
A Sequent Calculus for Skeptical Reasoning in Autoepistemic Logic

Robert Saxon Milnikel
Kenyon College, Gambier OH 43022 USA

milnikelr@kenyon.edu

Abstract

A sequent calculus for skeptical consequence in infinite au-
toepistemic theories is presented and proved sound and com-
plete. While skeptical consequence is decidable in the finite
case, the move to infinite theories increases the complexity of
skeptical reasoning to beingΠ1

1-complete. This implies the
need for sequent rules with countably many premises, and
such rules are employed.

Introduction
Skeptical consequence is a notion common to all forms of
nonmonotonic reasoning. Every nonmonotonic formalism
permits different world views to be justified using the same
set of facts and principles; the skeptical consequences of a
framework are the notions common to all world views as-
sociated with that framework. Our purpose in this paper
is to present a Gentzen-style sequent calculus (incorporat-
ing some infinitary rules) which will allow us to deduce the
skeptical consequences of a given autoepistemic framework.
Such sequent calculi (with purely finite rules) were defined
for several types of nonmonotonic systems by Bonatti and
Olivetti in (Bonatti & Olivetti 2002), but they restricted their
attention to finite propositional systems for which skeptical
consequence is decidable. We will adapt and extend their
systems to accommodate infinite systems.

We will focus on autoepistemic logic (due to Moore,
(Moore 1984)). Sequent calculi have also been developed
for stable model logic programming (due to Gelfond and
Lifschitz, (Gelfond & Lifschitz 1988)), default logic (due
to Reiter, (Reiter 1980)). (See (Milnikel 2003).) When one
steps from the finite to the potentially infinite, finding the
set of skeptical consequences of a framework goes from be-
ing decidable to beingΠ1

1-complete, at the same level of
the computability hierarchy as true arithmetic. This result
was proved for stable model logic programming by Marek,
Nerode, and Remmel in (Marek, Nerode, & Remmel 1994),
but it translates to autoepistemic logic quite easily. (The
reader should be aware that there will be a few computability
theoretic ideas and motivations discussed in this introduc-
tory section, but that they may be considered “deep back-
ground” and will not be a part of the exposition of the main
ideas.)

Members ofΠ1
1 sets correspond to finite-path computable

(or Π0
1) subtrees ofω<ω in a very natural way. See (Cenzer

& Remmel 1998) for an excellent exposition. This makes
skeptical consequence a natural fit for sequent calculi with
infinitary rules, since a sequent proof is, at its core, a finite-
path tree. Bonatti and Olivetti also addressed credulous con-
sequence (“Can this notion be a part ofsomeworld view?”)
in their paper, but in the cases they were interested in, this
question was also decidable. In our more general context,
credulous reasoning isΣ1

1-complete, not a natural type of
question to address with trees-as-proofs. (One could write
a sequent calculus for credulous reasoning inΠ1

2 logic, but
this would take us too far afield.)

Because nonmonotonic logics deal not only with proof
but with lack of proof, we will need not only standard mono-
tone sequent calculi, but also rule systems for showing a lack
of proof. (We will call these antisequent calculi, using the
terminology of Bonatti from (Bonatti 1993).)

In our discussion of autoepistemic logic, we limit our-
selves to the propositional case, but with a potentially in-
finite theory. Predicate autoepistemic logic is discussed in
the literature (see, for example, (Konolige 1994)), and the
interested reader should not find it difficult to combine the
rules specific to predicate logic (from the discussion of de-
fault logic in (Milnikel 2003)) with the results about propo-
sitional autoepistemic logic.

Section 2 will consist of some preliminary definitions and
results about autoepistemic logic, as well as Bonatti’s anti-
sequent calculus for propositional logic. Section 3 presents
a sequent calculus for skeptical reasoning in infinite propo-
sitional autoepistemic theories, and proves soundness and
completeness theorems for this calculus. Section 4 looks to-
ward further directions for research.

Preliminaries
We will present some preliminary definitions and results on
autopepistemic logic as well as on sequent and antisequent
calculi. We assume that the reader is familiar with the modal
operatorL (also written2).

