
Finding Stable Models via Quantum Computation
D. A. Meyer and J. B. Remmel

Department of Mathematics
University of California/San Diego

La Jolla, CA 92903-0112

J. Pommersheim
Department of Mathematics

University of California/San Diego
La Jolla, CA 92903-0112

and
Department of Mathematics and Computer Science

Pomona College
Claremont, CA 91711

Abstract

Quantum computers have the potential to out-perform classi-
cal computers—certain quantum algorithms run much faster
than any known alternative classical algorithm. For example,
Grover showed that a quantum computer can search an un-
ordered list ofN items in timeO(

√
N), providing a quadratic

speed-up over the classical algorithm. In this paper, we show
that we can modify Grover’s search algorithm to give an al-
gorithm that finds stable models of an Answer Set Program
with a similar quadratic improvement over the classical al-
gorithm. Marek and Remmel showed that Answer Set Pro-
gramming (ASP) programs can uniformly solve all NP-search
problems, so our quantum algorithm to find stable models of
ASP programs also solves all NP-search problems. It follows
that Answer Set Programming could provide a programming
language for quantum computation.

Introduction
The history of electronic computing has been marked by the
fact that the computers of each new generation are dramat-
ically smaller and faster than their predecessors. Neverthe-
less, from a computational point of view, each generation
of computers is essentially the same: the machines are built
out of simple logic gates. The Church-Turing thesis asserts
that this is inevitable since any computer can be simulated
with at most a polynomial factor slowdown by a probabilis-
tic Turing machine. The promise of quantum computation
is that we may be able to use the laws of quantum mechan-
ics to build a quantum computer that can out-perform clas-
sical computers, violating the classical Church-Turing the-
sis. Quantum computation originated with a suggestion by
Feynman that although there appears to be no efficient way
of simulating a multiparticle quantum system on a classical
computer, there would be a way to run a simulation effi-
ciently on a computer that took advantage of the properties
of the quantum world (Feynman 1982). Two formal mod-
els for quantum computers—the quantum Turing machine
(Deutsch 1985) and quantum computational networks,i.e.,
quantum gate arrays (Deutsch 1989)—were defined subse-
quently by Deutsch.

Since these initial results, evidence that quantum com-
puters can out-perform classical computers has been accu-
mulating. In the work that stimulated the greatest surge of
interest in the subject, Shor showed that there exist polyno-

mial time quantum algorithms for two of the most famous
problems in computer science: factoring and discrete log
(Shor 1994). Bernstein and Vazirani gave the first formal
evidence that quantum computers violate the modern form
of the Church-Turing thesis. They proved that the recursive
Fourier sampling problem can be solved in polynomial time
on a quantum Turing machine, but relative to an oracle, re-
quires superpolynomial time on a classical probabilistic Tur-
ing machine (Bernstein and Vazirani 1997).

Nevertheless, there are limits to the power of quantum
computers. For example, Bennett, Bernstein, Brassard and
Vazirani proved that, relative to a random oracle, with prob-
ability 1, the class NP cannot be solved on a quantum
Turing machine in timeo(2n/2) (Bennett et. al. 1997).
This bound is tight, since Grover’s search algorithm (Grover
1996) shows that one can accept any language in NP in time
O(2n/2) on a quantum Turing machine.

These results on the power of quantum computation leave
a wide range of possible applications of quantum algo-
rithms to be explored. Our explorations in this paper are
guided by recent developments in Knowledge Represen-
tation, especially the appearance of a new generation of
systems (Cholewiński et. al. 1996; Niemelä and Simons
1996; Eiter et. al. 1998) based on the so-called An-
swer Set Programming (ASP) paradigm (Niemelä 1998;
Cadoli and Palipoli 1988; Marek and Truszczyński 1999;
Lifschitz 1999). We shall focus on one particular ASP for-
malism, namely, the Stable Semantics for Logic Programs
(SLP) (Gelfond and Lifschitz 1988).

