Finding Stable Models via Quantum Computation

D. A. Meyer and J. B. Remmel
Department of Mathematics
University of California/San Diego
La Jolla, CA 92903-0112

Abstract

Quantum computers have the potential to out-perform classi-
cal computers—certain quantum algorithms run much faster
than any known alternative classical algorithm. For example,
Grover showed that a quantum computer can search an un-
ordered list ofV items in timeO(v/N), providing a quadratic
speed-up over the classical algorithm. In this paper, we show
that we can modify Grover’s search algorithm to give an al-
gorithm that finds stable models of an Answer Set Program
with a similar quadratic improvement over the classical al-
gorithm. Marek and Remmel showed that Answer Set Pro-
gramming (ASP) programs can uniformly solve all NP-search
problems, so our quantum algorithm to find stable models of
ASP programs also solves all NP-search problems. It follows
that Answer Set Programming could provide a programming
language for quantum computation.

J. Pommersheim
Department of Mathematics
University of California/San Diego
La Jolla, CA 92903-0112

and

Department of Mathematics and Computer Science

Pomona College
Claremont, CA 91711

mial time quantum algorithms for two of the most famous

problems in computer science: factoring and discrete log
(Shor 1994). Bernstein and Vazirani gave the first formal

evidence that quantum computers violate the modern form
of the Church-Turing thesis. They proved that the recursive
Fourier sampling problem can be solved in polynomial time
on a quantum Turing machine, but relative to an oracle, re-
quires superpolynomial time on a classical probabilistic Tur-
ing machine (Bernstein and Vazirani 1997).

Nevertheless, there are limits to the power of quantum
computers. For example, Bennett, Bernstein, Brassard and
Vazirani proved that, relative to a random oracle, with prob-
ability 1, the class NP cannot be solved on a quantum
Turing machine in timeo(2"/2) (Bennett et. al. 1997).
This bound is tight, since Grover’s search algorithm (Grover
1996) shows that one can accept any language in NP in time
O(2"/?) on a quantum Turing machine.

Introduction These results on the power of quantum computation leave

The history of electronic computing has been marked by the @ wide range of possible applications of quantum algo-
fact that the computers of each new generation are dramat- rithms to be explored. Our explorations in this paper are
ically smaller and faster than their predecessors. Neverthe- guided by recent developments in Knowledge Represen-
less, from a computational point of view, each generation tation, especially the appearance of a new generation of
of computers is essentially the same: the machines are built Systems (Choleviaiski et. al. 1996; Niemal and Simons
out of simple logic gates. The Church-Turing thesis asserts 1996; Eiter et. al. 1998) based on the so-called An-
that this is inevitable since any computer can be simulated swer Set Programming (ASP) paradigm (Niendl998;
with at most a polynomial factor slowdown by a probabilis- Cadoli and Palipoli 1988; Marek and Truszaski 1999;
tic Turing machine. The promise of quantum computation Lifschitz 1999). We shall focus on one particular ASP for-
is that we may be able to use the laws of quantum mechan- malism, namely, the Stable Semantics for Logic Programs
ics to build a quantum computer that can out-perform clas- (SLP) (Gelfond and Lifschitz 1988).
sical computers, violating the classical Church-Turing the- The underlying methods of ASP are similar to those used
sis. Quantum computation originated with a suggestion by in Logic Programming (Apt 1990) and Constraint Program-
Feynman that although there appears to be no efficient way ming (Jaffar and Maher 1994; Marriott and Stuckey 1998).
of simulating a multiparticle quantum system on a classical That is, like Logic Programming, ASP is a declarative for-
computer, there would be a way to run a simulation effi- malism and the semantics of all ASP systems are based on
ciently on a computer that took advantage of the properties logic. Like Constraint Programming, certain clauses of an
of the quantum world (Feynman 1982). Two formal mod- ASP program act asonstraints There is, however, a fun-
els for quantum computers—the quantum Turing machine damental difference between ASP programs and Constraint
(Deutsch 1985) and quantum computational netwoirks, Logic programs: in Constraint Programming, the constraints
quantum gate arrays (Deutsch 1989)—were defined subse-act on individual elements of the Herbrand base of the pro-
quently by Deutsch. gram, while the constraint clauses in ASP programs act more
Since these initial results, evidence that quantum com- globally, placing restrictions on which subsets of the Her-
puters can out-perform classical computers has been accu-brand base can be acceptable answers for the program.
mulating. In the work that stimulated the greatest surge of For example, suppose that we have a problémwhose
interest in the subject, Shor showed that there exist polyno- solutions aresubset®f some Herbrand basé. In order to

