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Abstract & Remmel 1998) for an excellent exposition. This makes
A sequent calculus for skeptical consequence in infinite au- §k_ept|cal consequence a natural fit fo_r Seq_uent Calcul! V.V'th
toepistemic theories is presented and proved sound and com- infinitary rules, since a sgqugnt proof is, at its core, a finite-
plete. While skeptical consequence is decidable in the finite ~ Path tree. Bonatti and Olivetti also addressed Cre‘.ju'Ol,J,S con-
case, the move to infinite theories increases the complexity of ~ Sequence (“Can this notion be a partsoimeworld view?”)

skeptical reasoning to beirig:-complete. This implies the in their paper, but in the cases they were interested in, this
need for sequent rules with countably many premises, and  question was also decidable. In our more general context,
such rules are employed. credulous reasoning is1-complete, not a natural type of
guestion to address with trees-as-proofs. (One could write
Introduction a sequent calculus for credulous reasoninglinlogic, but

f this would take us too far afield.)

Because nonmonotonic logics deal not only with proof
but with lack of proof, we will need not only standard mono-
tone sequent calculi, but also rule systems for showing a lack
of proof. (We will call these antisequent calculi, using the
terminology of Bonatti from (Bonatti 1993).)

In our discussion of autoepistemic logic, we limit our-
selves to the propositional case, but with a potentially in-
finite theory. Predicate autoepistemic logic is discussed in
the literature (see, for example, (Konolige 1994)), and the
interested reader should not find it difficult to combine the
rules specific to predicate logic (from the discussion of de-
fault logic in (Milnikel 2003)) with the results about propo-
sitional autoepistemic logic.

Section 2 will consist of some preliminary definitions and
results about autoepistemic logic, as well as Bonatti’s anti-

(Moore 1984)). Sequent calculi have also been developed S€duent calculus for propositional logic. Section 3 presents

for stable model logic programming (due to Gelfond and a sequent CaICl.JIUS fpr skept]cal reasoning in infinite propo-

Lifschitz, (Gelfond & Lifschitz 1988)), default logic (due sitional autoepistemic theone_s, and proves s_oundness and

to Reiter, (Reiter 1980)). (See (Milnikel 2003).) When one completeness.thec.)rems for this calculus. Section 4 looks to-

steps from the finite to the potentially infinite, finding the ward further directions for research.

set of skeptical consequences of a framework goes from be- Lo

ing decidable to beindli-complete, at the same level of Preliminaries

the computability hierarchy as true arithmetic. This result We will present some preliminary definitions and results on

was proved for stable model logic programming by Marek, autopepistemic logic as well as on sequent and antisequent

Nerode, and Remmel in (Marek, Nerode, & Remmel 1994), calculi. We assume that the reader is familiar with the modal

but it translates to autoepistemic logic quite easily. (The operatorL (also writtend).

reader should be aware that there will be a few computability . ) . .

theoretic ideas and motivations discussed in this introduc- Stable Theories and Autoepistemic Logic

tory section, but that they may be considered “deep back- Moore’s autoepistemic logic ((Moore 1984)) is an approach

ground” and will not be a part of the exposition of the main to nhonmonotone reasoning which uses context both posi-

ideas.) tively and negatively to reflect positive and negative intro-
Members ofil] sets correspond to finite-path computable spection. In many ways, this is the most straightforward and

(or I1Y) subtrees ofo<¥ in a very natural way. See (Cenzer intuitive approach one can take to nonmonotone reasoning.

Skeptical consequence is a notion common to all forms o
nonmonotonic reasoning. Every nonmonotonic formalism
permits different world views to be justified using the same
set of facts and principles; the skeptical consequences of a
framework are the notions common to all world views as-
sociated with that framework. Our purpose in this paper
is to present a Gentzen-style sequent calculus (incorporat-
ing some infinitary rules) which will allow us to deduce the
skeptical consequences of a given autoepistemic framework.
Such sequent calculi (with purely finite rules) were defined
for several types of nonmonotonic systems by Bonatti and
Olivetti in (Bonatti & Olivetti 2002), but they restricted their
attention to finite propositional systems for which skeptical
consequence is decidable. We will adapt and extend their
systems to accommodate infinite systems.