The underlying methods of ASP are similar to those used
in Logic Programming (Apt 1990) and Constraint Program-
ming (Jaffar and Maher 1994; Marriott and Stuckey 1998).
That is, like Logic Programming, ASP is a declarative for-
malism and the semantics of all ASP systems are based on
logic. Like Constraint Programming, certain clauses of an
ASP program act asconstraints. There is, however, a fun-
damental difference between ASP programs and Constraint
Logic programs: in Constraint Programming, the constraints
act on individual elements of the Herbrand base of the pro-
gram, while the constraint clauses in ASP programs act more
globally, placing restrictions on which subsets of the Her-
brand base can be acceptable answers for the program.

For example, suppose that we have a problemΠ whose
solutions aresubsetsof some Herbrand baseH. In order to

solve the problem, an ASP programmer essentially writes a
logic programP that describes the constraints on the subsets
of H that can be answers toΠ. The basic idea is that the
programP should have the property that there is an easy
decoding of solutions ofΠ from stable models ofP , and that
all solutions ofΠ can be obtained from stable models ofP
through this decoding. The programP is then submitted to
an ASP engine such assmodels(Niemel̈a and Simons 1996),
dlv (Eiter et. al. 1998) or DeReS (Cholewiński et. al.
1996), which computes the stable models of the programP .
Thus the ASP engine finds the stable models of the program
(if any exists) and one reads off the solutions toΠ from these
stable models. Notice that all solutions are equally good in
the sense that any solution found in the process described
above is acceptable.

In the Aswer Set Programming paradigm, the semantics
of logic programP can be defined in two stages. First, we
assume, as in standard Logic Programming, that we interpret
P over the Herbrand universe ofP determined by the pred-
icates and constants that occur inP . Since the set of con-
stants occurring in the program is finite, we can ground the
program in these constants to obtain a finite propositional
logic programPg. The stable models ofP are by defini-
tion the stable models ofPg. The process of grounding is
performed by a separate grounding engine such aslparse
(Niemel̈a and Simons 1996). Second, the grounded program
Pg is passed to the engine computing the stable models.

The basic complexity result for SLP propositional pro-
grams is due to Marek and Truszczyński, who showed
that the problem of deciding whether a finite propositional
logic program has a stable model is NP-complete (Marek
and Truszczýnski 1991). For DATALOG (with negation),
an analogous result has been obtained by Schlipf (Schlipf
1995). Marek and Remmel strengthened both of these re-
sults by showing that ASP based on SLP is complete for NP-
search problems (Marek and Remmel 2003). This means
that the search engines developed so far are appropriate to
solve a vast array of practical problems. Currently, systems
based on the ASP paradigm are being tested on problems re-
lated to planning, product configuration, combinatorial op-
timization problems and other domains. For example, ASP
systems have been applied to circuit verification problems
(Heljanko and Niemelä 2001), product configuration prob-
lems (Soininen et. al. 2001), information extraction engines
for the web (?), and updating database specifications (Eiter
et. al. 2001).

The main goal of this paper is show that if we had a quan-
tum computer, then we could develop aquantumsearch en-
gine for Answer Set Programming using a suitable extension
of Grover’s basic quantum search algorithm. Our extension
of Grover’s algorithm gives a quadratic speed-up over the
näıve search algorithm for stable models. The importance
of this marriage of Answer Set Programming with quantum
computation is that ASP provides an effective language for
computation and thus could the basis of a practical “quan-
tum programming language” for quantum computation.

Quantum algorithms
As we noted in the Introduction, in practice any classi-
cal computation is implemented by an array of logic gates,
each acting on a finite set of bits. A somewhat surpris-
ing result, discovered in the investigation of thermodynamic
limits to computation, is that in principle these gates can
each bereversible(Bennett 1973). For example, Toffoli
(Toffoli 1981) showed that a finite set of reversible gates
is universalfor classical computation, since any reversible
boolean operation can be decomposed as an array of three
gates: NOT : b 7→ b + 1, C-NOT : (a, b) 7→ (a, b + a),
C-C-NOT : (a, b, c) 7→ (a, b, c + ab), wherea, b andc are
bits and+ is addition modulo 2. These gates permute the
set of possible states of 1, 2, and 3 bits, respectively. Thus
any classical computation can be implemented as a sequence
of permutations acting on the possible states of the classical
computer—n-bit strings,b1 . . . bn—each of which acts non-
trivially only on a subset of 1, 2, or 3 bits.