solve the problem, an ASP programmer essentially writes a
logic programP that describes the constraints on the subsets
of H that can be answers fd. The basic idea is that the
program P should have the property that there is an easy
decoding of solutions dfl from stable models aP, and that

all solutions oflI can be obtained from stable models/f
through this decoding. The prograkhis then submitted to

an ASP engine such amodelgNiemeh and Simons 1996),
dlv (Eiter et. al. 1998) or DeReS (Choldweki et. al.

Quantum algorithms

As we noted in the Introduction, in practice any classi-
cal computation is implemented by an array of logic gates,
each acting on a finite set of bits. A somewhat surpris-
ing result, discovered in the investigation of thermodynamic
limits to computation, is that in principle these gates can
each bereversible (Bennett 1973). For example, Toffoli

(Toffoli 1981) showed that a finite set of reversible gates
is universalfor classical computation, since any reversible

1996), which computes the stable models of the proglam pjean operation can be decomposed as an array of three
Thus the ASP engine finds the stable models of the program gates: T : b +— b+ 1, C-NoT : (a,b) — (a,b+ a),

(if any exists) and one reads off the solution$ittom these c_c_Nor - (a,b,¢) — (a,b,c + ab), wherea, b andc are
stable models. Notice that all solutions are equally good in pits and+ is addition modulo 2. These gates permute the
the sense that any solution found in the process described get of possible states of 1, 2, and 3 bits, respectively. Thus
above is acceptable. any classical computation can be implemented as a sequence
of permutations acting on the possible states of the classical

In the Aswer Set Programming paradigm, the semantics
of logic programP can be defined in two stages. First, we

assume, as in standard Logic Programming, that we interpret

P over the Herbrand universe &f determined by the pred-
icates and constants that occurf Since the set of con-
stants occurring in the program is finite, we can ground the
program in these constants to obtain a finite propositional
logic programP,. The stable models o are by defini-
tion the stable models aP,. The process of grounding is
performed by a separate grounding engine suclpaise
(Niemek and Simons 1996). Second, the grounded program
P, is passed to the engine computing the stable models.

The basic complexity result for SLP propositional pro-
grams is due to Marek and Truszéski, who showed
that the problem of deciding whether a finite propositional
logic program has a stable model is NP-complete (Marek
and Truszcziiski 1991). For DATALOG (with negation),
an analogous result has been obtained by Schlipf (Schlipf
1995). Marek and Remmel strengthened both of these re-
sults by showing that ASP based on SLP is complete for NP-
search problems (Marek and Remmel 2003). This means

computer—r-bit strings,b; . .. b,—each of which acts non-
trivially only on a subset of 1, 2, or 3 bits.

In an analogous formulation of quantum computation, the
possible states are complex linear combinaticupérposi-
tions) of n-bit strings,>" ap, .., |01 ...b,). Here|:) is the
standard physics notation for a vector(ii?)©", in which
we have chosen a basf$; - - - b,) | b; € {0,1}}. Thatis,

C? has a basis

|0) = H and|1) = m .
Thus if L1
= h)
then
= 5005 6)

1 1 1 1
(1) =0+ 50

that the search engines developed so far are appropriate towhen we write|; ... b,) whereb; € {0,1}, we mean the

solve a vast array of practical problems. Currently, systems

based on the ASP paradigm are being tested on problems re-stringsc; .

lated to planning, product configuration, combinatorial op-
timization problems and other domains. For example, ASP
systems have been applied to circuit verification problems
(Heljanko and Nieme&l 2001), product configuration prob-
lems (Soininen et. al. 2001), information extraction engines
for the web @), and updating database specifications (Eiter
et. al. 2001).