We will focus on autoepistemic logic (due to Moore,



The language for autoepistemic logic will Bg,, a propo-
sitional languagé& extended by the modal operator How-
ever, we will not be interested in traditional modal interpre-
tations of £, but in a strictly propositional interpretation,
in which every formula of the forniy is treated as an in-
dependently valued proposition. (Traditional modal logic
will come up once, very briefly. The premise of a propo-
sition will be that a theoryl” € £, is consistent witts5. If
the reader is not familiar with modal logics in general, this
proposition and its use in the midst of the final proof of the
paper can safely be skimmed.)

The core definition in autoepistemic logic is that afta-
ble expansion A stable expansion is a special sortsbé-
ble theory Before we define stable expansions, let us de-
fine stable theories and list some of their elementary proper-
ties. Most of these results are due to Moore ((Moore 1985)).
Proofs can be found in (Marek & Truszdeski 1993).

Definition 1. A propositionally deductively closed theory
T C Ly is calledstableif it meets the following two criteria:
e Foreveryp € L;,if p e TthenLyp € T.

e Foreveryp € L,if o ¢ Tthen-Lp e T.

To state the results we want, we will need several further
definitions.

Definition 2. e The L-depthof a formulay € £, denoted
dr.(p), is defined recursively.
— If p € L, thendy(¢) = 0.
— If o = =), thend (p) = d ().
= If o =11 Vipa, p = 91 Athg, Orp = b1 — 1)o, then
dr(p) = max{dr(¢1),dr(12)}.
— If ¢ = Ly, thendy (¢) = dr(v) + 1.
o Lin={p€LyldL(p) <n}.
e GivenT C L, [T}n =TnN EL,n-
Proposition 3. Let T C L be stable. For every integer
n Z Ol [T]n+1 =

Th([T]nW{Lele € [TIn}u{~Lelp € LLn\[TIn})NLL 11

Proposition 4. LetU C L be consistent witls5 Then
there is a unique stable and consistent thedrguch that
UCT.

Proposition 5. If T' is a stable consistent theory, then
T =Th([Tlo U{Lelp € T} U{~Le|p ¢ T}).

Proposition 6. If T is a stable consistent theory, then for
everyp € Ly, eitherLy € T or =Ly € T, and not both.

We will now define stable expansions, the main object of
study in autoepistemic logic.

Definition 7 (Stable Expansion). A set of formulasT” C
L} is astable expansion ofi C £ if and only if T is a
consistent set of formulas for whiéh = Th(A U {Lp|p €
TYU{-Lelp ¢ T}).

If we think of stable expansions as coherent, justified
points of view in a framework represented by the rules of
the autoepistemic theory, there are two important sets of for-
mulas we want to take note of: those which can be part

of some coherent, justified point of view, and those which
must be part of any coherent, justified point of view. If
you take as your set of conclusions things which are present
in at least one stable expansion, you are reasoaiadu-
lously or bravely (both terms are widely used). If, on the
other hand, you believe only those facts true in all stable ex-
pansions, you are reasonisgepticallyor cautiously (The
standard contrasts are credulous vs. skeptical reasoning and
brave vs. cautious reasoning.)

A question arises: What is the set of skeptical conse-
quences of an autoepistemic theotyif A has no stable
expansions? One might be tempted to consider the set of
skeptical expansions empty, but it is generally accepted that
this is not the approach to use. On the contrary tias no
stable expansionsyerypropositiony is considered a skep-
tical consequence of. The most intuitive argument for this
is to look at the sentencey“is a member of every stable
expansion ofd”. It is vacuously true if there are no stable
expansions ofd.

Antisequent Calculus

Bonatti in (Bonatti 1993) presented an antisequent calcu-
lus for propositional logic, a counterpart to the propositional
fragment of Gentzen’s sequent calculis. We assume that
the reader is familiar with this or some other propositional
sequent calculus.

An antisequents a pair(I", A) of finite sets of formulas,
denoted™ ¥ A. We will call T" ¥ A trueif there is a model
of I in which all of the formulas ofA are false. We have
the benefit of the Soundness and Completeness Theorems
for LK, which tell us thaf” ¥ A is true if and only ifl' - A
is false if and only ifl" - A is not derivable inLK .