In an analogous formulation of quantum computation, the
possible states are complex linear combinations (superposi-
tions) of n-bit strings,

∑
ab1...bn |b1 . . . bn〉. Here|·〉 is the

standard physics notation for a vector in(C2)⊗n, in which
we have chosen a basis

{
|b1 · · · bn〉 | bi ∈ {0, 1}

}
. That is,

C
2 has a basis

|0〉 =
[
1
0

]
and|1〉 =

[
0
1

]
.

Thus if

H =
1√
2

(
1 1
1 −1

)
,

then

H|0〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=

1√
2
|0〉+

1√
2
|1〉.

When we write|b1 . . . bn〉 wherebi ∈ {0, 1}, we mean the
column vector of size2n whose rows are indexed by bits
stringsc1 . . . cn ∈ {0, 1}n such that there is a1 in the row
indexed by the bit stringb1 . . . bn and all other entries are0.
The states

∑
ab1...bn |b1 . . . bn〉 should be thought of as be-

ing analogous to the states of a classicalprobabilisticcom-
puter, which are probability distributions overn-bit strings,
i.e., linear combinations

∑
pb1...bnb1 . . . bn, where the co-

efficients are probabilities, so
∑
pbi...bn = 1. In quantum

mechanics, it is thenorm-squaresof the components that are
probabilities, so states satisfy

∑
|ab1...bn |2 = 1. This con-

dition allowsmeasurementof the state to be described as a
choice of basis (which in this paper will always be thiscom-
putationalbasis), and theoutcomeof a measurement to be
one of the basis vectors, with probability given by the norm-
squared of that component. We will also need the notation
〈·| to indicate a vector in the dual space to(C2)⊗n.

Any quantum computation can be implemented as a se-
quence of unitary transformations acting on(C2)⊗n, each of
which acts non-trivially only on 1 or 2 of the factors (qubits)
in this tensor product. That only such 1 and 2 qubitquantum

gate operations are necessary follows from the result that
arbitrary unitary transformations of a single qubit, together
with the linear extension of C-NOT to a unitary transfor-
mation ofC2 ⊗ C2, are universal for quantum computation
(Adelman et. al. 1997). Notice that since permutations are
unitary transformations, if we also allow a C-C-NOT quan-
tum gate,i.e., the linear extension of C-C-NOT to a unitary
transformation ofC2 ⊗ C2 ⊗ C2, every (reversible) classi-
cal computation is trivially, exactly, a quantum computation.
Without this 3 qubit gate we must rely on the universality
theorem to ensure that every (reversible) classical computa-
tion can be approximated efficiently (i.e., with poly(n) over-
head) by a quantum computation. But the remarkable dis-
coveries of Deutsch (Deutsch 1989), Simon (Simon 1997),
Bernstein and Vazirani (Bernstein and Vazirani 1997), Shor
(Shor 1994), and Grover (Grover 1996) show that in some
casesfewer quantum gates are required to transform the
quantum computer into a state that upon measurement re-
turns the correct bit string with probability greater than2/3
(any probability bounded above1/2 is polynomially equiv-
alent, by repeating the quantum computation multiple times
and choosing the most frequent outcome). We will explain
exactly how this works in the case of Grover’s quantum
search algorithm, but first we describe in detail the classi-
cal problems to which we will apply it.

ASP search problems
A search problem is a setP of finite instances such that,
given any instanceΠ ∈ P, there is a setSΠ of solutions
to P for instanceΠ, whereSΠ can be empty. For example,
the search problem might be to find Hamiltonian paths in a
graph. In this case, the set of instances of the problem is the
set of all finite graphs. Given any instance,i.e., a graphΓ,
SΓ is the set of all Hamiltonian paths ofΓ. We say that an
algorithm solves the search problemP if it returns a solution
S ∈ SΠ wheneverSΠ is non-empty and it returns the string
“empty” otherwise. We say that a search problemP is in NP
if there is such an algorithm which can be computed by a
non-deterministic polynomial time Turing machine. We say
that search problemP is solved by a uniform logic program
if there exists a single logic programPP , a polynomial time
extensional data base transformation functionedbP(·), and a
polynomial time solution decoding functionsolP(·, ·), such
that for every instanceΠ ∈ P,

1. edbP(Π) is a finite set of facts,i.e., clauses with empty
bodies and no variables, and

2. wheneverSΠ is not empty,solP(Π, ·) maps the set of
stable models ofedbP(Π) ∪ PP onto the set of solutions
SΠ of Π, and

3. wheneverSΠ is empty,edbP(Π)∪PP has no stable mod-
els.