The main goal of this paper is show that if we had a quan-
tum computer, then we could develogjaantumsearch en-
gine for Answer Set Programming using a suitable extension
of Grover’s basic quantum search algorithm. Our extension
of Grover’s algorithm gives a quadratic speed-up over the
nave search algorithm for stable models. The importance
of this marriage of Answer Set Programming with quantum
computation is that ASP provides an effective language for
computation and thus could the basis of a practical “quan-
tum programming language” for quantum computation.

column vector of siz&™ whose rows are indexed by bits
..cn, € {0,1}™ such that there is & in the row
indexed by the bit string; . . . b, and all other entries afe
The states ap, ., |b1 ... b,) should be thought of as be-
ing analogous to the states of a classymababilisticcom-
puter, which are probability distributions overbit strings,
i.e., linear combination$_ py, ., b1 ... by, Where the co-
efficients are probabilities, sp’ py,..», = 1. In quantum
mechanics, it is thaorm-squaresf the components that are
probabilities, so states satispy |as,.. s, |> = 1. This con-
dition allowsmeasurementf the state to be described as a
choice of basis (which in this paper will always be tbisn-
putationalbasis), and theutcomeof a measurement to be
one of the basis vectors, with probability given by the norm-
squared of that component. We will also need the notation
(| to indicate a vector in the dual space(@?)®".

Any quantum computation can be implemented as a se-
quence of unitary transformations acting(@?)®", each of
which acts non-trivially only on 1 or 2 of the factorgubit9
in this tensor product. That only such 1 and 2 qujpiantum

gate operations are necessary follows from the result that
arbitrary unitary transformations of a single qubit, together
with the linear extension of C-8Ir to a unitary transfor-
mation of C? ® C?2, are universal for quantum computation

he proved that a decision problem is solved by a uniform
logic program if and only if it is in NP. Marek and Remmel
showed that Schlipf’s result can be extended to alsd&ch
problems. That is, Marek and Remmel showed that there is

(Adelman et. al. 1997). Notice that since permutations are a single logic progranPr,,.», that is capable of simulat-

unitary transformations, if we also allow a C-CeN quan-
tum gatej.e, the linear extension of C-C-dir to a unitary
transformation ofC? ® C? ® C?, every (reversible) classi-
cal computation is trivially, exactly, a guantum computation.
Without this 3 qubit gate we must rely on the universality

ing polynomial time nondeterministic Turing machines in
the sense that given any polynomial time nondeterministic
Turing machineM, any inputs, and any run-time poly-
nomial p(x), there is a set of factsdbryring,p,o (M) sSuch
that a stable model 0Pryring U edbruringp,o (M) codes

theorem to ensure that every (reversible) classical computa- an accepting computation df/ started with inputs that

tion can be approximated efficientlyg., with poly(n) over-

head) by a quantum computation. But the remarkable dis-

terminates inp(|o|) or fewer steps and any such accept-
ing computation ofM is coded by some stable model of

coveries of Deutsch (Deutsch 1989), Simon (Simon 1997), Pryring U edbruring p.o (M). This result shows that logic
Bernstein and Vazirani (Bernstein and Vazirani 1997), Shor programs without function symbols under the stable logic
(Shor 1994), and Grover (Grover 1996) show that in some semantics capture all NP-search problems. The converse,
casesfewer quantum gates are required to transform the that a search problem computed by a uniform logic program
guantum computer into a state that upon measurement re- P is an NP-search problem, is obvious since one can com-

turns the correct bit string with probability greater thpt3
(any probability bounded above'2 is polynomially equiv-
alent, by repeating the quantum computation multiple times
and choosing the most frequent outcome). We will explain
exactly how this works in the case of Grover's quantum
search algorithm, but first we describe in detail the classi-
cal problems to which we will apply it.

