ 1.
In the latter case nothing changes and it still holds that
KBi ∪N i+1 is

(

U i ∪ Ci+1
)

-consistent.
In the former case we know thatdk

(

Ci+1
)

is
(

KBi ∪N i+1, U i ∪ Ci+1
)

-consistent as otherwise the
while-loop could not have been left. Using Proposition 3
we know thatdk

(

Ci+1
)

∪KBi ∪N i+1 is
(

U i ∪ Ci+1
)

-
consistent, so there is no problem in addingdk

(

Ci+1
)

to
N i+1, as is done.
Consequently, after the weakening (2b), we still have
KBi ∪ N i+1 is

(

U i ∪ Ci+1
)

-consistent. So obviously,
after the update ofKBi and U i in step 2c, we have
KBi+1 = KBi ∪ N i+1 andU i+1 = U i ∪ Ci+1. Ob-
viously,KBi+1 is U i+1-consistent, which we wanted to
prove.

The next result shows that, if using RDMA, we can ignore
multiple occurrences of a formula. We can delete all but
the first occurrence of every formula without changing the
outcome of the calculation. That is, we can safely assume
that in the stratified knowledge base the intersection of any
two sets with different index is empty.

Proposition 8. Let S be a stratified knowledge base with
S = (S1, . . . , Si ∪ {ϕ}, . . . , Si+j ∪ {ϕ}, . . . , Sn), j ≥ 1.
Then eliminating the second occurrence ofϕ does not
change the result of the calculation of the knowledge base
KB. That isS′ = (S1, . . . , Si ∪ {ϕ}, . . . , Si+j , . . . , Sn)
produces the sameKB.

Note that the property described by Proposition 8 does not
hold for (Disjunctive) Maxi-Adjustment. This can be seen
from Example 1.b appears inS2 andS3. If it is eliminated
from S3, it will not be an element of the knowledge base
calculated, unlike in the original case.

Even if we restrict our attention to stratified knowl-
edge bases where no formula appears more than once, i.e.
∀ψ : |{ i |ψ ∈ Si}| ≤ 1 , DMA and our modification do not
coincide. The reason is that a formula which has been ex-
cluded can still be a consequence of formulae added later
on in DMA. This is not possible in RDMA. DMA forgets,
RDMA does not.



Example 5. ConsiderS = (S1, S2, S3) where
S1 = {¬a ∨ ¬b}, S2 = {a, b}, andS3 = {c, c→ b}.
Disjunctive Maxi-Adjustment identifiesS1 ∪S2 as a con-

flict, so S2 cannot be incorporated intoKB but must be
weakened. a ∨ b is consistent withS1, so it is added.
Then there is no problem withS3, so the resultingKB is
{¬a ∨ ¬b, a ∨ b, c, c→ b}, from whichb can be inferred.

RDMA identifiesS2 as a(S1, {⊥})-conflict, soa andb
are added toU , but the weakeninga∨ b can safely be added
to S1. When consideringS3 it should be clear that it will
be possible to infer an element ofU , namelyb. In fact
S3 is a (KB,U)-conflict. Its only weakening is a tautol-
ogy, so nothing is added. The knowledge base calculated is
{¬a ∨ ¬b, a ∨ b}, from whichb cannot be inferred.

This example illustrates that it does not suffice to elim-
inate multiple occurrences of a formulaϕ in a stratified
knowledge base to invalidate our first point of criticism. The
reappearance of the formula may be hidden by a set of for-
mulae that entailsϕ. However, this is no reason to accept
ϕ.

KBA
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KBMA KBDMA KBRDMA

Figure 4: Relation between Adjustments

Figure 4 summarizes the relations between the approaches
presented in this paper. An arrow fromX to Y is to be read
as follows. For an arbitrary stratified knowledge baseS we
have thatCn (X (S)) ⊆ Cn (Y (S)). Hence everything that
can be inferred from the knowledge base calculated by Ad-
justment can be inferred from the resulting knowledge bases
using the other approaches, but those are mutually incompa-
rable.

For some of the other possible set inclusions it is quite
obvious that they cannot hold for all stratified knowledge
bases. If weakening of information is allowed, then more
information is extracted. It is also obvious that our approach
does not generally subsume the conclusions of (Disjunctive)
Maxi-Adjustment, as it was constructed not to do so.

Most surprising might be that Disjunctive Maxi-
Adjustment does not always yield all the conclusions of
Maxi-Adjustment. An example is the stratified knowledge
base({¬a∨¬b}, {a, b}, {¬a,¬b}). The weakening in Dis-
junctive Maxi-Adjustment demands that at least one of the
formulae be true. In Maxi-Adjustment, this is forgotten and
both¬a and¬b are accepted.

But it is also possible for conclusions to be drawn
from a knowledge base calculated with our approach
that Disjunctive Maxi-Adjustment does not allow, al-
though our approach seems much more restrictive.
S = ({¬a ∨ ¬b ∨ ¬c,¬a ∨ ¬b ∨ ¬d}, {a, b, c, d}, {¬c}) is
an example. Note that DMA allows the introduction ofc,
so allowing¬c in the end would cause an inconsistency.
In RDMA the weakening with pairwise disjunctions is not
enough. As a consequence no fault is found when trying to
introduce¬c. We do not claim this to be intuitive, far from

it. This only shows that RDMA using the current weaken-
ing scheme is notstrictly weakerthan DMA. As mentioned
before, the weakening needs further investigation and mod-
ification.