We note that decision problems can be viewed as special
cases of search problems. Schlipf’s result (Schlipf 1995)
shows, in fact, that the class ofdecisionproblems in NP is
captured precisely by uniform logic programs. Specifically

he proved that a decision problem is solved by a uniform
logic program if and only if it is in NP. Marek and Remmel
showed that Schlipf’s result can be extended to all NPsearch
problems. That is, Marek and Remmel showed that there is
a single logic programPTuring that is capable of simulat-
ing polynomial time nondeterministic Turing machines in
the sense that given any polynomial time nondeterministic
Turing machineM , any inputσ, and any run-time poly-
nomial p(x), there is a set of factsedbTuring,p,σ(M) such
that a stable model ofPTuring ∪ edbTuring,p,σ(M) codes
an accepting computation ofM started with inputσ that
terminates inp(|σ|) or fewer steps and any such accept-
ing computation ofM is coded by some stable model of
PTuring ∪ edbTuring,p,σ(M). This result shows that logic
programs without function symbols under the stable logic
semantics capture all NP-search problems. The converse,
that a search problem computed by a uniform logic program
P is an NP-search problem, is obvious since one can com-
pute a stable models of a program by guessings and then
doing a polynomial time check to verify thats is a stable
model of the program.

In this paper we will consider only so-called
DATALOG¬ programs. These consist of clauses of
the form

p(X)← q1(X), . . . , qm(X),¬ r1(X), . . . ,¬ rn(X), (1)

where p, q1, . . . , qm, r1, . . . , rn are atoms, possibly with
variables and/or constants. Here we abuse notation by writ-
ing p(X) to mean that the variables that occur in the pred-
icatep are contained inX. A program is a finite setP of
clauses of the form (1). We assume that the underlying lan-
guageLP of any given programP is determined by the con-
stants and predicate symbols that occur in the program. Thus
the Herbrand universeUP of P is just the set of all constant
terms occurring inP , and the Herbrand baseHP of P is
the set of all ground atoms of the languageLP . Since there
are no function symbols in our programs, both the Herbrand
universe and the Herbrand base of the program are finite.

A ground instance of a clauseC of the form (1) is the re-
sult of a simultaneous substitution of constants for variables
occurring inC. Given a programP , Pg is the propositional
program consisting of all ground substitutions of clauses of
P . Given a propositional programP and a setS included
in its Herbrand base,HP , theGelfond-Lifschitz transforma-
tion ofP relative toS, is the program GL(P, S) arising from
P as follows. First, eliminate all clausesC in P such that
for somej, 1 ≤ j ≤ n, rj ∈ M . Second, in any remain-
ing clause, eliminate all negated atoms. The resulting set of
clauses forms a program, GL(P, S), which is a Horn pro-
gram and hence possesses a least modelMS . We say thatS
is astable model of the propositional programP if S = MS .
Finally, given any programP with variables, we say thatS
is a stable model of a programP if S is a stable model of
the propositional programPg.

Finding a unique stable model
Finding a stable model for an ASP programP is a search
problem among the2|HP | possible models for anS ⊂ HP

such thatS = MS . The simplest classical algorithm over
which there is no known worst-case improvement is

1. chooseS ⊂ HP ;

2. construct the Gelfond-Lifschitz transform GL(P, S);

3. find the least modelMS of GL(P, S) by iterating the
one-step provability operatorTGL(P,S) on∅; (This can be
done in linear time, see (Dowling and Gallier 1984).)

4. if S = MS , returnS, else repeat.