ASP search problems

A search problem is a sét of finite instances such that,
given any instancél € P, there is a seby; of solutions

to P for instancell, whereSy can be empty. For example,
the search problem might be to find Hamiltonian paths in a

pute a stable model of a program by guessingand then
doing a polynomial time check to verify thatis a stable
model of the program.

In this paper we will
DATALOG™ programs.

consider only so-called
These consist of clauses of

the form
p(X) — q1(X), ..., qm(X),~7m1(X),...,~rm(X), (1)
where p,q1,...,Gm,71,...,T, are atoms, possibly with

variables and/or constants. Here we abuse notation by writ-

ing p(X) to mean that the variables that occur in the pred-

icatep are contained inX. A program is a finite seP of
clauses of the form (1). We assume that the underlying lan-

graph. In this case, the set of instances of the problem is the guagel p of any given progran® is determined by the con-

set of all finite graphs. Given any instanée,, a graphl’,

Sr is the set of all Hamiltonian paths of We say that an
algorithm solves the search probléif it returns a solution

S € S wheneverSy is non-empty and it returns the string
“empty” otherwise. We say that a search problBris in NP

if there is such an algorithm which can be computed by a
non-deterministic polynomial time Turing machine. We say
that search problerf is solved by a uniform logic program
if there exists a single logic prografp, a polynomial time
extensional data base transformation functiéby (), and a
polynomial time solution decoding functiewl» (-, -), such
that for every instancH < P,

1. edbp (1) is a finite set of factsi.e., clauses with empty
bodies and no variables, and

2. wheneverSy; is not empty,solp(I1,-) maps the set of
stable models ofdbp (IT) U Pp onto the set of solutions
Sp of IT, and

3. wheneverS is empty,edbp (IT) U Pp has no stable mod-
els.

We note that decision problems can be viewed as special

cases of search problems. Schlipf’s result (Schlipf 1995)
shows, in fact, that the class décisionproblems in NP is
captured precisely by uniform logic programs. Specifically

stants and predicate symbols that occur in the program. Thus

the Herbrand univers€p of P is just the set of all constant

terms occurring inP, and the Herbrand badép of P is

the set of all ground atoms of the languagg. Since there

are no function symbols in our programs, both the Herbrand

universe and the Herbrand base of the program are finite.
A ground instance of a clauge of the form (1) is the re-

sult of a simultaneous substitution of constants for variables

occurring inC. Given a progran®, P, is the propositional

program consisting of all ground substitutions of clauses of

P. Given a propositional programi® and a setS included

in its Herbrand basé{ p, the Gelfond-Lifschitz transforma-

tion of P relative toS, is the program G[P, S) arising from

P as follows. First, eliminate all claus€sin P such that

for somej, 1 < j < n,r; € M. Second, in any remain-

ing clause, eliminate all negated atoms. The resulting set of

clauses forms a program, GR, S), which is a Horn pro-

gram and hence possesses a least mbtielWe say thatS

is astable model of the propositional prografif S = Mg.

Finally, given any progran® with variables, we say thaf

is a stable model of a program if S is a stable model of

the propositional prograrR,.

Finding a unique stable model

Finding a stable model for an ASP progrdfis a search
problem among the!"’»| possible models for a8 ¢ Hp

such thatS = Mg. The simplest classical algorithm over
which there is no known worst-case improvement is

1. chooseS C Hp;
construct the Gelfond-Lifschitz transform @2, S);

find the least modeMs of GL(P,S) by iterating the
one-step provability operatd;y, p,5) on; (This can be
done in linear time, see (Dowling and Gallier 1984).)

4. if S = Mg, returnS, else repeat.