An antisequent” ¥ A will be considered araxiom of
our antisequent calculuslifu A consists entirely of atomic
formulas andl' " A = (. The rules for the antisequent
calculus can be found in Table 1.

The antisequent calculus in Table 1 was shown to be
sound and complete by Bonatti ((Bonatti 1993)), making use
of the classical propositional Soundness and Completeness
theorems.

Skeptical Sequent Calculus for Autoepistemic
Logic

We will use the propositional fragment bK and its antise-
guent counterpart given in Table 1, extended to the propo-
sitional languageC;,. In dealing with lack of proof, we
will need not only to assert that such-and-such proposition
is proved, but to state explicitlyowit was proved. Were we
dealing explicitly with a full nonmonotonic modal logic, we
might want to incorporate Artemov’s logic of proofs ((Arte-
mov 2001)), but for our purposes, it will be sufficient to build
our skeptical sequents out of a combination of formulas and
classical sequents.

A sequenfor skeptical reasoning in autoepistemic logic
will be a pair (I'; A), usually writtenI'~A, whereI' C
£LU{[F0 = A0]|FOUAO CLyp is flnlte} andA C L. Be-
cause our sequent calculus rules will incorporate monotone
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Table 1: Rules of the Antisequent Calculus

sequent and antisequent rules, we enclose the classical se-
guents which are elements of a larger sequent in [brackets].

This is not an ideal notational situation, By = Ag] will
be true as part of a larger sequent if and onlif§ft Ay is

true as its own independent sequent, so there should not be™

any confusion. The meaning of a sequEhtA will be: If
monotone sequents Ihare true, then each stable expansion
of I' N L, contains some member &. The other notion
that we will need is that of ai-subformula. v is an L-
subformula ofy if v is a subformula ofy of the form L¢y'.
We will denote byLS(y) the set of subformulas af. We
will also defineLS(®) = U{LS(¢)|p € P}.

A last standard bit of shorthand:® = {Ly|¢ € ®} and
-L® = {-Lyp|p € D}.

Definition 8 (Skeptical Sequent Calcu-
lus—Autoepistemic Logic). The axioms of the skeptical
sequent calculus for autoepistemic logic are the axioms of
the classical sequent calculi&k and of its counterpart
antisequent calculus, all in the modal propositional language
Lr,.. The rules of the sequent calculus are:

0. The propositional rules of the classical sequent and anti-

sequent calculi.

1 M wherel¥ C I'n Ly, is finite andA’ C A is finite
" TRA = L = '
-Lo. I'F .
2. ﬁ wherel” C I' N Ly, is finite.
Lo Fo o
3. —————— wherel'y C L is finite.
[To F ¢], TRA o=

{[To, L&, ~LV F 6], LO, ~LY, TRA| (*) and (**) }
LO,TRA

(*) To CT'N Ly isfinite.
(**) L®ULY C LS(I'U{LH}) is finite.
Lo, A -Lo, THA
' A

It is worth noting that rule 4 will have infinitely many
premises exactly if" is infinite. All other rules have finitely
many preferences, and this formulation yields a decision
procedure in the case thhtis finite. The intuitive meaning
of each of the rules should be made clear by the discussions
of their soundness.

We will conclude this short paper with the promised
soundness and completeness theorems for the skeptical se-
guent calculus for autoepistemic logic.
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whereLy € LS(T'U A).

Theorem 9. If autoepistemic logic skeptical reasoning se-
quentl'l~A is derivable, then it is true.

Proof. We will establish the soundness of each of our rules:
1. Because any stable expansibrof I' N £, will contain

I'” and will be closed under propositional provability,
must contain an element &’ and therefore of\.

. Any stable model” of {-Ly} U (I' N L) will contain
I and will be closed under propositional provability, and
hence will containp. Becausd' is a stable model it will
also containLy. Thus,T will contain Ly and—L¢p, mak-
ing T inconsistent. Because stable models are, by defini-
tion, consistent, there is no su@hand the conclusion is
vacuously true.

If Ty ¥ ¢, then it is not the case th@y + ¢, and the
conclusion is immediately true.