Each step here is polynomial in the problem size, but in the
worst case the steps must be repeatedO(2n) times, where
n = |HP |.

Notice that we could formulate each iteration of this algo-
rithm as an evaluation of a functionfP : P(HP) → {0, 1}
onS ∈ P(HP) (the power set ofHP), where

fP (S) =
{

1 if S = MS ;
0 otherwise,

and the problem is to identify an argument at whichfP takes
the value 1. If we encodeP(HP) asn-bit strings, then we
can writefP : {0, 1}n → {0, 1}. Consider the function
from {0, 1}n × {0, 1} to itself defined by(x, b) 7→

(
x, b +

fP (x)
)
, which is a permutation. Since the collection of all

|x, b〉 is a basis (the computational basis) of the vector space
V = (C2)⊗n ⊗ C2, this permutation induces a linear map
UfP from V to V , which satisfies

UfP |x, b〉 = |x, b+ fP (x)〉.
Since UfP permutes the computational basis, thesame
(polynomial size) reversible gate array that computes this
permutation classically can be also be used to implement the
unitary mapUfP . We will set the last qubit to be in the state
|−〉 =

(
|0〉 − |1〉

)
/
√

2 so that this unitary transformation
takes a particularly simple form:

UfP |x,−〉 = (−1)fP (x)|x,−〉.
Thus we can abuse notation slightly and write

UfP |x〉 = (−1)fP (x)|x〉.
More generally, we can defineUg similarly, for anyfunction
g : {0, 1}n → {0, 1}.

We need one more definition before we can describe
the application of Grover’s algorithm (Grover 1996) to this
problem. Let

H =
1√
2

(
1 1
1 −1

)
denote the discrete Fourier transform onC2. In the quan-
tum computing literature this is usually calledthe Hadamard
transform. Notice that

H|0〉 =
1√
2

(
|0〉+ |1〉

)
;

this is used in Step 2 below.
Grover’s algorithm consists of the following steps:

1. prepare the state

|0 . . . 0〉 ∈ (C2)⊗n;

2. applyH⊗n to obtain the state

1√
2n
∑
x

|x〉;

3. repeatT times:

(a) applyUfP ;
(b) apply−H⊗nUδ0H⊗n; (δ0(x) = 1 if x = 0, and van-

ishes otherwise)

4. measure the state and return the outcomex of the mea-
surement.

A simple analysis determines the appropriate value ofT
in Grover’s algorithm. Assume first thatP has a unique sta-
ble modelS, as, for example, is the case in stratified pro-
grams (Apt et. al. 1988). ThenUfP acts as a reflection in
the hyperplane orthogonal to|s〉, wheres is then-bit string
encodingS. Similarly, sinceUδ0 is a reflection in the hy-
perplane orthogonal to|0 . . . 0〉, andH⊗n maps|0 . . . 0〉 to
the equal superposition state obtained in Step 2, the unitary
transformation−H⊗nUδ0H⊗n is a reflection in the hyper-
plane orthogonal to the equal superposition vector. Recall
that the product of two hyperplane reflections is a rotation
in the plane spanned by the vectors orthogonal to the hyper-
planes, through twice the angle between them. In this case
that angle isθ = arcsin(1/

√
2n), so each iteration of Step 3

rotates the state by2θ towards|s〉, and choosing

T =
⌊π/2− θ

2θ

⌉
∼ π

4

√
2n asn→∞

ensures that when the state is measured in Step 4, it returns
the encoding of the stable model with probability at least
cos2 θ ∼ 1 − 2−n. But it does so with onlyO(

√
2n) itera-

tions, quadratically faster than the classical algorithm at the
beginning of this section.

Finding one of multiple stable models
Of course, in general there are multiple stable models for an
ASP program. SupposeP hask ∈ N stable models, and we
apply Grover’s algorithm as described in the previous sec-
tion. NowUfP is reflection through the hyperplane orthog-
onal to

∑
x stable|x〉, so the two reflections in Step 3 create a

rotation by2θ where

sin θ =
1√
k

∑
x stable

〈x| · 1√
2n
∑
x

|x〉 =

√
k

2n
.