Each step here is polynomial in the problem size, but in the
worst case the steps must be repea@d”) times, where
n = |Hp|

Notice that we could formulate each iteration of this algo-
rithm as an evaluation of a functiofy : P(Hp) — {0,1}
onS € P(Hp) (the power set oH p), where

fP(S):{l ifSZMS;

0 otherwise,
and the problem is to identify an argument at whjghtakes
the value 1. If we encod®(H p) asn-bit strings, then we
can write fp : {0,1}" — {0,1}. Consider the function
from {0,1}" x {0,1} to itself defined by(z,b) — (z,b+
fp(z)), which is a permutation. Since the collection of all
|z, b) is a basis (the computational basis) of the vector space
V = (C?)®" @ C?, this permutation induces a linear map
Uy, fromV to V, which satisfies

UfP"rab> = ‘Jf,b—‘rfp(ﬂ?»
Since Uy, permutes the computational basis, thame

1. prepare the state
0...0) € (CH®m,
2. applyH®™ to obtain the state

. PNESE

A /2n
3. repeafl times:

() applyUy,;
(b) apply—H®"Us, H®™; (0p(z) = 1if z = 0, and van-
ishes otherwise)

4. measure the state and return the outcanud the mea-
surement.

A simple analysis determines the appropriate valué& of
in Grover’s algorithm. Assume first th&t has a unique sta-
ble modelsS, as, for example, is the case in stratified pro-
grams (Apt et. al. 1988). Theli;, acts as a reflection in
the hyperplane orthogonal {e), wheres is then-bit string
encodingS. Similarly, sinceUs, is a reflection in the hy-
perplane orthogonal tf . ..0), and H®™ maps|0...0) to
the equal superposition state obtained in Step 2, the unitary
transformation- H®"U;, H®"™ is a reflection in the hyper-
plane orthogonal to the equal superposition vector. Recall
that the product of two hyperplane reflections is a rotation
in the plane spanned by the vectors orthogonal to the hyper-
planes, through twice the angle between them. In this case
that angle i9) = arcsin(1/1/2"), so each iteration of Step 3
rotates the state I8¢ towards|s), and choosing

b

™
~ —y\/ 27

T:{ 4

asn — oo

(polynomial size) reversible gate array that computes this gngres that when the state is measured in Step 4, it returns
permutation classically can be also be used to implement the ;o encoding of the stable model with probability at least

unitary mapUy,.. We will set the last qubit to be in the state
|—) = (]0) — |1))/v/2 so that this unitary transformation

takes a particularly simple form:
Upplz, =) = (=17]z, —).
Thus we can abuse notation slightly and write
Ugpla) = (=1)/7) |z).

More generally, we can defirig, similarly, foranyfunction
g9:{0,1}" — {0,1}.
We need one more definition before we can describe
the application of Grover’s algorithm (Grover 1996) to this
1 /1 1

problem. Let
Al)

denote the discrete Fourier transform @A. In the quan-
tum computing literature this is usually calldte Hadamard
transform Notice that

H =

1
ﬁ

this is used in Step 2 below.
Grover’s algorithm consists of the following steps:

H10) = —=(10) +[1));

cos?f ~ 1 — 27", Butit does so with onlyD(1/2") itera-
tions, quadratically faster than the classical algorithm at the
beginning of this section.

Finding one of multiple stable models

Of course, in general there are multiple stable models for an
ASP program. Suppose hask € N stable models, and we
apply Grover’s algorithm as described in the previous sec-
tion. Now Uy, is reflection through the hyperplane orthog-
onal to) " .uel®), SO the two reflections in Step 3 create a

rotation by26 where
1 1 [k
sinf = —]) = —
Vk Van ;|) 2n

> (el

x stable
Thus, if we knew the number of stable models, we
could iterate Step I ~ 7T./2"/k times, after which

the state would be within an angieof 3" vel®)/VE.
Then measuring the state in Step 4 would, with probability
1—0(27™), return one of the stable models, each with equal
probability.

