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Abstract

We propose in this paper a new family of belief merging op-
erators, that is based on a game between sources : Until a
coherent set of sources is reached, at each round a contest is
organized to find out the weakest sources, then those sources
has to concede (weaken their point of view). This idea leads
to numerous new interesting operators (depending of the ex-
act meaning of“weakest”and“concede”, that gives the two
parameters for this family) and opens new perspectives for
belief merging. Some existing operators are also recovered
as particular cases. Those operators can be seen as a special
case of Booth’s Belief Negotiation Models (Booth 2002), but
the achieved restriction forms a consistent family of merging
operators that worths to be studied on its own.

Introduction
The problem of (propositional) belief merging (Revesz
1997; Lin & Mendelzon 1999; Liberatore & Schaerf 1998;
Konieczny & Pino Ṕerez 1999; 2002a; Konieczny, Lang, &
Marquis 2004) can be summarized by the following ques-
tion: given a set of sources (propositional belief bases) that
are mutually inconsistent, how to reach a coherent belief
base reflecting the beliefs of the set ?

The idea here is that some/each sources has to concede on
some points in order to solve the conflicts. If one has some
notion of relative reliability between sources, it is enough
and sensible to force the less reliable ones to give up first.
There is a lot of different means to do that, which has pro-
vided a large literature, e.g. (Cholvy 1993; 1995; 1998; Ben-
ferhatet al. 1998; Benferhat, Dubois, & Prade 1998). But
often we do not have such information, and even if we get it,
it remains the more fundamental problem of how to merge
sources of equal reliability (Konieczny & Pino Pérez 1999;
2002a).

In this paper we will investigate the merging methods
based on a notion of game between the sources. The intuitive
idea is simple: when trying to impose its wish, each source
will try to form some coalition with near-minded sources.
So the source that is the “furthest” from the other ones will
certainly be the weakest one. And it will be that source that
have to concede first. In this work, we will not focus on how
the coalitions form, we only take this idea to designate the
weakestones.

So the merging is based on the following game: Until a
coherent set of sources is reached, at each round a contest is
organized to find out the weakest sources, then those sources
has to concede (weaken their point of view).

We can state several intuitions and justifications for the
use of such operators. We have already given the first one:
coalition with near-minded sources. In a group decision pro-
cess between rational sources, it can be sensible to expect the
sources to look for near-minded sources in order to find help
to defend their view, so the “furthest” source is the more
likely to have to concede on its view.

A second intuition is the one given by a social pressure
on the sources. When confronting several points of view,
usually people that have the more exotic views try to change
their opinion in order to be accepted by the other members of
the group, so opinions that are defended by the least number
of sources are usually given up more easily in the negotiation
process.

A last intuition that gives the main rationale for that kind
of operators is Condorcet’s Jury theorem. This theorem
states that if all the members of a jury are reliable (in the
sense that they have more than a half of chances to find the
truth), then listen to the majority is the more rational choice.

After stating some useful definitions and notations in the
following section, we will define the new family of opera-
tors we propose. The definition will use a notion of weak-
ening and choice functions. We will explore those notions
in a subsequent section and we will give some examples
of specific operators in order to illustrate their behaviour.
We will then look at the logical properties of those opera-
tors. Finally, we will look at the links between this work
and related works (especially Booth’s proposal (Booth 2001;
2002)), before concluding with some open issues and per-
spectives of this work.

Preliminaries
We consider a propositional languageL over a finite alpha-
betP of propositional symbols. An interpretation is a func-
tion from P to {0, 1}. The set of all the interpretations is
denotedW. An interpretationω is a model of a formulaϕ,
notedω |= ϕ, if and only if it makes it true in the usual clas-
sical truth functional way. Letϕ be a formula,mod(ϕ) de-
notes the set of models ofϕ, i.e. mod(ϕ) = {ω ∈ W | ω |=
ϕ}. Conversely, letX be a set of interpretations,form(X)



denotes the formula (up to logical equivalence) whose set of
models isX.

A belief baseϕ is a consistent propositional formula (or,
equivalently, a finite consistent set of propositional formulae
considered conjunctively).

Let ϕ1, . . . , ϕn ben belief bases (not necessarily differ-
ent). We callbelief profile the multi-setΨ consisting of
thosen belief bases:Ψ = (ϕ1, . . . , ϕn) (i.e. two sources
can have the same belief base). We note

∧

Ψ the conjunc-
tion of the belief bases ofΨ, i.e.

∧

Ψ = ϕ1 ∧ · · · ∧ ϕn.
We say that a belief profile is consistent if

∧

Ψ is consistent.
The multi-set union will be notedt and the multi-set inclu-
sion will be notedv. The cardinal of a finite (multi-)setA
is noted#(A) (the cardinal of a finite multi-set is the sum
of the numbers of occurrences of each of its elements). Let
E be the set of all finite belief profiles.