Thus, if we knew the number of stable models,k, we
could iterate Step 3T ∼ π

4

√
2n/k times, after which

the state would be within an angleθ of
∑
x stable|x〉/

√
k.

Then measuring the state in Step 4 would, with probability
1−O(2−n), return one of the stable models, each with equal
probability.

Unfortunately, we do not know how many stable models
there area priori. Brassard, Høyer, Mosca and Tapp have

shown, however, that even when the number of solutions to
Grover’s search problem is unknown, one can still be found
with expected number of iterationsO(

√
2n/k) (Brassard et.

al. 2002). Their algorithm is based on the observation that
picking a random number of iterations of Step 3 would cor-
respond to picking an angle0 ≤ φ < 2π at random, where
φ is the angle between the final state and

∑
x stable|x〉/

√
k.

A measurement returns the encoding of a stable model with
probabilitycos2 φ, so for random choices ofφ,

E(successful measurement) ≈
∫ 2π

0

cos2 φdφ =
1
2
.

Since we can check efficiently whether the outcome is a sta-
ble model, we could repeat this procedurer times and re-
duce the failure probability toO(2−r), without increasing
the computational complexity. Of course, we cannot really
pick a random positive integer number of iterations. Never-
theless, this observation suggests the following algorithm:

1. letM = 1;

2. pickT uniformly at random from the integers in[1,M];
3. run Grover’s algorithm with this value ofT ;

4. if outcome is stable model, stop, else letM = cM and
repeat from Step 2.

For 1 < c < 2, Brassard, Høyer, Mosca and Tapp’s result
(Brassard et. al. 2002) shows that this algorithm succeeds
after an expectedO(

√
2n/k) total number of Grover itera-

tions. Thus there is a quadratic improvement in this case as
well as in the unique stable model case.

Discussion
We have shown that Grover’s algorithm and Brassard,
Høyer, Mosca and Tapp’s generalization can be applied to
the problem of finding stable models for ASP programs
and that these quantum algorithms run quadratically faster
than existing classical solvers in the worst case. Since An-
swer Set Programming is a general formalism for NP-search
problems, this result shows how to solve any such problem
with a quantum computer. Used in this way, ASP would be
a general “quantum programming language”.

Of course, since Shor’s quantum algorithm for factoring
provides a superpolynomial improvement over the best clas-
sical algorithm known, the hope is for more than a quadratic
improvement in other problems. Evidence from highly
structured search problems (Hunziker and Meyer 2002) sug-
gests that generalizingfP to return more information about
a possible modelS than only whether it isMS or not could
provide a greater improvement.

A similar idea motivates quantum adiabatic algorithms
(Farhi et. al. 2001). These utilize a Hermitian matrix (the
Hamiltonian) that acts on potential solutions of the problem
encoded as quantum states. Applied to 3-SAT, for example,
this matrix is constructed from the clauses of the problem
instance in such a way that quantum states encoding truth
assignments are eigenstates with eigenvalues that are posi-
tively proportional to the number of clauses violated. The
algorithm is designed to evolve an initial state into a quan-
tum state that has minimum eigenvalue,i.e., corresponds

to a truth assignment with the smallest number of violated
clauses.

This idea has also been applied within the discrete time
model of quantum computation described in this paper.
Hogg describes this idea as the application of ‘quantum
heuristics’ (Hogg 2000). Just as in the corresponding quan-
tum adiabatic algorithm, his algorithm applies a multiplica-
tive phase associated with each truth assignment, one that
increases linearly with the number of violated clauses. This
multiplicative phase generalizes the(−1)fP phase that ap-
pears in Grover’s algorithm.

Numerical results for simulations of these quantum algo-
rithms indicate that search complexity may be reduced to
O(2n/6) (Hogg 2000), or possibly even to poly(n) (Farhi et.
al. 2001; Hogg 2000) by using this extra information be-
yond whether a truth assignment is satisfying or not. Thus,
in our context of finding stable models, we are currently in-
vestigating the use of functions (beyond the indicator func-
tion for S = MS) that can be computed in polynomial time,
e.g., some function of|S| − |MS |. We anticipate numerical
results hinting at similar reduction in complexity.