Unfortunately, we do not know how many stable models
there area priori. Brassard, Hgyer, Mosca and Tapp have

shown, however, that even when the number of solutions to
Grover’s search problem is unknown, one can still be found
with expected number of iteratiold¥(/2" /k) (Brassard et.

al. 2002). Their algorithm is based on the observation that
picking a random number of iterations of Step 3 would cor-

respond to picking an angle< ¢ < 27 at random, where

¢ is the angle between the final state 8Ny qpelz)/VE-

A measurement returns the encoding of a stable model with
probability cos? ¢, so for random choices ef,

27
1
E(successful measurement / cos® ¢ do = 3
0

Since we can check efficiently whether the outcome is a sta-
ble model, we could repeat this proceduréimes and re-
duce the failure probability t@)(2~"), without increasing
the computational complexity. Of course, we cannot really
pick a random positive integer number of iterations. Never-
theless, this observation suggests the following algorithm:
1. letM =1,

pick T uniformly at random from the integers jih, M];

run Grover’s algorithm with this value @f;

if outcome is stable model, stop, else Mt = ¢M and
repeat from Step 2.

For1l < ¢ < 2, Brassard, Hgyer, Mosca and Tapp's result

2,
3.
4.

to a truth assignment with the smallest number of violated
clauses.

This idea has also been applied within the discrete time
model of quantum computation described in this paper.
Hogg describes this idea as the application of ‘quantum
heuristics’ (Hogg 2000). Just as in the corresponding quan-
tum adiabatic algorithm, his algorithm applies a multiplica-
tive phase associated with each truth assignment, one that
increases linearly with the number of violated clauses. This
multiplicative phase generalizes the1)/r phase that ap-
pears in Grover’s algorithm.

Numerical results for simulations of these quantum algo-
rithms indicate that search complexity may be reduced to
0(2"/%) (Hogg 2000), or possibly even to pdly) (Farhi et.
al. 2001; Hogg 2000) by using this extra information be-
yond whether a truth assignment is satisfying or not. Thus,
in our context of finding stable models, we are currently in-
vestigating the use of functions (beyond the indicator func-
tion for S = M) that can be computed in polynomial time,
e.g, some function ofS| — |Mg|. We anticipate numerical
results hinting at similar reduction in complexity.

Acknowledgements

This work was supported in part by the National Security
Agency (NSA) and Advanced Research and Development

(Brassard et. al. 2002) shows that this algorithm succeeds Activity (ARDA) under Army Research Office (ARO) Grant

after an expected (/2" /k) total number of Grover itera-

tions. Thus there is a quadratic improvement in this case as

well as in the unique stable model case.

Discussion

We have shown that Grover's algorithm and Brassard,
Hgyer, Mosca and Tapp’s generalization can be applied to
the problem of finding stable models for ASP programs
and that these quantum algorithms run quadratically faster
than existing classical solvers in the worst case. Since An-
swer Set Programming is a general formalism for NP-search
problems, this result shows how to solve any such problem
with a quantum computer. Used in this way, ASP would be
a general “quantum programming language”.

Of course, since Shor’'s quantum algorithm for factoring
provides a superpolynomial improvement over the best clas-
sical algorithm known, the hope is for more than a quadratic
improvement in other problems. Evidence from highly
structured search problems (Hunziker and Meyer 2002) sug-
gests that generalizinfp to return more information about
a possible mode$ than only whether it is\/s or not could
provide a greater improvement.

A similar idea motivates quantum adiabatic algorithms
(Farhi et. al. 2001). These utilize a Hermitian matrix (the
Hamiltonian) that acts on potential solutions of the problem
encoded as quantum states. Applied t8A3; for example,
this matrix is constructed from the clauses of the problem

instance in such a way that quantum states encoding truth
assignments are eigenstates with eigenvalues that are posi-

tively proportional to the number of clauses violated. The
algorithm is designed to evolve an initial state into a quan-
tum state that has minimum eigenvalug,., corresponds

No. DAAD19-01-1-0520.