Stable Theories and Autoepistemic Logic
Moore’s autoepistemic logic ((Moore 1984)) is an approach
to nonmonotone reasoning which uses context both posi-
tively and negatively to reflect positive and negative intro-
spection. In many ways, this is the most straightforward and
intuitive approach one can take to nonmonotone reasoning.



The language for autoepistemic logic will beLL, a propo-
sitional languageL extended by the modal operatorL. How-
ever, we will not be interested in traditional modal interpre-
tations ofLL, but in a strictly propositional interpretation,
in which every formula of the formLϕ is treated as an in-
dependently valued proposition. (Traditional modal logic
will come up once, very briefly. The premise of a propo-
sition will be that a theoryT ∈ LL is consistent withS5. If
the reader is not familiar with modal logics in general, this
proposition and its use in the midst of the final proof of the
paper can safely be skimmed.)

The core definition in autoepistemic logic is that of asta-
ble expansion. A stable expansion is a special sort ofsta-
ble theory. Before we define stable expansions, let us de-
fine stable theories and list some of their elementary proper-
ties. Most of these results are due to Moore ((Moore 1985)).
Proofs can be found in (Marek & Truszczyński 1993).

Definition 1. A propositionally deductively closed theory
T ⊆ LL is calledstableif it meets the following two criteria:

• For everyϕ ∈ LL, if ϕ ∈ T thenLϕ ∈ T .
• For everyϕ ∈ LL, if ϕ /∈ T then¬Lϕ ∈ T .

To state the results we want, we will need several further
definitions.

Definition 2. • TheL-depthof a formulaϕ ∈ LL, denoted
dL(ϕ), is defined recursively.
– If ϕ ∈ L, thendL(ϕ) = 0.
– If ϕ = ¬ψ, thendL(ϕ) = dL(ψ).
– If ϕ = ψ1 ∨ ψ2, ϕ = ψ1 ∧ ψ2, orϕ = ψ1 → ψ2, then
dL(ϕ) = max{dL(ψ1), dL(ψ2)}.

– If ϕ = Lψ, thendL(ϕ) = dL(ψ) + 1.
• LL,n = {ϕ ∈ LL|dL(ϕ) ≤ n}.
• GivenT ⊆ LL, [T ]n = T ∩ LL,n.

Proposition 3. Let T ⊆ LL be stable. For every integer
n ≥ 0, [T ]n+1 =

Th([T ]n∪{Lϕ|ϕ ∈ [T ]n}∪{¬Lϕ|ϕ ∈ LL,n\[T ]n})∩LL,n+1.

Proposition 4. Let U ⊆ LL be consistent withS5. Then
there is a unique stable and consistent theoryT such that
U ⊆ T .

Proposition 5. If T is a stable consistent theory, then

T = Th([T ]0 ∪ {Lϕ|ϕ ∈ T} ∪ {¬Lϕ|ϕ /∈ T}).

Proposition 6. If T is a stable consistent theory, then for
everyϕ ∈ LL, eitherLϕ ∈ T or ¬Lϕ ∈ T , and not both.

We will now define stable expansions, the main object of
study in autoepistemic logic.

Definition 7 (Stable Expansion). A set of formulasT ⊆
LL is a stable expansion ofA ⊆ LL if and only if T is a
consistent set of formulas for whichT = Th(A ∪ {Lϕ|ϕ ∈
T} ∪ {¬Lϕ|ϕ /∈ T}).

If we think of stable expansions as coherent, justified
points of view in a framework represented by the rules of
the autoepistemic theory, there are two important sets of for-
mulas we want to take note of: those which can be part

of some coherent, justified point of view, and those which
must be part of any coherent, justified point of view. If
you take as your set of conclusions things which are present
in at least one stable expansion, you are reasoningcredu-
lously or bravely (both terms are widely used). If, on the
other hand, you believe only those facts true in all stable ex-
pansions, you are reasoningskepticallyor cautiously. (The
standard contrasts are credulous vs. skeptical reasoning and
brave vs. cautious reasoning.)