Acknowledgements
This work was supported in part by the National Security
Agency (NSA) and Advanced Research and Development
Activity (ARDA) under Army Research Office (ARO) Grant
No. DAAD19-01-1-0520.

References
L. M. Adelman, J. Demarrais and M.-D. A. Huang. Quan-
tum computability.SIAM J. Comput.26:1524–1540, 1997.

K. R. Apt. Logic programming. inHandbook of Theoreti-
cal Computer ScienceElsevier 475–574, 1990.

K. R. Apt, H. A. Blair and A. Walker, Towards a theory
of declarative knowledge. in J. Minker, ed.,Foundations
of Deductive Databases and Logic ProgrammingMorgan
Kaufmann, 89–148, 1988.

C. H. Bennett. Logical reversibility of computation.IBM J.
Res. Develop.17:525-532, 1973.

C. H. Bennett, E. Bernstein, G. Brassard and U. Vazirani.
Strengths and weaknesses of quantum computing.SIAM J.
Comput.26: 1510–1523, 1997.

D. Bernstein and U. Vazirani. Quantum complexity theory.
in Proceedings of the 25th Annual ACM Symposium on the
Theory of Computing, San Diego, CA, 16–18 May 1993,
New York ACM: 11–20, 1993 and
Quantum complexity theory.SIAM J. Comput.26: 1411–
1473, 1997.

G. Brassard, P. Høyer, M. Mosca and A. Tapp. Quan-
tum amplitude amplification and estimation.quant-
ph/0005055 ; in S. J. Lomonaco, Jr. and H. E. Brandt,
eds.,Quantum Computation and Information, Contempo-
rary Mathematics, 305: 53–74, 2002.

M. Cadoli and L. Palipoli. Circumscribing datalog: expres-
sive power and complexity.Theor. Comput. Science193:
215–244, 1988.

P. Cholewínski, W. Marek and M. Truszczyński. Default
reasoning system DeReS. inProceedings of KR-96(Mor-
gan Kaufmann) 518–528, 1998.

E. Dantsin, T. Eiter, G. Gottlob and A. Voronkov. Complex-
ity and expressive power of logic programming. Proc. 12-
th IEEE International Conf. on Computational Complexity
(IEEE Computer Society Press) 82–101, 1997 and
ACM Computing Surveys, 33(3): 374–425, 2001.

D. Deutsch. Quantum theory, the Church-Turing principle
and the universal quantum computer.Proc. Roy. Soc. Lon-
don Ser. A400: 97–117, 1985.

D. Deutsch. Quantum computational networks.Proc. Roy.
Soc. London Ser. A425: 73–90, 1989.

W. F. Dowling and J. H. Gallier. Linear-time algorithms for
testing the satisfiability of propositional horn formulae.J.
Logic Programming3:267–284, 1984.

T. Eiter, M. Fink, G. Sabbatini and H. Tompits. A frame-
work for declarative update specifications in logic pro-
grams. inProceedings of the 17th International Joint Con-
ference on Artificial IntelligenceSeattle, WA, 4–10 August
2001 (San Francisco: Morgan Kauffman) 649–654, 2001.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer and F. Scarcello.
The KR system dlv: progress report, comparisons, and
benchmarks. inProceedings of the Sixth International Con-
ference on Principles of Knowledge Representation and
Reasoning406–417, 1998.

E. Farhi, J. Goldstone, S. Gutmann and M. Sipser,
“Quantum computation by adiabatic evolution”,quant-
ph/0001106 , 2001.

R. Feynman. Simulating physics with computers.Internat.
J. Theoret. Phys.21: 467–488, 1982.

M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness(W. H.
Freeman), 1979.

M. Gelfond and V. Lifschitz. The stable semantics for logic
programs. inProceedings of the 5th International Sympo-
sium on Logic Programming(Cambridge, MA: MIT Press)
1070–1080, 1988.

Gottlob and Koch 2002 GottlobKoch] G. Gottlob and Ch.
Koch. Monadic datalog and the expressive power of lan-
guages for web information extraction. inProceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database SystemsMadison, WI, 3–6 June
2002 (New York: ACM Press) 17–28, 2002.