References

L. M. Adelman, J. Demarrais and M.-D. A. Huang. Quan-
tum computabilitySIAM J. Comput26:1524-1540, 1997.

K. R. Apt. Logic programming. irHandbook of Theoreti-
cal Computer SciencElsevier 475-574, 1990.

K. R. Apt, H. A. Blair and A. Walker, Towards a theory
of declarative knowledge. in J. Minker, ed/Qundations
of Deductive Databases and Logic Programmiligrgan
Kaufmann, 89-148, 1988.

C. H. Bennett. Logical reversibility of computatici&M J.
Res. Developl7:525-532, 1973.

C. H. Bennett, E. Bernstein, G. Brassard and U. Vazirani.
Strengths and weaknesses of quantum compuBhgvi J.
Comput.26: 1510-1523, 1997.

D. Bernstein and U. Vazirani. Quantum complexity theory.
in Proceedings of the 25th Annual ACM Symposium on the
Theory of ComputingSan Diego, CA, 16-18 May 1993,
New York ACM: 11-20, 1993 and

Quantum complexity theonsIAM J. Comput26: 1411—
1473, 1997.

G. Brassard, P. Hgyer, M. Mosca and A. Tapp. Quan-
tum amplitude amplification and estimatioguant-
ph/0005055 ; in S. J. Lomonaco, Jr. and H. E. Brandt,
eds.,Quantum Computation and Informatio@ontempo-
rary Mathematics305: 53-74, 2002.

M. Cadoli and L. Palipoli. Circumscribing datalog: expres-
sive power and complexityrheor. Comput. Scienck93:
215-244, 1988.

P. Cholewnski, W. Marek and M. Truszchgki. Default
reasoning system DeReS. Rioceedings of KR-96Mor-
gan Kaufmann) 518-528, 1998.

E. Dantsin, T. Eiter, G. Gottlob and A. Voronkov. Complex-
ity and expressive power of logic programming. Proc. 12-
th IEEE International Conf. on Computational Complexity
(IEEE Computer Society Press) 82—-101, 1997 and

ACM Computing Survey83(3): 374-425, 2001.

D. Deutsch. Quantum theory, the Church-Turing principle
and the universal quantum computeroc. Roy. Soc. Lon-
don Ser. A00: 97-117, 1985.

D. Deutsch. Quantum computational networRec. Roy.
Soc. London Ser. A25: 73-90, 1989.

W. F. Dowling and J. H. Gallier. Linear-time algorithms for
testing the satisfiability of propositional horn formulde.
Logic Programming3:267-284, 1984.

T. Eiter, M. Fink, G. Sabbatini and H. Tompits. A frame-
work for declarative update specifications in logic pro-
grams. inProceedings of the 17th International Joint Con-
ference on Artificial Intelligenc8eattle, WA, 4-10 August

2001 (San Francisco: Morgan Kauffman) 649-654, 2001.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer and F. Scarcello.
The KR system dlv: progress report, comparisons, and
benchmarks. ifProceedings of the Sixth International Con-
ference on Principles of Knowledge Representation and
Reasoningt06—417, 1998.

E. Farhi, J. Goldstone, S. Gutmann and M. Sipser,
“Quantum computation by adiabatic evolutiomjiiant-
ph/0001106 , 2001.

R. Feynman. Simulating physics with computérgernat.
J. Theoret. Phy21: 467-488, 1982.

M. R. Garey and D. S. JohnsaBomputers and Intractabil-
ity: A Guide to the Theory of NP-completend¥g H.
Freeman), 1979.

M. Gelfond and V. Lifschitz. The stable semantics for logic
programs. inProceedings of the 5th International Sympo-
sium on Logic ProgramminfCambridge, MA: MIT Press)
1070-1080, 1988.

Gottlob and Koch 2002 GottlobKoch] G. Gottlob and Ch.
Koch. Monadic datalog and the expressive power of lan-
guages for web information extraction. Rroceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systenvadison, WI, 3-6 June
2002 (New York: ACM Press) 17-28, 2002.