Two belief profilesΨ1 andΨ2 are said to be equivalent
(Ψ1 ≡ Ψ2) if and only if there is a bijection betweenΨ1 and
Ψ2 such that each belief base ofΨ1 is logically equivalent
to its image inΨ2.

Belief Game Model
In (Booth 2001; 2002) Richard Booth propose a frame-
work for merging sources of information incrementally. He
named this framework“Belief Negotiation Model”(BNM)
In this work we will use the name“Belief Game Model”
(BGM) because in our framework there is no room for ne-
gociation, so we find it more accurate and it allows us to
make a distinction in this paper between Booth’s proposal
and our. The BGM framework can be seen as a restric-
tion of Booth’s BNM framework: the main differences be-
tween Booth’s proposal and our is that Booth’s one take the
sources as candidates to weakening, whereas we restrict our-
selves to“points of view”. That means that in Booth’s if
one source has to weaken, it can be the case that another
source with exactly the same beliefs do not have to weaken
too (that is not allowed in our framework). Our proposal
add more anonymity by saying that only beliefs decide who
has to weaken, not the identity of one source. Similarly, the
choice functions are more Markovian in our framework than
in Booth’s one. We think that those hypothesis are more
realistic (and necessary) on a belief merging point of view,
whereas Booth’s framework allows to model more general-
ized negotiation schemes, where one can decide for exam-
ple that each source has to weaken one after the other (see
SectionComparison between BGM and BNMfor a deeper
comparison of the two approaches).

Definition 1 A choice functionis a functiong : E → E such
that:

• g(Ψ) v Ψ

• If Ψ 6= ∅, theng(Ψ) 6= ∅

• If
∧

Ψ 6≡ >, then∃ϕ ∈ g(Ψ) s.t.ϕ 6≡ >

• If Ψ ≡ Ψ′, theng(Ψ) ≡ g(Ψ′)

The choice function aims to find which are the sources
that must weaken at a given round. So the two first con-
ditions mean that the sources that will have to weaken are

a non-empty subset1 of the belief profile. As the weaken-
ing function aims at weaken the belief base, and as there
is no weaker base than a tautological one, the third condi-
tion states that at least one non-tautological base must be
selected. This condition is necessary to ensures to always
reach a result with Belief Game Model. Last condition is an
irrelevance of syntax condition. It states that the selection of
the bases to weaken does not depend on the particular form
of the bases, but only of they informational content. Note
that we also have an additional property: anonymity, that
means that the result does not depend of the “name” of the
source, but only on its point of view. This is due to the fact
that we work with multi-sets, that are equivalent by permu-
tation. If one works with an other representation (ordered
lists of sources for example), this anonymity property can
be given by the last condition, provided that the equivalence
between two belief profiles is rightly defined (as in thePre-
liminariessection).

Definition 2 A weakening functionis a functionH : L → L
such that:

• ϕ ` H(ϕ)

• If ϕ ≡ H(ϕ), thenϕ ≡ >

• If ϕ ≡ ϕ′, thenH(ϕ) ≡ H(ϕ′)

The weakening function aims to give the new beliefs of
a source that has been chosen to be weaken. The two first
conditions ensure that the base will be replaced by a strictly
weaker one (unless the base is already a tautological one).
The last condition is an irrelevance of syntax requirement :
the result of the weakening must only depend on the infor-
mation convey by the base, not on its syntactical form.

We extend the weakening functions on belief profiles as
follows: letΨ′ be a subset ofΨ,

HΨ′(Ψ) =
⊔

ϕ∈Ψ′

H(ϕ) t
⊔

ϕ∈Ψ\Ψ′

ϕ

This means that we weaken only the belief base ofΨ that
are inΨ′, the other ones do not change.

Definition 3 A Belief Game Model is a pairN = 〈g,H〉
whereg is a choice function andH is a weakening function.

The solution to a belief profileΨ for a Belief Game Model
N = 〈g,H〉, notedN (Ψ), is the belief profileΨN , defined
as:

• Ψ0 = Ψ

• Ψi+1 = Hg(Ψi)(Ψi)

• ΨN is the firstΨi that is consistent

So the solution to a belief profile is the result of a game on
the beliefs of the sources. At each round there is a contest to
find out the weakest bases (the losers), and the losers have
to concede on their belief by weakening them.

1Indeed, all set notions used in this paper (subset, inclusion,
union, etc.), are multi-sets one. So here it is strictly speaking sub-
muti-set. For the sake of simplicity, and since it can not lead to
confusion since we work in this paper only with multi-sets, we will
take the set notions, without mentioning the “multi-”.