4. Suppose that the conclusion of the rul@, T'~A, were
false. That is, assume that there is a stable expansion
TofTNLywithTNA = (andf € T. (We need
Lo € T. WereT stable and ¢ T', then—L# € T andT
would be inconsistent.) By the definition of stable model,
6 is a propositional consequence®of L U {Lp|p €
T} U {-Lylp ¢ T}, so by compactness it must be a
propositional consequence of some finite subset thereof.
It should be clear to the reader familiar with proposi-
tional logic that formulasLy and —L¢ which are not
in LS(T" U {L6}) will play no part in this propositional
proof. Choose a specific proof 6f Let ® be the set of
¢ € T such thatL¢ is used in this proof, letr be the
set ofy ¢ T such that-L¢) is used in the proof, and let
I’y be the formulas fromi” N £, used in the proof. Ob-
viously, [['y, L®,-LY + 0] is true by our choice o,

v, andI'y. T itself will be a witness to the falsehood of
[Ty, L®,-LY F 0], L®, LY, T'|~A, becausd’ is a sta-
ble model o 'NL U{Lp|p € ®}U{-L1|yp € ¥} which
has empty intersection with.. This will be a premise of
rule 4 which is false. Thus, if all premises of rule 4 are
true, so is the conclusion.

(In this rule and the next, we don’'t have to worry about
classical sequert’, - ¢'] € T" being false, since we as-
sumed the conclusion of rule 4 false, and had any classical
sequent il been false, the skeptical sequent would have
been vacuously true.)



5. Suppose that the conclusion of the rlile;A, were false.
That is, suppose that there is a stable expangioof
NnLpwithTNA = (. Eitherp € Torp ¢ T. If
¢ € T, thenT is a stable expansion dfp, I" with empty
intersection withA. If ¢ ¢ T, thenT is a stable expan-
sion of =Ly, " with empty intersection witll". If the
conclusion of rule 5 is false, so is one of its two premises.
Thus if both premises are true, so is the conclusion.

O

Theorem 10. An autoepistemic logic skeptical reasoning
sequenl’~A is true then it is provable.

Proof. We will show the contrapositive of our completeness
theorem. Let us assume that sequigit-A has no proof.

We will build a failed attempt at a proof which will be guar-
anteed to have at least one branch not terminating in an ax-
iom. Thel developed on this branch will be a witness to the
falsehood ofy ~A.

We will start withT'ygj~A and build a proof attempt, ex-
panding each sequent with the premises of some rule having
that sequent as a conclusion, if possible. We will be con-
structing a countably branching tree, so we will need to work
in some suitable ordering of<v.

If the sequent’~A under consideration has a proof under
rule 1, 2, or 3 from true premises, makp-A the conclusion
of that rule and finish out the proof above that point.

If the sequent’~A whose branch we are trying to extend
has at least ongd € I" or has at least onby € LS(I'UA)
such that neitheEy nor—Ly is inT", we will be guaranteed
that there are rules of type 4 or 5 with conclusidrA. If
no rules of type 1, 2, or 3 with the appropriate conclusion
(and true premises) can be found, extend the proof attempt
with either rule 4 or rule 5, if possible. If there are an even
number of sequents below the present one (and if it may be
applied) use rule 4; if there are an odd number of sequents
below the present one (and it may be applied) use rule 5.
When using rule 4, work with theé which appeared earliest
in the development of the proof attempt. (If more than one
appeared at the same time, choose the one whiséeast
in some ordering of;.) When using rule 5, work with the
 least in your ordering of ;..

Of course, if no rule at all has conclusibi-A, leave the
sequent alone.

Since we assumed that the sequBgit-A has no proof,
there will be at least some branch of our attempted proof
tree which was expanded using only rules 4 and 5 and which
therefore does not terminate in an axiom. Select one of these
branches. (Note that neither rule 4 nor rule 5 affektsso
whileT" will expand as we traverse the branghwill remain
constant.)

Let us defind™ to be the set of all formulas af;, which
appear in thd" of a sequent’~A anywhere along the se-
lected branch. We will show th&th(I'™*) can be extended
to a stable theory which is a stable expansiof' d6r each
sequent’~A in our selected branch and which excludes alll
of A. Let us select an arbitrafy~A.