A question arises: What is the set of skeptical conse-
quences of an autoepistemic theoryA if A has no stable
expansions? One might be tempted to consider the set of
skeptical expansions empty, but it is generally accepted that
this is not the approach to use. On the contrary, ifA has no
stable expansions,everypropositionϕ is considered a skep-
tical consequence ofA. The most intuitive argument for this
is to look at the sentence “ϕ is a member of every stable
expansion ofA”. It is vacuously true if there are no stable
expansions ofA.

Antisequent Calculus

Bonatti in (Bonatti 1993) presented an antisequent calcu-
lus for propositional logic, a counterpart to the propositional
fragment of Gentzen’s sequent calculusLK . We assume that
the reader is familiar with this or some other propositional
sequent calculus.

An antisequentis a pair〈Γ,∆〉 of finite sets of formulas,
denotedΓ 0 ∆. We will call Γ 0 ∆ true if there is a model
of Γ in which all of the formulas of∆ are false. We have
the benefit of the Soundness and Completeness Theorems
for LK , which tell us thatΓ 0 ∆ is true if and only ifΓ ` ∆
is false if and only ifΓ ` ∆ is not derivable inLK .

An antisequentΓ 0 ∆ will be considered anaxiom of
our antisequent calculus ifΓ∪∆ consists entirely of atomic
formulas andΓ ∩ ∆ = ∅. The rules for the antisequent
calculus can be found in Table 1.

The antisequent calculus in Table 1 was shown to be
sound and complete by Bonatti ((Bonatti 1993)), making use
of the classical propositional Soundness and Completeness
theorems.

Skeptical Sequent Calculus for Autoepistemic
Logic

We will use the propositional fragment ofLK and its antise-
quent counterpart given in Table 1, extended to the propo-
sitional languageLL. In dealing with lack of proof, we
will need not only to assert that such-and-such proposition
is proved, but to state explicitlyhowit was proved. Were we
dealing explicitly with a full nonmonotonic modal logic, we
might want to incorporate Artemov’s logic of proofs ((Arte-
mov 2001)), but for our purposes, it will be sufficient to build
our skeptical sequents out of a combination of formulas and
classical sequents.

A sequentfor skeptical reasoning in autoepistemic logic
will be a pair 〈Γ,∆〉, usually writtenΓ|∼∆, whereΓ ⊆
LL∪{[Γ0 ` ∆0]|Γ0∪∆0 ⊆ LL is finite} and∆ ⊆ LL. Be-
cause our sequent calculus rules will incorporate monotone



(¬ 0)
Γ 0 ∆, ϕ

Γ,¬ϕ 0 ∆
(0 ¬)

Γ, ϕ 0 ∆
Γ 0 ∆,¬ϕ

(∧ 0)
Γ, ϕ, ψ 0 ∆

Γ, ϕ ∧ ψ 0 ∆
(0 •∧)

Γ 0 ∆, ϕ
Γ 0 ∆, ϕ ∧ ψ

(0 ∧•) Γ 0 ∆, ψ
Γ 0 ∆, ϕ ∧ ψ

(•∨ 0)
Γ, ϕ 0 ∆

Γ, ϕ ∨ ψ 0 ∆
(0 ∨)

Γ 0 ∆, ϕ, ψ
Γ 0 ∆, ϕ ∨ ψ

(∨• 0)
Γ, ψ 0 ∆

Γ, ϕ ∨ ψ 0 ∆

(• →0)
Γ 0 ∆, ϕ

Γ, ϕ→ ψ 0 ∆
(0→)