In some cases, the result of the merging has to obey to
some constraints (physical constraints, norms, etc...). We
will assume that those integrity constraints are encoded asa
propositional formula (a belief base), and we will note this
baseµ. Then we introduce the following notion:

Definition 4 The solution to a belief profileΨ for a Belief
Game ModelN = 〈g,H〉 under the integrity constraintsµ,
notedNµ(Ψ), is the belief profileΨµ

N defined as:

• Ψ0 = Ψ

• Ψi+1 = Hg(Ψi)(Ψi)

• Ψµ
N is the firstΨi that is consistent withµ

Often in the following in this paper we will call result of
the merging operator (Belief Game Model), the belief base
∧

Ψµ
N ∧ µ. This abuse of notation is not problematic, since

this belief base denotes the consensus point obtained by the
belief profileΨµ

N solution of the Belief Game Model pro-
cess.

Note that the definition of the Belief Game Model and of
the weakening and choice functions ensures that each be-
lief profile Ψ has a solution as soon as the constraintsµ are
consistent.

Weakening and Choice Functions
In order to define a particular Belief Game Model, we have
to choose a choice function and a weakening function. We
will give in this section some natural choices for those func-
tions and see what are the resulting BGM operators.

Weakening Function
Let us fist turn out on weakening function. Can we find out
a “natural” one ? In fact it is a difficult task, since the exact
choice of a weakening function depends on the expected be-
haviour for the Belief Game Model and depends also on the
existence of some “preferential” information. But if we have
no such additional information, we have at least two natural
candidates : drastic weakening and dilatation.

Definition 5 Let ϕ be a belief base. Thedrastic weakening
function forget all the information about one source, i.e. :
H>(ϕ) = >.

After this rough function, let us see a more fine grained
one. Let us first recall what is the Hamming’s distance
between interpretations (also called Dalal’s distance (Dalal
1988)) since we will use it several times in this paper.

Definition 6 The Hamming distance between interpreta-
tions is the number of propositional symbols on which the
two interpretations differ. Letω and ω′ be two interpreta-
tions, then

dH(ω, ω′) = #({a ∈ P | ω(a) 6= ω′(a)})

Then the dilatation weakening function is defined as :

Definition 7 Letϕ be a belief base. Thedilatation weaken-
ing functionis defined as :

mod(Hδ(ϕ)) = {ω ∈ W | ∃ω′ |= ϕ dH(ω, ω′) ≤ 1}

Choice Function

Let us turn out now on choice function. The aim of this
function is to determine the “losers”, that are the sources
that have to concede by weakening their beliefs at a given
round.

One of the simplest choice function one can choose is
identity (denotedgid). It is not the expected behaviour for
this function, but it can prove the rationality of our operators
if, even in this case, we obtain a sensible merging.

We will focus on two families of choice functions. The
first one is model-based, the second one is formula-based.
We think that most of the sensible choice functions belong
to one of those families.

Model-Based Choice Functions We will focus here on
some modelization of what can be called “social pressure”,
and can be viewed as a majority principle. Namely, at each
round it is the “furthest” sources from the group that will
concede. The exact choice of the meaning of “furthest” will
fix the chosen operator from this family. Technically we will
use a distance between belief bases and an aggregation func-
tion to evaluate the distance of a belief base with respect to
the others.

We will start from the definition of the distance between
two belief bases.

Definition 8 A (pseudo)distance2 d between two belief
bases is a functiond : L × L → IN such that:

• d(ϕ,ϕ′) = 0 iff ϕ ∧ ϕ′
0 ⊥

• d(ϕ,ϕ′) = d(ϕ′, ϕ)

Two examples of a such distances are :

• dD(ϕ,ϕ′) =

{

0 if ϕ ∧ ϕ′
0 ⊥

1 otherwise

• dH(ϕ,ϕ′) = min
ω|=ϕ,ω′|=ϕ′

dH(ω, ω′)

Definition 9 An aggregation function is a total functionf
associating a nonnegative integer to every finite tuple of non-
negative integers and verifying(non-decreasingness), (min-
imality) and(identity).

• if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤
f(x1, . . . , y, . . . , xn). (non-decreasingness)

• f(x1, . . . , xn) = 0 if and only ifx1 = . . . = xn = 0.
(minimality)

• for every nonnegative integerx, f(x) = x. (identity)

We say that an aggregation function is symmetric if it also
satisfies :

• For any permutation σ, f(x1, . . . , xn) =
f(σ(x1, . . . , xn)) (symmetry)

Definition 10 A model-based choice functiongd,h is de-
fined as :

2Remark that we miss an important property of distances: we
have onlyd(ϕ, ϕ′) = 0 if ϕ = ϕ′, but not theonly if part. Remark
also that we do not require the triangular inequality.



gd,h(Ψ) = {ϕi ∈ Ψ | h(d(ϕi, ϕ1), . . .

