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Abstract

We present the description logic RMECKCR+ for reasoning
about actions with sensing under qualitative and probabilis-
tic uncertainty, which is an extension of the description logic
ALCKR+ by actions with nondeterministic and probabilis-
tic effects. We define a formal semantics of EMCKR-~

in terms of deterministic, nondeterministic, and probabilistic
transitions between epistemic states, which are sets of possi-
ble states of the world. We introduce the notions of a condi-
tional plan and its goodness under qualitative and probabilis-
tic uncertainty. We then formulate the problem of conditional
planning in this framework, and we present an algorithm for
solving it. This algorithm is based on a reduction to reasoning
in description logics, and is shown to be sound and complete
in the sense that it generates all optimal plans. We also de-
scribe an application in a robotic-soccer scenario.

Introduction

In reasoning about actions for mobile robots in real-world
environments, one of the most crucial problems that we have
to face is uncertainty, both about the initial situation of the
robot’s world and about the results of the actions taken by
the robot. One way of adding uncertainty to reasoning about
actions is based on qualitative models in which all possible
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the situation calculus, which is based on first-order logics
of probability, and which allows to reason about an agent’s
probabilistic degrees of belief and how these beliefs change
when actions are executed. Poole’s independent choice logic
(1997; 1998) is based on acyclic logic programs under dif-
ferent “choices”. Each choice along with the acyclic logic
program produces a first-order model. By placing a proba-
bility distribution over the different choices, one then obtains
a distribution over the set of first-order models. Matetis

al. (2001; 2002) allow for describing the uncertain effects
of an action by discrete, continuous, and mixed probability
distributions, and focus especially on probabilistic tempo-
ral projection and belief update. Finzi & Pirri (2001) add
probabilities to the situation calculus to quantify and com-
pare the safety of different sequences of actions. Boutilier,
Dean, & Hanks (2001) introduce first-order Markov deci-
sion processes (MDPs) that are formulated in a probabilistic
generalization of the situation calculus, and present a dy-
namic programming approach for solving them. A compan-
ion paper (Boutilieret al. 2000) presents a generalization
of Golog, called DTGolog, that combines robot program-
ming in Golog with decision-theoretic planning in MDPs.
Grol3kreutz & Lakemeyer (2002; 2001) propose a proba-
bilistic generalization of Golog, called pGolog, especially

alternatives are equally considered. Another way is based on for probabilistic projection and belief update. A probabilis-

guantitative models where we have a probability distribution

tic extension of the action languagé is given by Baral,

on the set of possible alternatives, and thus can numerically Tran, & Tuan (2002), which aims especially at an elabo-

distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about
actions such as the situation calculus (Reiter 2001) allow for
expressing qualitative uncertainty about the initial situation
and the effects of actions through disjunctive knowledge.
Similarly, recent formalisms for reasoning about actions that
are inspired by the action language(Gelfond & Lifschitz
1993), such as the action langua@e (Giunchigliaet al.
2004) and the planning langualjq Eiter et al. 2003), allow
for qualitative uncertainty in the form of incomplete initial
states and nondeterministic effects of actions.

There are a number of formalisms for probabilistic rea-
soning about actions. In particular, Bacchus, Halpern, &
Levesque (1999) propose a probabilistic generalization of
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ration-tolerant representation of MDPs and at formulating
observation assimilation and counterfactual reasoning.

Even though there is extensive work on reasoning about
actions under qualitative and probabilistic uncertainty sepa-
rately, there is only little work that orthogonally combines
qualitative and probabilistic uncertainty in a uniform frame-
work for reasoning about actions. One important such ap-
proach is due to Halpern & Tuttle (1993), which combines
nondeterminism and probabilistic uncertainty in a game-
theoretic framework. Halpern & Tuttle argue in particular
that “some choices in a distributed system must be viewed
as inherently nondeterministic (or, perhaps better, nonprob-
abilistic), and that it is inappropriate, both philosophically
and pragmatically, to model probabilistically what is inher-
ently nondeterministic’. This underlines the strong need
for explicitly modeling qualitative uncertainty in addition to
probabilistic uncertainty in reasoning about actions.