Γ, ϕ 0 ∆, ψ
Γ 0 ∆, ϕ→ ψ

(• →0)
Γ, ψ 0 ∆

Γ, ϕ→ ψ 0 ∆

Table 1: Rules of the Antisequent Calculus

sequent and antisequent rules, we enclose the classical se-
quents which are elements of a larger sequent in [brackets].
This is not an ideal notational situation, but[Γ0 ` ∆0] will
be true as part of a larger sequent if and only ifΓ0 ` ∆0 is
true as its own independent sequent, so there should not be
any confusion. The meaning of a sequentΓ|∼∆ will be: If
monotone sequents inΓ are true, then each stable expansion
of Γ ∩ LL contains some member of∆. The other notion
that we will need is that of anL-subformula. ψ is anL-
subformula ofϕ if ψ is a subformula ofϕ of the formLϕ′.
We will denote byLS(ϕ) the set of subformulas ofϕ. We
will also defineLS(Φ) =

⋃
{LS(ϕ)|ϕ ∈ Φ}.

A last standard bit of shorthand:LΦ = {Lϕ|ϕ ∈ Φ} and
¬LΦ = {¬Lϕ|ϕ ∈ Φ}.
Definition 8 (Skeptical Sequent Calcu-
lus—Autoepistemic Logic). The axioms of the skeptical
sequent calculus for autoepistemic logic are the axioms of
the classical sequent calculusLK and of its counterpart
antisequent calculus, all in the modal propositional language
LL. The rules of the sequent calculus are:

0. The propositional rules of the classical sequent and anti-
sequent calculi.

1.
Γ′ ` ∆′

Γ|∼∆
whereΓ′ ⊆ Γ∩LL is finite and∆′ ⊆ ∆ is finite.

2.
¬Lϕ,Γ′ ` ϕ
¬Lϕ,Γ|∼∆

whereΓ′ ⊆ Γ ∩ LL is finite.

3.
Γ0 0 ϕ

[Γ0 ` ϕ],Γ|∼∆
whereΓ0 ⊆ LL is finite.

4.
{[Γ0, LΦ,¬LΨ ` θ], LΦ,¬LΨ,Γ|∼∆| (*) and (**)}

Lθ,Γ|∼∆

(*) Γ0 ⊆ Γ ∩ LL is finite.
(**) LΦ ∪ LΨ ⊆ LS(Γ ∪ {Lθ}) is finite.

5.
Lϕ,Γ|∼∆ ¬Lϕ,Γ|∼∆

Γ|∼∆
whereLϕ ∈ LS(Γ ∪∆).

It is worth noting that rule 4 will have infinitely many
premises exactly ifΓ is infinite. All other rules have finitely
many preferences, and this formulation yields a decision
procedure in the case thatΓ is finite. The intuitive meaning
of each of the rules should be made clear by the discussions
of their soundness.

We will conclude this short paper with the promised
soundness and completeness theorems for the skeptical se-
quent calculus for autoepistemic logic.

Theorem 9. If autoepistemic logic skeptical reasoning se-
quentΓ|∼∆ is derivable, then it is true.

Proof. We will establish the soundness of each of our rules:

1. Because any stable expansionT of Γ ∩ LL will contain
Γ′ and will be closed under propositional provability,T
must contain an element of∆′ and therefore of∆.

2. Any stable modelT of {¬Lϕ} ∪ (Γ ∩ LL) will contain
Γ′ and will be closed under propositional provability, and
hence will containϕ. BecauseT is a stable model it will
also containLϕ. Thus,T will containLϕ and¬Lϕ, mak-
ing T inconsistent. Because stable models are, by defini-
tion, consistent, there is no suchT and the conclusion is
vacuously true.