. . . , d(ϕi, ϕn)) is maximal}

whereh is an aggregation function, andd is a distance be-
tween belief bases.

We say that the model-based choice function is symmetric
if the aggregation function is symmetric.

We will focus on some specific aggregation functions in
this paper, but we can use different aggregation functions
here. In particular we will only focus on symmetrical ag-
gregation functions in this paper (to fit with choice func-
tions requirements) but note that the definition allows non-
symmetrical functions. This allows to define operators that
are not anonymous, i.e. where each base has not the same
importance. So one can use priorities (a weight or a pre-
order on the sources) for denoting different level of reliabil-
ity, different hierarchical importance, etc.

We will use in the following as examples of aggregation
functions, two typical ones, the sum (notedΣ) and the max-
imum (notedmax).

Formula-Based Choice Functions All interesting choice
functions are not captured in the definition given in the
previous section. In particular, a lot of interesting choice
functions can be defined by using maximal consistent sub-
sets. Note, however that, conversely to usual formula-based
merging operators (Baralet al. 1992; Konieczny 2000), we
use multi-sets instead of simple sets.

Definition 11 Let MAXCONS(Ψ) be the set of themaxcons
of Ψ, i.e. the maximal (with respect to multi-set inclusion)
consistent subsets ofΨ. Formally, MAXCONS(Ψ) is the set
of all multi-setsM such that:

• M v Ψ and
• if M @ M ′ v Ψ, then

∧

M ′ |= ⊥.

Definition 12 A formula-based choice functiongmc is a
function of the set of the maxcons ofΨ and the belief base,
i.e. :

gmc(Ψ) = {ϕi ∈ Ψ | h(ϕi, MAXCONS(Ψ)) is minimal}

Examples of the use of maxcons are numerous, let us see
two of them.

Definition 13

hmc1(ϕ, MAXCONS(Ψ)) =

#({M | M ∈ MAXCONS(Ψ) andϕ ∈ M})

hmc2(ϕ, MAXCONS(Ψ)) =

max({#(M) | M ∈ MAXCONS(Ψ) andϕ ∈ M})

The first function computes the number of maxcons the
belief base belongs to. The second function computes the
size of the biggest maxcons the belief base belongs to.

We will notegmc1 (respectivelygmc2) the formula-based
choice function that usehmc1 (resp.hmc2).

Instantiating the BGM Framework
In this section we will try to illustrate how interesting the
defined Belief Game Model framework is by giving several
examples. We will first see some of the simplest operators
that we can define with this framework. Then we will illus-
trate the behaviour of more complex operators on a typical
merging example.

Some Simple Examples

Let us first see what operators are obtained with the simplest
weakening and dilatation functions (that means that we will
either choose the weakening function to be the drastic one,
or the choice function to be identity).

• 〈gid,H>〉: In this case the belief base result of the BGM
on Ψ under the constraintsµ is the conjunction of all the
bases of the profile with the integrity constraints (

∧

Ψ∧µ)
if this conjunction is consistent, andµ otherwise. This
operator is called thebasic merging operator(Konieczny
& Pino Ṕerez 1999).

• 〈gid,Hδ〉: In this case, at each step of the game, each
source weaken using dilatation. This gives the well
known model-based merging operator4dH ,max defined
in (Revesz 1993; 1997; Konieczny & Pino Pérez 2002a).

• 〈gdD,Σ,H>〉: Here, the result is the cardinality-maximal
consistent subset ofΨ if it is unique and consistent with
the constraintsµ, and it is simplyµ otherwise. This oper-
ator is a new one. It is interesting since it can be viewed
as a generalized conjunction : it gives the conjunction of
all the bases and the constraints if it is consistent, but if it
is not, it tries to find the result by doing the least number
of repairs (forget of one belief base) of the belief profile.
If there is no ambiguity on the correction (i.e. a unique
cardinality-maxcons), then it accepts it as the result.

• 〈gdD,max,H>〉: This operator gives as result the conjunc-
tion of all the formulas that belongs to all maxcons (also
called free formulas in (Benferhat, Dubois, & Prade 1997;
1999)) and the integrity constraints if it is consistent, and
µ otherwise.

• 〈gmc1,H>〉: This operator gives the conjunction of the
formulas that belongs to the maximum number of max-
cons and the integrity constraints if consistent, andµ oth-
erwise.

• 〈gmc2,H>〉: In this case, the belief base result of the
merging is the conjunction of the belief bases that belong
to the biggest maxcons for cardinality and the integrity
constraints if consistent, andµ otherwise.