The main idea behind this paper is to orthogonally com-
bine qualitative and probabilistic uncertainty in a uniform
framework for reasoning about actions. This idea is already
pursued in a companion paper (Eiter & Lukasiewicz 2003)
that presents the languaf€+ for probabilistic reasoning
about actions, which is a generalization(®f that allows
for expressing probabilistic and nondeterministic effects of
actions as well as probabilistic and qualitative uncertainty
about the initial situation of the world. A formal semantics
of PC+ is defined in terms of probabilistic transitions be-
tween sets of states. Using a concept of a history and its
belief state, it is then shown how the problems of prediction,
postdiction, and (unconditional) planning under qualitative
and probabilistic uncertainty can be formulatedifi.

The present paper continues this important line of re-
search. Its main aim is to develop a formalism that addi-
tionally allows forsensing in reasoning about actions un-
der qualitative and probabilistic uncertaintgnd thus to for-
mulate the problem ofonditional planning under qualita-
tive and probabilistic uncertaintyand to elaborate an algo-
rithm for solving it. The base formalism that we use in this
paper is the description logid LCKR~ (locchi, Nardi, &
Rosati 2000), which is a fragment of the autoepistemic de-
scription logic ALCK o= (Donini, Nardi, & Rosati 2002).

It allows for specifying an initial epistemic state and tran-

qualitative and probabilistic uncertainty in RNECKS, -,

and we prove in particular that the algorithm is sound and
complete in the sense that it generates the set of all optimal
conditional plans. It is a significant extension of a previous
algorithm for conditional planning i LCKR .

e We describe a formulation of a robotic-soccer scenario in
PN-ALCKY.z, which gives evidence of the usefulness of
our formalism in realistic applications.

ALCKS
We now recall a subset of the description logi€C/ICa~
(Donini, Nardi, & Rosati 2002) (see Appendix A), called
ALCKS, which we use as a formalism for representing
dynamic systems (locchi, Nardi, & Rosati 2000). From the
semantic viewpoint, the main idea behind this framework
is the interpretation of the dynamic system specification at
the agent’'s knowledge level, through the notion ofegis-
temic state which is a set of possible states of the world.
An epistemic state encodes what the agent knows about the
world, in contrast to what is true in the world, and plan-
ning in the presence of sensing is obtained by modeling
the dynamics of the agent’s epistemic state, rather than the
dynamics of the world. Thus, the notion of an epistemic
state allows for expressing a form of qualitative uncertainty
in reasoning about actions. The representation of dynamic

sitions between epistemic states, where an epistemic statesystems iNALCKS,» is based on the following correspon-
represents the set of all alternatives that an agent considersdences: (i) roles and concepts encode actions and properties

possible in the world, and thus already expresses some form
of qualitative uncertainty in reasoning about actions. It has
been successfully implemented and used for a robotic soccer
team (locchi, Nardi, & Rosati 2000).

In this paper, we present an extensionA£CIC} - by
actions with nondeterministic and probabilistic effects. The
main contributions can be summarized as follows:

e We present the description logic PMECKR,, for rea-
soning about actions with sensing under qualitative and
probabilistic uncertainty, which is an extensiondfCK{~
(locchi, Nardi, & Rosati 2000) by actions with nondetermin-
istic and probabilistic effects. As a central feature, it orthog-
onally combines in a single framework qualitative as well as
probabilistic uncertainty about the effects of actions. It also
allows for some qualitative uncertainty in epistemic states.
o We define a formal semantics of PMECKCS,- by inter-
preting an action description in PMLCK{.- as a system of
deterministic, nondeterministic, and probabilistic transitions

of the world, respectively, and (ii) thepistemic operators
K and A are used to encode the epistemic state of an agent.

Syntax
We first recall the syntax of initial state and action descrip-
tions in ALCKR.-. They allow for modeling what an agent
knows about the properties of the world and how this knowl-
edge changes through the execution of actions. Properties
(resp., actions) are encoded by concepts (resp., roles), and
the dynamics of the world by inclusion axioms.