3. If Γ0 0 ϕ, then it is not the case thatΓ0 ` ϕ, and the
conclusion is immediately true.

4. Suppose that the conclusion of the rule,Lθ,Γ|∼∆, were
false. That is, assume that there is a stable expansion
T of Γ ∩ LL with T ∩ ∆ = ∅ and θ ∈ T . (We need
Lθ ∈ T . WereT stable andθ /∈ T , then¬Lθ ∈ T andT
would be inconsistent.) By the definition of stable model,
θ is a propositional consequence ofΓ ∩ LL ∪ {Lϕ|ϕ ∈
T} ∪ {¬Lϕ|ϕ /∈ T}, so by compactness it must be a
propositional consequence of some finite subset thereof.
It should be clear to the reader familiar with proposi-
tional logic that formulasLϕ and ¬Lϕ which are not
in LS(Γ ∪ {Lθ}) will play no part in this propositional
proof. Choose a specific proof ofθ. Let Φ be the set of
ϕ ∈ T such thatLϕ is used in this proof, letΨ be the
set ofψ /∈ T such that¬Lψ is used in the proof, and let
Γ0 be the formulas fromΓ ∩ LL used in the proof. Ob-
viously, [Γ0, LΦ,¬LΨ ` θ] is true by our choice ofΦ,
Ψ, andΓ0. T itself will be a witness to the falsehood of
[Γ0, LΦ,¬LΨ ` θ], LΦ,¬LΨ,Γ|∼∆, becauseT is a sta-
ble model ofΓ∩LL∪{Lϕ|ϕ ∈ Φ}∪{¬Lψ|ψ ∈ Ψ}which
has empty intersection with∆. This will be a premise of
rule 4 which is false. Thus, if all premises of rule 4 are
true, so is the conclusion.
(In this rule and the next, we don’t have to worry about
classical sequent[Γ′

0 ` θ′] ∈ Γ being false, since we as-
sumed the conclusion of rule 4 false, and had any classical
sequent inΓ been false, the skeptical sequent would have
been vacuously true.)



5. Suppose that the conclusion of the rule,Γ|∼∆, were false.
That is, suppose that there is a stable expansionT of
Γ ∩ LL with T ∩ ∆ = ∅. Eitherϕ ∈ T or ϕ /∈ T . If
ϕ ∈ T , thenT is a stable expansion ofLϕ,Γ with empty
intersection with∆. If ϕ /∈ T , thenT is a stable expan-
sion of ¬Lϕ,Γ with empty intersection withT . If the
conclusion of rule 5 is false, so is one of its two premises.
Thus if both premises are true, so is the conclusion.

Theorem 10. An autoepistemic logic skeptical reasoning
sequentΓ|∼∆ is true then it is provable.

Proof. We will show the contrapositive of our completeness
theorem. Let us assume that sequentΓ0|∼∆ has no proof.
We will build a failed attempt at a proof which will be guar-
anteed to have at least one branch not terminating in an ax-
iom. TheΓ developed on this branch will be a witness to the
falsehood ofΓ0|∼∆.

We will start withΓ0|∼∆ and build a proof attempt, ex-
panding each sequent with the premises of some rule having
that sequent as a conclusion, if possible. We will be con-
structing a countably branching tree, so we will need to work
in some suitable ordering ofω<ω.

If the sequentΓ|∼∆ under consideration has a proof under
rule 1, 2, or 3 from true premises, makeΓ|∼∆ the conclusion
of that rule and finish out the proof above that point.

If the sequentΓ|∼∆ whose branch we are trying to extend
has at least oneLθ ∈ Γ or has at least oneLϕ ∈ LS(Γ∪∆)
such that neitherLϕ nor¬Lϕ is in Γ, we will be guaranteed
that there are rules of type 4 or 5 with conclusionΓ|∼∆. If
no rules of type 1, 2, or 3 with the appropriate conclusion
(and true premises) can be found, extend the proof attempt
with either rule 4 or rule 5, if possible. If there are an even
number of sequents below the present one (and if it may be
applied) use rule 4; if there are an odd number of sequents
below the present one (and it may be applied) use rule 5.
When using rule 4, work with theLθ which appeared earliest
in the development of the proof attempt. (If more than one
appeared at the same time, choose the one whoseθ is least
in some ordering ofLL.) When using rule 5, work with the
ϕ least in your ordering ofLL.

Of course, if no rule at all has conclusionΓ|∼∆, leave the
sequent alone.

Since we assumed that the sequentΓ0|∼∆ has no proof,
there will be at least some branch of our attempted proof
tree which was expanded using only rules 4 and 5 and which
therefore does not terminate in an axiom. Select one of these
branches. (Note that neither rule 4 nor rule 5 affects∆, so
whileΓ will expand as we traverse the branch,∆ will remain
constant.)