L. Grover. A fast quantum mechanical algorithm for
database search. Proceedings of the 28th Annual ACM
Symposium on the Theory of ComputiRgiladelphia, PA,
22-24 May 1996 (New York: ACM) 212-219, 1996 and
Quantum mechanics helps in searching for a needle in a
haystackPhys. Rev. Let79: 325-328, 1997.

K. Heljanko and I. Niemél. Bounded LTL model check-
ing with stable models. in T. Eiter, W. Faber and M.
Truszczyski, eds. Proceedings of the Sixth International
Conference on Logic Programming and Nonmonotonic
Reasoningvienna, Austria, 17-19 September 2001, Lec-

ture Notes in Artificial Intelligence (Springer), 2173 200—
212, 2001.

M. Hirvensalo,Quantum Computin&pringer, 2001.

T. Hogg. Quantum search heuristidBhys. Rev. A61
052311/1-7, 2000.

M. Hunziker and D. A. Meyer. Quantum algorithms for
highly structured search problenm@uantum Inform. Pro-
cessingl:145-154, 2002.

J. Jaffar and M. J. Maher. Constraint logic programming: a
survey.J. Logic Programmind.9:503-581, 1994.

V. Lifschitz. Action languages, answer sets and planning.
in The Logic Programming Paradign$eries Atrtificial In-
telligence (Springer), 357-373, 1999.

V. W. Marek and J. B. Remmel. On the expressibility of
stable logic programminglheory and Practice of Logic
Programming3: 551-567, 2003.

W. Marek and M. Truszc#yski. Autoepistemic logicJ.
ACM 38: 588-619, 1991.

V. W. Marek and M. Truszczyski. Stable models and
an alternative logic programming paradigm.Tihe Logic

Programming Paradigm Series Atrtificial Intelligence
(Springer-Verlag), 375-398, 1999.

K. Marriott and P. J. Stuckey.Programming with Con-
straints: An Introduction MIT Press, 1998.

I. Niemeh. Logic programs with stable model semantics
as a constraint programming paradigm.Piroceedings of
the Workshop on Computational Aspects of Nonmonotonic
Reasoning72—79, 1998.

I. Niemek and P. Simons. Efficient implementation of the
well-founded and stable model semantics Pioceedings
of JICSLP-96MIT Press, 1996.

I. Niemek and P. Simons. Smodels — an implementa-
tion of the stable model and well-founded semantics for
normal logic programs. iThe 4th International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing, Dagstuhl, Germany, 1997, Springer Lecture Notes in
Computer Science 1265, 420-429, 1997.

J. Schlipf. The expressive powers of the logic programming
semanticsJ. Comput. Systems Sciertce 64—-86, 1995.

P. W. Shor. Algorithms for quantum computation: dis-
crete logarithms and factoring. in S. Goldwasser, Btb;
ceedings of the 35th Symposium on Foundations of Com-
puter ScienceSanta Fe, NM, 20-22 November 1994 (Los
Alamitos, CA: IEEE Computer Society Press 1994) 124—
134;

and

Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum compuséAM J. Com-

put. 26: 1484-1509, 1997.

D. Simon. On the power of quantum computation. in S.
Goldwasser, ed.Proceedings of the 35th Symposium on
Foundations of Computer Sciencganta Fe, NM, 20-22
November 1994 (Los Alamitos, CA: IEEE Computer Soci-
ety Press 1994) 116-123;

and

On the power of quantum computatid®lAM J. Comput.
26:1474-1483, 1997.

T. Soininen, I. Niemed, J. Tiihonen and R. Sulonen. Rep-
resenting configuration knowledge with weight constraint
rules. inAnswer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasopéipgrs
from the AAAI Spring Symposium, Stanford, CA, 26—
28 March 2001, AAAI Technical Report SS-01-01, AAAI
Press, 195-201, 2001.

T. Toffoli. Bicontinuous extensions of invertible combina-
torial functions.Math. Systems Theofy: 13—-23, 1981.

J.D. Ullman.Principles of Database and Knowledge-Base
SystemsComputer Science Press, 1988.