We assume a nonempty finite sétof atomic concepts,
calledfluents which are divided intstaticanddynamicflu-
ents. We use_ andT to denote the constanfslse andtrue,
respectively. Afluent literalis either a fluentd or its nega-
tion —A. A fluent conjunctions of the formZL, 1 --- M1 L,
where L4, ..., L, are fluent literals anch > 1. The set
of fluent formulasis the closure ofAU{L, T} under the
Boolean operators, M, andL (that is, if ¢ and+ are flu-

between epistemic states, which are sets of possible states ofent formulas, then alseg, ¢ M, and¢ LI ). We assume

the world. Hereprobabilistic transitionsare like in partially
observable Markov decision processes (POMDPSs) (Kael-
bling, Littman, & Cassandra 1998), but they are between
epistemic states and sets of statesather tharsingle states

o We formulate the problem of conditional planning under
qualitative and probabilistic uncertainty in PNECKS .

In particular, we define the notion of a conditional plan.
Based on the concept of a belief tree, we then formulate the
goodness of a conditional plan with respect to a goal and
an initial observation. In the extended report (locehil.
2003), we also give a compact representation of belief trees
and prove its correctness in implementing belief trees.

e We present an algorithm for conditional planning under

a setR of atomic roles, calledctions which are divided
into effectandsensing actions

A precondition axioms of the formK¢ C dKa.T (ab-
breviated aeexecutablex if ¢), whereg is a fluent formula,
anda is an action. Informallyq is executable in every state
that satisfieg. If ¢ =T, thena is always executable.

A conditional effect axioris of the formK ¢ C Va.y (ab-
breviated ascausedy after o when ¢, and ascausedy
after o, when¢ =T), where¢ is a fluent formulay is a
fluent conjunction, and is an action. Informally, if the cur-
rent state satisfigs, then executinge has the direct effeat.
Note that indirect effects may be formulated through domain
constraint axioms, which are introduced below.



A sensing effect axioris of the form T C K (Va.w) U PN-ALCICS -

K(Va.~w) (abbreviated asaused to knoww or —w af- In this section, we define the novel description logic PN-
ter _a), wherew is a fluent conjunction, and is a sensing ALCKS,;, which extendsALCKS,, by actions with non-
action. Informally, after executing the sensing actigrthe deterministic and probabilistic effects.

agent knows thav is either true or false. That is, sensing
actions modify the epistemic state of the agent without af- Syntax
fecting the state of the world (Levesque 1996). Note that we
assume that sensing actions have only two outcomes, but our
approach can be easily generalized ts 2 outcomes.

A default frame axionis of the formK¢ C VKa.A—¢ L
K¢ (abbreviated asnertial ¢ after o), whereg is a fluent
conjunction, andv is an action. Informally, it» holds in the
current state, thea holds also after the execution af if it
is consistent with the effects of.

A domain constraint axioris of the form¢ C v (abbre-
viated ascausedy if ¢), whereg andy are fluent formulas.

It represents background knowledge, which is invariant rel-
ative to the execution of actions.

An initial state descriptiong; is a fluent formula. An
action descriptionX B is a finite set of precondition, condi-
tional effect, sensing effect, default frame, and domain con-
straint axioms. Agoal description)¢ is a fluent formula.

We divide the set of all effect actions (without sensing ac-
tions) intodeterministic nondeterministicandprobabilistic
actions. Note that deterministic actions are a special case
of nondeterministic and probabilistic actions, however, non-
deterministic actions are not a special case of probabilistic
actions. In order to encode different effects of a nondeter-
ministic or probabilistic actiony, we specify a set of dif-
ferent contexts forv and the effects ofv under each such
context. If« is probabilistic, then we also specify a proba-
bility distribution over the contexts fot.

We first introducedynamic context formulasvhich as-
sociate with suchy a set of contexts and eventually also a
probability distribution over its set of contexts. ondeter-
ministic (resp.,probabilistic) dynamic context formulfor a
nondeterministic (resp., probabilistic) actians of form

Via)=(v1,...,v,) (resp..V(a)=(vi:p1,...,0n:0n)),

where (i)V («) is thecontext variabldor «, which may take
on values fromlom(V («)) = {v1,...,v,}, and (ij)n > 1.