Are there cases where the results provided by MA,
DMA and RDMA coincide? The approaches coincide
trivially if the union of all the sets given in the strati-
fied knowledge base is consistent. Also if all theSi in
the stratified knowledge baseS are singletons, i.e. if
∀i ≤ n : |Si| = 1, then MA, DMA and RDMA return
identical knowledge bases. For MA and DMA this should
be clear, as the only difference is the weakening. As the sets
contain only one element, no weakening is possible.

For RDMA we only need to make sure that a formula is
left out if and only if it causes an inconsistency. As formulae
are left out if they allow any element ofU to be inferred, we
need to show that this is equivalent to causing an inconsis-
tency. This can be done by an easy induction.

We want to remark that the RDMA-algorithm can be seen
as the definition for aremovaloperator. This is becauseU
can be initialized to contain more than just a contradiction.
The proof of Proposition 7 shows thatKB, the knowledge
base constructed, isU -consistent at all times during the cal-
culation, i.e. no element ofU is inferable fromKB. The
only condition is thatKB is initialized to beU -consistent.
AsKB is empty to begin with, the only requirement is that
U cannot contain a tautology, but it is commonly agreed that
this is a reasonable thing to demand.

The removal operator obtained by allowingU to be ini-
tialized differently showsliberationbehaviour similar to that
described in (Boothet al. 2003): If the algorithm is run on
the same stratified knowledge baseS with different initial-
izations forU , e.g.U = {⊥} andU ′ = {ψ}, it is possible
that a formulaϕ may not be in the knowledge base calcu-
lated in the first case whereU is used, but be element of the
KB whenU ′ is used. The elimination ofψ then led to the
liberation ofϕ.

Example 6. Let S = (S1, S2) where S1 = {a} and
S2 = {¬a, a ∨ b}. a is the formula to be contracted.

Before coming to the contraction, we calculate the knowl-
edge base using the usual RDMA, i.e. we start with
U = {⊥}. S1 is completely accepted, ofS2 only ¬a
is involved in a conflict. The resulting knowledge base is
{a, a ∨ b} from whichb cannot be inferred.

In order to contracta, U is initialized byU ← {a}. This
causesS1 not to be accepted, as{a} is a (∅, {a})-conflict.
S2 on the other hand is completely accepted this time. The
resulting knowledge base is{¬a, a ∨ b} which entailsb. By
contractinga, b is liberated.

Note that this liberation may take place even if the for-
mula to be contracted does not follow from the knowledge
base calculated. If we modify the above example toS con-
taining only one stratum{a,¬a, a ∨ b}, then we first get
{a ∨ b} as resulting knowledge base. The contraction ofa
leads to the knowledge base{¬a, a ∨ b}, just like in the ex-
ample.



Conclusion
In this paper we proposed an new algorithm – RDMA – for
extracting a consistent knowledge base from a possibly in-
consistent stratified one. This was motivated by counter-
intuitive results other approaches yield; they forget nega-
tive decisions they made for formulae in strata representing
a high priority and consequently may allow them to be intro-
duced based on their reappearance in strata of lower priority.

The intention is not to replace the criticised approaches,
as they prove useful in many cases, but to add a further one
which can be used in situations where the others fail. We
illustrated that such scenarios do exist.

Our idea is to remember negative choices by carrying
along a second set of formulae that were not allowed to en-
ter the knowledge base and therefore should not be inferable
henceforth. Additionally, we proposed a definition of a con-
flict that considers the different statuses of the sets involved
as well as our notion of remembering choices. It general-
izes classical consistency. We presented some results con-
cerning the modified definitions, e.g. their relation to clas-
sical consistency, and the RDMA-algorithm, like its relation
to the other Adjustments. We also hinted at the possibility
of defining a contraction operation which uses RDMA. The
properties of this operation remain to be investigated.

We did not investigate the nature of the weakening
scheme in this paper. As mentioned in connection with Ex-
ample 4, this is necessary and subject to future work. Fur-
ther, the relation of RDMA to other schemes for extracting
a consistent knowledge base from a stratified one and to ar-
gumentation frameworks like that of (Amgoud & Parsons
2002) is of interest. This would shed more light on the rea-
sons for the choices of which formulae enter the knowledge
base. Another point to be investigated is the computational
complexity of the algorithm proposed.

We identified one of the reasons for the counter-intuitive
results provided by (Disjunctive) Maxi-Adjustment. In some
cases the reappearance of a formula in strata of lower pri-
ority might have a decisive force to break a tie. In oth-
ers it would be more intuitive if theadditional informa-
tion was ignored. Note that none of the approaches pre-
sented here can deal with scenarios in which these cases are
mixed. Remember the decision support tool, the input being
({a,¬a, b,¬b}, {a, b}), a representing ”have ice cream”,b
”raise loan”. We would want the knowledge base to implya
but notb. Both DMA and RDMA will fail here.

It seems necessary to find a way to combine the advan-
tages of both DMA and RDMA. However, then the repre-
sentation using stratified knowledge bases may not be suffi-
cient, as further information is needed to decide which for-
mulae involved in conflicts are allowed to be introduced later
on and which not.
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