Let us defineΓ∗ to be the set of all formulas ofLL which
appear in theΓ of a sequentΓ|∼∆ anywhere along the se-
lected branch. We will show thatTh(Γ∗) can be extended
to a stable theory which is a stable expansion ofΓ for each
sequentΓ|∼∆ in our selected branch and which excludes all
of ∆. Let us select an arbitraryΓ|∼∆.

The first step in this procedure will be to showTh(Γ∗)
consistent withS5. To accomplish this, we’ll use several
claims.

• Claim 1:Γ∗ is consistent.
Justification: IfΓ∗ weren’t consistent, then it would have
to have been inconsistent by some finite stage in the de-
velopment of the branch. We could have used rule 1 to
terminate the branch at the point where the inconsistency
entered.

• Claim 2: IfLϕ ∈ Th(Γ∗), thenLϕ ∈ Γ∗.
Justification:Γ∗ consists ofΓ plus some formulas of the
form Lψ and¬Lψ. If Lϕ ∈ Th(Γ∗), butLϕ /∈ Γ∗, it
must have been because some formula ofΓ was used to
proveLϕ. (Th refers to propositional provability andLϕ
is treated as a propositional atom, so this is the only ex-
planation.) That means thatLϕ is the conclusion of some
implication inΓ, and is therefore inLS(Γ). Because of
the wayΓ∗ was defined, for everyLψ ∈ LS(Γ), either
Lψ ∈ Γ∗ or ¬Lψ ∈ Γ∗. BecauseΓ∗ is consistent, if
Lϕ ∈ LS(Γ) ∩ Th(Γ∗), thenLϕ ∈ Γ∗.

• Claim 3: If¬Lϕ ∈ Th(Γ∗), then¬Lϕ ∈ Γ∗.
Justification: Same as for claim 2.

• Claim 4: IfLϕ ∈ Γ∗, thenϕ ∈ Th(Γ∗).
Justification: By rule 4, ifLϕ ∈ Γ∗, then so is[Γ′ ` ϕ] for
some finiteΓ′ ⊆ Γ∗. WereΓ′ ` ϕ false, then the branch
could have been terminated using rule 3. Since the branch
could not be terminated, it must be thatΓ′ ` ϕ, and hence
ϕ ∈ Th(Γ∗).

• Claim 5: If¬Lϕ ∈ Γ∗, thenϕ /∈ Th(Γ∗).
Justification: Ifϕ were inTh(Γ∗), then for someΓ′|∼∆
on the selected branch, it would be the case thatΓ′ ` ϕ
and¬Lϕ ∈ Γ′, and the branch could have been termi-
nated using rule 2.

• Claim 6: IfLϕ ∈ Th(Γ∗), thenϕ ∈ Th(Γ∗).
Justification: Immediate from claims 2 and 4.

• Claim 7: If¬Lϕ ∈ Th(Γ∗), thenϕ /∈ Th(Γ∗).
Justification: Immediate from claims 3 and 5.

We can now easily showTh(Γ∗) to be consistent withS5.

• To be inconsistent with axiomk, we would needL(ϕ →
ψ), Lϕ, and¬Lψ in Th(Γ∗). By claims 6 and 7 above,
this would putϕ → ψ andϕ in Th(Γ∗) and leaveψ out
of Th(Γ∗). SoTh(Γ∗) is consistent with axiomk.

• To be inconsistent with axiomt, we would needLϕ ∈
Th(Γ∗) andϕ /∈ Th(Γ∗), contradicting claim 6.

• To be inconsistent with axiom4, we would needLϕ ∈
Th(Γ∗) and ¬LLϕ ∈ Th(Γ∗). Claim 7 tells us that
Lϕ /∈ Th(Γ∗), which is impossible, soTh(Γ∗) is con-
sistent with axiom4.

• To be inconsistent with axiom5, we would need¬L¬Lϕ
and¬Lϕ both inTh(Γ∗). The former, with claim 7, tells
us that¬Lϕ /∈ Th(Γ∗), so it must be thatTh(Γ∗) is con-
sistent with axiom5.