The first step in this procedure will be to sha(I'™*)
consistent withS5 To accomplish this, we’'ll use several
claims.

e Claim 1:T* is consistent.
Justification: IfT"* weren't consistent, then it would have
to have been inconsistent by some finite stage in the de-
velopment of the branch. We could have used rule 1 to
terminate the branch at the point where the inconsistency
entered.
e Claim 2: If Ly € Th(I'™), thenLy € T*.
Justification:T* consists ofl” plus some formulas of the
form Ly and—Ly. If Ly € Th(I'™), but Ly ¢ T'*, it
must have been because some formul& efas used to
prove Ly. (Th refers to propositional provability antp
is treated as a propositional atom, so this is the only ex-
planation.) That means thaty is the conclusion of some
implication inT, and is therefore ilL.S(I"). Because of
the wayI™* was defined, for everyy) € LS(I'), either
Ly € T or =Ly € T'*. Becausd™ is consistent, if
Ly € LS(T) N Th(I'™), thenLy € T*.
Claim 3: If =Ly € Th(I'*), then-Lp € T'*.
Justification: Same as for claim 2.
e Claim 4: If Ly € I'*, theny € Th(I'™).
Justification: By rule 4, iLy € T'*, then soigI'” F o] for
some finitel” C T'*. WereI"” + ¢ false, then the branch
could have been terminated using rule 3. Since the branch
could not be terminated, it must be tHdt- , and hence
@ € Th(I™).
e Claim 5: If =Ly € I'*, theny ¢ Th(I™).
Justification: Ifo were inTh(T"*), then for somd”~A
on the selected branch, it would be the case FHat ¢
and—-Ly € I", and the branch could have been termi-
nated using rule 2.
e Claim 6: If Ly € Th(I'™), theny € Th(I™).
Justification: Immediate from claims 2 and 4.
Claim 7: If =Ly € Th(I'*), theny ¢ Th(I™).
Justification: Immediate from claims 3 and 5.

We can now easily sho@h(I'*) to be consistent witl$5.

¢ To be inconsistent with axiorh, we would need (¢ —
¥), Ly, and—Ly in Th(I'*). By claims 6 and 7 above,
this would puty — ¢ andy in Th(I'™*) and leave) out
of Th(I'™*). SoTh(I'*) is consistent with axior.

To be inconsistent with axiom, we would needLy €
Th(I'™*) andy ¢ Th(I'*), contradicting claim 6.

To be inconsistent with axiom, we would needLy €
Th(I'™*) and -LLy € Th(I'*). Claim 7 tells us that
Ly ¢ Th(I'™), which is impossible, s@'h(I"*) is con-
sistent with axiomt.

To be inconsistent with axior, we would need-L—L¢
and—L¢ both inTh(T™*). The former, with claim 7, tells
us that-Ly ¢ Th(I'*), so it must be thal'h(I"*) is con-
sistent with axion®.

We can now say by Proposition 4 tHEh(I'*) can be ex-
tended to a unique consistent stable thebryFinally, we
need to show" to be a stable expansion bf



Let us defineS = Th(TU{Ly|p € T}U{-Ly|p ¢ T}).
If we can show thats = T', then we will have showf’ to
be a stable expansion bf

ThatS C T is fairly clear. We know thal" C Th(I™*) C
T. Becausel is stable, boti{Lyplep € T} C T and
{—Lplp ¢ T} C T andT is propositionally closed.

To showT C S, let us first show that for eachy € T,
p € T. Becausd extendsl™, if Ly € I'*, thenLy € T.
If it were the case thap ¢ T, then by the stability off,
we would also have-Ly € T. Because we knoW’ to be
consistent, this can not happen. A nearly identical argument
shows that foreachLy e T*, p ¢ T.

Now, to showT' C S, we'll make use of Proposition 5,
which says that

T = Th([T]o U{L¢lp € T} U {~Lelp ¢ T}).