All those operators are not logically independent, some
of them are logically stronger than others, as stated in the
following proposition.

Proposition 1 In figure 1 an arrow between an operatorA
and an operatorB (A −→ B) means that operatorA is log-
ically stronger (or less cautious) than operatorB. Results
obtained by transitivity are not represented.



〈gmc2,H>〉 〈gdD,Σ,H>〉

〈gid, δ〉 〈gid,H>〉

〈gmc1,H>〉 〈gdD,max,H>〉

Figure 1: Cautiousness

An Example

We will see on an example (Revesz 1997), what is
the behaviour or some BGM operators, namely the
operators〈gdH ,hΣ

,Hδ〉, 〈gdH ,hmax

,Hδ〉, 〈gmc1,Hδ〉 and
〈gmc2,Hδ〉. Here is the example : There are three
sourcesΨ = {ϕ1, ϕ2, ϕ3} with the following belief bases
Mod(ϕ1) = {(1, 0, 0), (0, 0, 1), (1, 0, 1)}, Mod(ϕ2) =
{(0, 1, 0), (0, 0, 1)}, Mod(ϕ3) = {(1, 1, 1)}. There are no
constraints on the result, soµ = >.

• 〈gdH ,hΣ

,Hδ〉 : As Ψ is not consistent, let us make the
first round.d(ϕ1, ϕ2) = 0, d(ϕ1, ϕ3) = 1, d(ϕ2, ϕ3) =
2. So hΣ

Ψ(ϕ1) = 1, hΣ
Ψ(ϕ2) = 2, hΣ

Ψ(ϕ3) = 3.
That givesgdH ,hΣ

(Ψ) = {ϕ3}. So ϕ3 is replaced3 by
Hδ(ϕ3) = form({(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}).
We have not reach yet a consistentΨ, so let us make
a further round. Let us first compute the new dis-
tances. d(ϕ1, ϕ2) = 0, d(ϕ1, ϕ3) = 0, d(ϕ2, ϕ3) =
1. So hΣ

Ψ(ϕ1) = 0, hΣ
Ψ(ϕ2) = 1, hΣ

Ψ(ϕ3) = 1.
That gives gdH ,hΣ

(Ψ) = {ϕ2, ϕ3}. So ϕ2 is re-
placed byHδ(ϕ2) = form({(0, 1, 0), (0, 0, 1), (1, 1, 0),
(0, 0, 0), (0, 1, 1), (1, 0, 1)}), and ϕ3 is replaced by
Hδ(ϕ3) = form({(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(0, 1, 0), (1, 0, 0), (0, 0, 1)}). We have reach a consis-
tent belief profile, so the result isMod(Ψ

〈gdH ,hΣ
,Hδ〉

) =

{(0, 0, 1), (1, 0, 1)}.

• 〈gdH ,hmax

,Hδ〉 : As Ψ is not consistent, let us make the
first round.d(ϕ1, ϕ2) = 0, d(ϕ1, ϕ3) = 1, d(ϕ2, ϕ3) =
2. So hmax

Ψ (ϕ1) = 1, hmax
Ψ (ϕ2) = 2, hmax

Ψ (ϕ3) =

2. That givesgdH ,hmax

(Ψ) = {ϕ2, ϕ3}. So ϕ2 is re-
placed byHδ(ϕ2) = form({(0, 1, 0), (0, 0, 1), (1, 1, 0),
(0, 0, 0), (0, 1, 1), (1, 0, 1)}), and ϕ3 is replaced by
Hδ(ϕ3) = form({(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}).
The obtained profile is consistent, so the result is
Mod(Ψ〈gdH ,hmax

,Hδ〉
) = {(1, 0, 1)}.

• 〈gmc1,Hδ〉 : Ψ is not consistent, andMAXCONS(Ψ) =
{{ϕ1, ϕ2}, {ϕ3}}. So hmc1

Ψ (ϕ1) = hmc1
Ψ (ϕ2) =

hmc1
Ψ (ϕ3) = 1, and gmc1(Ψ) = Ψ. So we weaken

the three bases, that gives respectivelyHδ(ϕ1) =
form({(1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 0, 0), (1, 1, 0),
(0, 1, 1), (1, 1, 1)}), Hδ(ϕ2) = form({(0, 1, 0), (0, 0, 1),
(1, 1, 0), (0, 0, 0), (0, 1, 1), (1, 0, 1)}), and Hδ(ϕ3) =

3In order to avoid unnecessary notations, we do not use sub-
scripts to denote the different weakening steps of the bases, we
simply replace the belief bases by their weakened counterparts.
Hopefully, it can not lead to confusions.