We can now say by Proposition 4 thatTh(Γ∗) can be ex-
tended to a unique consistent stable theoryT . Finally, we
need to showT to be a stable expansion ofΓ.



Let us defineS = Th(Γ∪{Lϕ|ϕ ∈ T}∪{¬Lϕ|ϕ /∈ T}).
If we can show thatS = T , then we will have shownT to
be a stable expansion ofΓ.

ThatS ⊆ T is fairly clear. We know thatΓ ⊆ Th(Γ∗) ⊆
T . BecauseT is stable, both{Lϕ|ϕ ∈ T} ⊆ T and
{¬Lϕ|ϕ /∈ T} ⊆ T andT is propositionally closed.

To showT ⊆ S, let us first show that for eachLϕ ∈ Γ∗,
ϕ ∈ T . BecauseT extendsΓ∗, if Lϕ ∈ Γ∗, thenLϕ ∈ T .
If it were the case thatϕ /∈ T , then by the stability ofT ,
we would also have¬Lϕ ∈ T . Because we knowT to be
consistent, this can not happen. A nearly identical argument
shows that for each¬Lϕ ∈ Γ∗, ϕ /∈ T .

Now, to showT ⊆ S, we’ll make use of Proposition 5,
which says that

T = Th([T ]0 ∪ {Lϕ|ϕ ∈ T} ∪ {¬Lϕ|ϕ /∈ T}).

Thus, all we need to show is that[T ]0 ⊆ S. BecauseTh(Γ∗)
was consistent withS5, so is[Th(Γ∗)]0. Since eachU ⊆ LL

consistent withS5 is contained in auniquestable theoryT ,
it must be that[T ]0 = [Th(Γ∗)]0. So what we need to show
is that any propositional formula inTh(Γ∗) can be proved
from Γ, {Lϕ|ϕ ∈ T}, and{¬Lϕ|ϕ /∈ T}. We just argued
that anyL and¬L formulas inΓ∗ are to be found in the latter
two sets, and of course any formula ofΓ∗ which is not of one
of these two types must have come fromΓ itself. We have
shown not only that[Th(Γ∗)]0 ⊆ S, but thatTh(Γ∗) ⊆ S.

One last step will complete the proof. We need to show
that T excludes all formulas of∆. By rule 5, we know
thatΓ∗ contained eitherLϕ or ¬Lϕ for all formulasLϕ ∈
LS(∆). We also know that[T ]0 = [Th(Γ∗)]0. Were it pos-
sible to prove any formula of∆ from T , it would have been
possible to prove that formula fromΓ∗. Were it possible to
prove some formula of∆ fromΓ∗, it would have been possi-
ble to prove that formula fromΓ′ for some sequentΓ′|∼∆ on
our chosen branch. Had this been possible, we could have
terminated the branch using rule 1. Since we could not, it
must be thatTh(Γ∗) ∩∆ = ∅, and henceT ∩∆ = ∅.

Further Directions For Research
We have now seen sequent calculi for autoepistemic logic,
and calculi exist for stable model logic programming and
predicate default logic as well. One obvious direction to go
to extend this work would be to do the same for predicate
circumscription. As we noted in the introduction, this would
require aΠ1

2 sequent calculus. Just as, we hope, the calculi
presented here will aid in the understanding of the subtlety
of skeptical reasoning in the logics discussed, aΠ1

2 sequent
calculus for circumscription might offer insights into that
framework.

One distinguishing feature of the calculus presented
above is that the assertion thatϕ simply hasa proof is not
enough. We must look at all possible proofs ofϕ. This ne-
cessity to take an assertion of the existence of a proof and
explicate it with an actual proof fairly calls out for a connec-
tion with Artemov’s logic of proofs (see (Artemov 2001)).
Because the logic of proofs has such a strong connection
with modal logic, McDermott and Doyle’s nonmonotonic

modal logics are the natural candidates for the first study of
such a connection.
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