L. Grover. A fast quantum mechanical algorithm for
database search. inProceedings of the 28th Annual ACM
Symposium on the Theory of Computing, Philadelphia, PA,
22–24 May 1996 (New York: ACM) 212–219, 1996 and
Quantum mechanics helps in searching for a needle in a
haystack.Phys. Rev. Lett.79: 325–328, 1997.

K. Heljanko and I. Niemel̈a. Bounded LTL model check-
ing with stable models. in T. Eiter, W. Faber and M.
Truszczýnski, eds.,Proceedings of the Sixth International
Conference on Logic Programming and Nonmonotonic
ReasoningVienna, Austria, 17–19 September 2001, Lec-

ture Notes in Artificial Intelligence (Springer), 2173 200–
212, 2001.

M. Hirvensalo,Quantum ComputingSpringer, 2001.

T. Hogg. Quantum search heuristics.Phys. Rev. A61
052311/1–7, 2000.

M. Hunziker and D. A. Meyer. Quantum algorithms for
highly structured search problems.Quantum Inform. Pro-
cessing1:145–154, 2002.

J. Jaffar and M. J. Maher. Constraint logic programming: a
survey.J. Logic Programming19:503–581, 1994.

V. Lifschitz. Action languages, answer sets and planning.
in The Logic Programming Paradigm, Series Artificial In-
telligence (Springer), 357–373, 1999.

V. W. Marek and J. B. Remmel. On the expressibility of
stable logic programming.Theory and Practice of Logic
Programming3: 551–567, 2003.

W. Marek and M. Truszczýnski. Autoepistemic logic.J.
ACM 38: 588–619, 1991.

V. W. Marek and M. Truszczýnski. Stable models and
an alternative logic programming paradigm. inThe Logic
Programming Paradigm, Series Artificial Intelligence
(Springer-Verlag), 375–398, 1999.

K. Marriott and P. J. Stuckey.Programming with Con-
straints: An Introduction, MIT Press, 1998.

I. Niemel̈a. Logic programs with stable model semantics
as a constraint programming paradigm. inProceedings of
the Workshop on Computational Aspects of Nonmonotonic
Reasoning, 72–79, 1998.

I. Niemel̈a and P. Simons. Efficient implementation of the
well-founded and stable model semantics. inProceedings
of JICSLP-96MIT Press, 1996.

I. Niemel̈a and P. Simons. Smodels — an implementa-
tion of the stable model and well-founded semantics for
normal logic programs. inThe 4th International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing, Dagstuhl, Germany, 1997, Springer Lecture Notes in
Computer Science 1265, 420–429, 1997.

J. Schlipf. The expressive powers of the logic programming
semantics.J. Comput. Systems Science51: 64–86, 1995.

P. W. Shor. Algorithms for quantum computation: dis-
crete logarithms and factoring. in S. Goldwasser, ed.,Pro-
ceedings of the 35th Symposium on Foundations of Com-
puter Science, Santa Fe, NM, 20–22 November 1994 (Los
Alamitos, CA: IEEE Computer Society Press 1994) 124–
134;
and
Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer.SIAM J. Com-
put. 26: 1484–1509, 1997.

D. Simon. On the power of quantum computation. in S.
Goldwasser, ed.,Proceedings of the 35th Symposium on
Foundations of Computer Science, Santa Fe, NM, 20–22
November 1994 (Los Alamitos, CA: IEEE Computer Soci-
ety Press 1994) 116–123;
and

On the power of quantum computation.SIAM J. Comput.
26:1474–1483, 1997.
T. Soininen, I. Niemel̈a, J. Tiihonen and R. Sulonen. Rep-
resenting configuration knowledge with weight constraint
rules. inAnswer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoningpapers
from the AAAI Spring Symposium, Stanford, CA, 26–
28 March 2001, AAAI Technical Report SS-01-01, AAAI
Press, 195–201, 2001.
T. Toffoli. Bicontinuous extensions of invertible combina-
torial functions.Math. Systems Theory14: 13–23, 1981.
J.D. Ullman.Principles of Database and Knowledge-Base
SystemsComputer Science Press, 1988.