form( {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}). This be-
lief profile is consistent, and the resulting base is
Mod(Ψ〈gmc1,Hδ〉) = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

• 〈gmc2,Hδ〉 : Ψ is not consistent, and we have
MAXCONS(Ψ) = {{ϕ1, ϕ2}, {ϕ3}}. So hmc2

Ψ (ϕ1) =
hmc2

Ψ (ϕ2) = 2 and hmc2
Ψ (ϕ3) = 1, and gmc2(Ψ) =

{ϕ3}. Soϕ3 is replaced byHδ(ϕ3) = form({(1, 1, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1)}). The belief profile is still
not consistent, so one needs one more round. Now
we haveMAXCONS(Ψ) = {{ϕ1, ϕ2}, {ϕ1, ϕ3}}. So
hmc2

Ψ (ϕ1) = hmc2
Ψ (ϕ2) = hmc2

Ψ (ϕ3) = 2, and
gmc2(Ψ) = Ψ. So we weaken the three bases,
that gives respectivelyHδ(ϕ1) = form({(1, 0, 0),
(0, 0, 1), (1, 0, 1), (0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 1, 1)}),
Hδ(ϕ2) = form({(0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 0, 0),
(0, 1, 1), (1, 0, 1)}), and Hδ(ϕ3) = form( {(1, 1, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1)}). The belief profile is con-
sistent, and the resulting base isMod(Ψ〈gmc2,Hδ〉) =
{(0, 0, 1), (1, 0, 1), (1, 1, 0), (0, 1, 1)}.

As one can note, on this example the four operators give
different (non trivial) results. As all these operators take
dilatation as weakening functions, we sometimes have the
interpretation(1, 1, 0) as model of the base result of the
merging, whereas it is a model of none of the initial belief
bases. This means that, conversely to usual formula-based
merging operators (Baralet al. 1992; Konieczny 2000;
Konieczny, Lang, & Marquis 2004), the result of the BGM
does not (always) imply the disjunction of the belief bases
of the profile.

Logical Properties
Some work in belief merging aims at finding sets of ax-
iomatic properties operators may exhibit the expected be-
haviour (Revesz 1993; 1997; Liberatore & Schaerf 1998;
Konieczny & Pino Ṕerez 1998; 1999; 2002b). We fo-
cus here on the characterization of Integrity Constraints
(IC) merging operators (Konieczny & Pino Pérez 1999;
2002a).

Definition 14 (IC merging operators) 4 is anIC merging
operatorif and only if it satisfies the following postulates:

(IC0) 4µ(Ψ) |= µ

(IC1) If µ is consistent, then4µ(Ψ) is consistent

(IC2) If
∧

Ψ is consistent withµ, then4µ(Ψ) ≡
∧

Ψ ∧ µ

(IC3) If Ψ1 ≡ Ψ2 and µ1 ≡ µ2, then 4µ1
(Ψ1) ≡

4µ2
(Ψ2)



(IC4) If ϕ1 |= µ andϕ2 |= µ, then4µ({ϕ1, ϕ2}) ∧ ϕ1 is
consistent if and only if4µ({ϕ1, ϕ2}) ∧ ϕ2 is consistent

(IC5) 4µ(Ψ1) ∧4µ(Ψ2) |= 4µ(Ψ1 t Ψ2)

(IC6) If 4µ(Ψ1) ∧ 4µ(Ψ2) is consistent, then4µ(Ψ1 t
Ψ2) |= 4µ(Ψ1) ∧4µ(Ψ2)

(IC7) 4µ1
(Ψ) ∧ µ2 |= 4µ1∧µ2

(Ψ)

(IC8) If 4µ1
(Ψ) ∧ µ2 is consistent, then4µ1∧µ2

(Ψ) |=
4µ1

(Ψ)

For more explanations on those properties see (Konieczny
& Pino Ṕerez 2002a). So, let us see now what are the prop-
erties of BGM operators.

Proposition 2 BGM operators satisfy properties(IC0),
(IC1), (IC2), (IC3), (IC7), (IC8). They do not necessarily
satisfy properties(IC4), (IC5), (IC6).

So, as stated in the previous proposition, BGM opera-
tors do not fit all properties of IC merging operators. On
the other hand, we know for example that the operator
〈gid,Hδ〉 = 4dH ,max satisfies also(IC4), (IC5) (Konieczny
& Pino Ṕerez 2002a). So the question is to know if we can
ensure more logical properties by making some restrictions
on the weakening and/or the choice functions.

A first remark is that(IC4) can not be proved to hold for
any BGM operator, but it is satisfied for all the particular
operators we have defined in this paper.