Thus, all we need to show is tht], C S. Becaus&'h(I'*)
was consistent witB5, so is[Th(I'*)]y. Since eacl/ C L,
consistent with55is contained in ainiquestable theoryl’,

it must be thafT], = [Th(I'™*)]o. So what we need to show
is that any propositional formula iih(I"*) can be proved
fromT, {Lelp € T}, and{—Ly|p ¢ T}. We just argued
that anyL and—L formulas in[** are to be found in the latter
two sets, and of course any formulalofwhich is not of one
of these two types must have come franitself. We have
shown not only thatTh(I'*)]o C S, but thatTh(I'*) C S.

One last step will complete the proof. We need to show
that T excludes all formulas ofA. By rule 5, we know
thatI'™ contained eitheL or — Ly for all formulasLy €
LS(A). We also know thalT')y = [Th(I'™*)]o. Were it pos-
sible to prove any formula oA from 7', it would have been
possible to prove that formula frofri*. Were it possible to
prove some formula ok from I'*, it would have been possi-
ble to prove that formula frorii’ for some sequent’|~A on
our chosen branch. Had this been possible, we could have
terminated the branch using rule 1. Since we could not, it
must be thaTh(I'*) N A =, and hencd N A = 0.

O

Further Directions For Research

We have now seen sequent calculi for autoepistemic logic,
and calculi exist for stable model logic programming and
predicate default logic as well. One obvious direction to go
to extend this work would be to do the same for predicate
circumscription. As we noted in the introduction, this would
require all} sequent calculus. Just as, we hope, the calculi
presented here will aid in the understanding of the subtlety
of skeptical reasoning in the logics discussetiliasequent
calculus for circumscription might offer insights into that
framework.

One distinguishing feature of the calculus presented
above is that the assertion thatsimply hasa proof is not
enough. We must look at all possible proofsgfThis ne-
cessity to take an assertion of the existence of a proof and
explicate it with an actual proof fairly calls out for a connec-
tion with Artemov’s logic of proofs (see (Artemov 2001)).
Because the logic of proofs has such a strong connection
with modal logic, McDermott and Doyle’'s nhonmonotonic

modal logics are the natural candidates for the first study of
such a connection.

References

Artemov, S. N. 2001. Explicit provability and constructive
semanticsBull. Symbolic Logi&:1-36.

Bonatti, P., and Olivetti, N. 2002. Sequent calculi for
propositional nonmonotonic logicACM Trans. Compult.
Log. 3:226-278.

Bonatti, P. 1993. A gentzen system for non-theorems.
Technical Report CD-TR 93/52, Christian Doppler Labor
fur Expertensysteme.

Cenzer, D., and Remmel, J. B. 1998 classes in mathe-
matics. In Ershov, Y. L.; Goncharov, S. S.; Marek, V. W,;
Nerode, A.; and Remmel, J. B., eddlandbook of Recur-
sive Mathematigsvolume 2. Amsterdam: North-Holland.
623-821.

Gelfond, M., and Lifschitz, V. 1988. The stable semantics
for logic programs. In Kowalski, R. A., and Bowen, K. A.,
eds.,Proceedings of thé!* Annual Symposium on Logic
Programming 1070-1080. MIT Press.

Konolige, K. 1994. Autoepistemic logic. In Gabbay,
D. M.; Hogger, C. J.; and Robinson, J. A., eddandbook
of Logic in Atrtificial Intelligence and Logic Programming
volume 3. Oxford: Clarendon Press. 217-296.

Marek, V. W., and TruszcZski, M. 1993.Nonmonotonic
Logic: Context-Dependent Reasonin@erlin: Springer
Verlag.

Marek, V. W.; Nerode, A.; and Remmel, J. B. 1994. The
stable models of a predicate logic prograt.Log. Prog.
21:129-154.

Milnikel, R. S. 2003. A sequent calculus for skeptical rea-
soning in predicate default logic. In Nielsen, T. D., and
Zhang, N. L., eds.Proceedings of th&'" European Con-
ference for Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty564-575.

Moore, R. C. 1984. Possible-world semantics for the au-
toepistemic logic. In Reiter, R., edProceedings of the
Workshop on Non-Monotonic Reasonig4—354.

Moore, R. C. 1985. Semantical considerations on non-
monotonic logic.Art. Int. 25:75-94.

Reiter, R. 1980. A logic for default reasoningrt. Int.
13:81-132.