Proposition 3 If the weakening function is dilatation or
drastic weakening, and if the choice function is a symmetric
model-based choice function or the formula-based choice
function gmc1 or gmc2, then the BGM operator satisfies
(IC4).

The property(IC5) can also be recovered for some BGM
operators, but(IC6) seems hardly recoverable. Those two
properties are important for classical merging operators.The
BGM operators aim at focusing on sources beliefs interac-
tions, so it seems natural to misses property(IC6). Indeed,
whereas classical merging operators aim at giving the re-
sult of the merging process in anidealframework, BGM op-
erators seem more adequately reflect the behaviour ofreal
multi-source merging process.

Another important logical link to be underlined is the re-
lationship between BGM operators and AGM belief revi-
sion operators (Alchourrón, G̈ardenfors, & Makinson 1985;
Gärdenfors 1988; Katsuno & Mendelzon 1991; Gärdenfors
1992). Belief revision aim is to make the minimum change
in a belief base in order to take into account a new informa-
tion that is more reliable than the current belief base (and
that usually contradicts the current belief base). Technically
those operators can be described as follows : until the belief
base is consistent with the new item of information (seen as
an integrity constraint) then weaken the belief base4. Stat-
ing this way, one can immediately see the parallel with BGM
operators since they are describe as follows : until the belief
profile is consistent with the constraint then weaken some

4It is the intuitive meaning behind Katsuno and Mendelzon rep-
resentation theorem in terms of faithful assignments (Katsuno &
Mendelzon 1991).

belief bases. The following result shows more formally that,
as explained above, BGM operators can be seen as direct
generalization of AGM belief revision operators.

Proposition 4 Let N = 〈g,H〉 be a BGM operator. Letϕ
andµ be two belief bases. The operator◦ defined asϕ◦µ =
Nµ({ϕ}) is an AGM belief revision operator (i.e. it satisfies
properties (R1-R6) of (Katsuno & Mendelzon 1991)).

In particular, we have that each BGM using the dilatation
weakening function is a generalization of Dalal’s revision
operator (Dalal 1988).

Finally let us see another cardinality restriction on belief
profile.

Proposition 5 LetN = 〈gd,h,Hδ〉 be a BGM operator de-
fined from a symmetric model-based choice function and di-
latation weakening function. Letϕ1, ϕ2 andµ be three belief
bases, then the operatorNµ({ϕ1, ϕ2}) is the model-based
merging operator4dH ,max

µ ({ϕ1, ϕ2}) (Konieczny & Pino
Pérez 2002a).

Note that the previous result holds only when we merge
two belief bases.

Comparison between BGM and BNM
In this section we will mainly compare our proposal with
Booth’s Belief Negotiation Model (BNM) (Booth 2002).
Let us first briefly recall Booth’s proposal.

Belief profiles in this framework are no more multi-sets
but vectors of belief bases, noted~Ψ. Let us note~E the set
of belief profiles, and let us note~Σ the set of all sequences
(vectors) of belief profiles, and~σ one element of this set.
When ~X is a vector, we will note~Xn thenth element of the
vector and~Xm the last element of the vector.

Then a BNM negotiation (choice) function is defined as :

Definition 15 A BNM negotiation functionis a function
gBNM : ~Σ → ~E such that:

• gBNM(~σ) v ~σm

• gBNM(~σ) 6= ∅

• If ϕi ∈ gBNM(~σ), thenϕi 6≡ >

And a BNM weakening function is defined as :

Definition 16 A BNM weakening functionis a function
H

BNM : ~Σ → ~E such that:

• (~σm)i ` H
BNM(~σ)i

• If (~σm)i ≡ H
BNM(~σ)i, then(~σm)i ≡ >

Finally the solution to a BNM is defined as :

Definition 17 The solution to a belief profile~Ψ for a Belief
Negotiation ModelN BNM = 〈gBNM,HBNM〉 under the integrity
constraintsµ, notedN BNM

µ (Ψ), is given by the functionfN :
~E → ~Σ defined as:

• fN (~Ψ) = ~σ = (~Ψ0, . . . , ~Ψk)



with ~Ψ0 = ~Ψ, k is the smallest integer such that
∧

~Ψk ∧ µ
is consistent, and for each0 ≤ j < k we have (~σj denotes
(~Ψ0, . . . , ~Ψj)):

(~Ψj+1)
i =

{

H
BNM( ~σj)

i if (~Ψj)
i ∈ gBNM( ~σj)

(~Ψj)
i otherwise

Finally, the belief base result of the BNM is
∧

~Ψk ∧ µ.

We change some notations, in order to show the close-
ness with our present work. For the original presenta-
tion and explanations on the definitions see (Booth 2002;
2001).

The main differences between BNM and BGM are :

i. BNM’s definition of belief profile as vectors allows to
speak about sources separately. So when there is two
identical belief bases in the belief profile, it is possible
to weaken only one of this base. It is not possible in the
BGM framework.

ii. The BNM negotiation function takes as input the whole
negotiation history from the initial belief profile. So it
is possible to implement negotiation process such that
each source weaken after the previous one (for example,
source1, then source2, . . .), or such that we prevent
a source to weak two times successively. The BGM
choice functions are more Markovian, taking only into
account the current belief profile.

iii. Similarly, the BNM weakening function also take as in-
put the whole negotiation history. It allows to weaken
differently two identical belief bases obtained at differ-
ent rounds or to weaken differently two identical belief
bases of the same belief profile.

iv. According to the previous items ideas, the irrelevance
of syntax condition of BGM weakening function, and
the anonymity condition of BGM choice function are
not required in the BNM framework.

The main difference between Booth’s proposal and our is
that Booth’s one take the sources as candidates to weaken-
ing, whereas we restrict ourselves to“points of view”. That
means that in Booth’s if one source has to weaken, it can be
the case that another source with exactly the same beliefs do
not have to weaken too. Our proposal add more anonymity
by saying that only beliefs decide who has to weaken, not the
identity of one source. Similarly, the choice functions are
more Markovian in our framework than in Booth’s one. We
think that those hypothesis are more realistic (and necessary)
on a belief merging point of view. Whereas Booth’s frame-
work allows to model more generalized negotiation frame-
works, where one can decide for example that each source
has to weaken one after the other. So, despite the closeness
of the models, and the objective fact that our proposal is a
particular case of Booth’s one (i.e. each of our operators can
be defined in Booth’s framework), the intended applications
of those two frameworks are quite different. And the partic-
ular properties achieved by adding those restrictions shows
that this framework forms a consistent family of merging op-
erators. It explains why it worths to focus on the model we
defined.

A last difference is that, in this paper, we are interested
on the result of the process (as a belief base), whereas BNM
framework aims at studying the resulting profile, in connec-
tion with a notion of“social contraction”. See (Booth 2002)
for a study of logical properties for social contraction.

An additional contribution of this work is to give exam-
ples of purely propositional logic BNM operators. In (Booth
2002), Booth propose two examples of BNM, both working
on ordinal conditional functions (OCF) (Spohn 1987), but
none on propositional belief base. So this work can be seen
as an investigation of what kind of operators this definition
can give on propositional belief bases (through adding addi-
tional requirements).

Conclusion
We have proposed in this paper a new family of belief merg-
ing operators, that we call Belief Game Model (BGM) op-
erators. The hypothesis for those operators is that all the
sources area priori reliable, or that we know that some
sources are less reliable than the others, but without know-
ing which ones. This hypothesis lead to choose a majority
approach, justified by Condorcet’s Jury Theorem. The idea
behind Belief Game Model is simple : Until a coherent set
of sources is reached, at each round a contest is organized
to find out the weakest sources, then those sources has to
concede (weaken their point of view). This idea leads to
numerous new interesting operators and opens new perspec-
tives for belief merging. Some existing operators are also
recovered as particular cases.

Non-surprisingly, the operators defined do not satisfy all
logical properties proposed for IC merging operators. The
reason is that those logical properties aim at give constraints
on the result of the merging in anideal framework, whereas
BGM operators aim at describing more accurately what can
happen in areal multi-source environment. So usual IC
merging operators can be seen as anormativeapproach to
merging. They show the way to a purely logical result.
Conversely, BGM operators adopt adescriptiveapproach
to merging, taking into account the interaction between the
sources. They try to simulate more adequately what can hap-
pen in a group-decision process. So they are maybe more
realistic.

This paper mainly aims to introduce BGM operators, but
it provides several open questions that are left for further
research.

The first one is about the definition of BGM operators and
the computation of the result. We give an iterative definition
of BGM operators, that leads to an iterative computation of
the result. The question is to know if we can find a non-
iterative equivalent definition. We know that some simple
operators can be defined non-iteratively. But the question is
to know if all operators or a non-trivial subclass of them are
also definable non-iteratively.

Another open question is about the logical characteriza-
tion of this family. In this paper we study the logical proper-
ties of this family with respect to the general definition of IC
merging operators. The question is to know if we can find a
set of logical properties that characterizes BGM operators.



Finally, we have recently studied the strategy-proofness of
usual propositional merging operators, showing that most of
them are not strategy-proof (Everaere, Konieczny, & Mar-
quis 2004). And we have exhibit several restrictions on
which strategy-proofness can be achieved. So an interest-
ing question is to compare the strategy-proofness of BGM
operators with the one of classical merging operators.
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