Semantics

We next recall the semantics of initial state descriptiops

and action description&B. Informally, ¢ represents a set ; . . .

of possible states,pwhiIKB encodes g sisterﬁ ofstatetransi- EVery vi is called acontextof a, and is associated with a

tions between sets of possible states (a directed graph, whereh€W atomic concep (called context concept If o is

state sets serve as nodes, and the outgoing arrows of eactProPapilistic, themp, ..., p, >0, p1 + --- + p, =1, and

node are labeled with pairwise distinct actions). every contexv; of o has the probability’rq (v;) =pi.
We first define states, epistemic states (e-states), the exe- The effects of the nondeterministic (resp., probabilistic)

cutability of an action in an e-state, and the successor e-state@Ction @ in the contextv; of a can now be encoded by
after executing an action in an e-state. In the sequek et cond|t|onal effect axioms of the fc.)”K(@_'Val) C Vo4,
be an action description whereg is a fluent formula, and; is a fluent conjunction.

A states is a truth assignment to the fluents.ih Every Informally, “if V() =v; andg is known, then executing
states is associated with the fluent formutg, which is the has the effect,”. Adynamic C%meXt formulaforas above
conjunction of all4 (resp.,—A) such thatd € A ands(A) along with the axiomK (¢rV,") CVauip;, i € {1,...,n},
is true (resp. false). An epistemic statéor e-stat is a set Is also abbreviated asausedyy, ..., v, after a when ¢
of statesS where KB |~ ¢, C L for all s € S. Every e-state (resp..causedy; : p1,. .., Y, p, after a when ¢), where

. . . — we omit “‘when ¢” when¢ =T.
i%i?:;giaf?fvgtz t@he fluent formula = [ | {¢, s € 51, An extended action descriptiab = (KB, C') consists of

An action « is executablein an e-stateS iff KB = an action descriptiotk B in ALCKR» and a finite set”
KésC FKa.T. In this case, thesuccessor e-statef S of dynamic context formulas, exactly one for each nondeter-
under an effect actiomy, denoted®(S, «), is the small- ministic or probabilistic action ik5.
est e-stateS’ such thatKB EK¢s CVa.gg. The suc-

cessor e-statef S under a sensing actiom with outcome Semar?tlcs ) ) o
o€ {w,~w}, denoted®(S, o), is the smallest e-stats’ We define the semantics of an extended action description
such thatkB =K¢g C Vo.¢s and KB = ¢ Co. Intu- D= (KB, C) through a system of deterministic, nondeter-

itively, ¢ encodes the direct effects of the action, the indi- Mministic, and probabilistic transitions between e-states. To
rect effects due to the domain constraints, and the propaga- this end, we add to the transition system/6B a mapping

tion of inertial properties. that assigns to each p4dif, a) of a current e-staté& and

We now define the semantics of initial state and action & nondeterministic (resp., probabilistic) actierexecutable
descriptions as follows. An action descriptiéiB encodes N S, a set of (resp., a probability distribution on a set of)
the directed graplr k3 = (IV, E), whereN is the set of alll successor e-states after executing _
e-states, and’ containsS — S’ labeled with an effect ac- In the sequel, leD = (KB, C) be an extended action de-
tion a (resp., sensing actiom with outcomes € {w, ~w}) scription. For every nondeterministic or probabilistic ac-
iff (i) « is executable inS and (i) $'=®(S, ) (resp., tionain D, we defineKBo = {T C |, caom(v () KVa JU

S’ =d(S, a,)). An initial state descriptiom; encodes the {KVYE-VY |u,vedom(V (), u#v}. Informally, KB,
e-stateS = S;, whereKB = ¢; = ¢s. encodes that th&)’s are exhaustive and pairwise disjoint,



executablegotoball if bar1=bm
executablebodykick if cb
executablestraightkick if cbMfa
executablesidekick if cbM—fa
executablealigntoball if bm
executableopenlegs if bm
executablesensealignedtoball if bm
causedgs after openlegs when ab

caused to knowcb or —cb after senseballclose
caused to knowfa or —fa after sensefreeahead
caused to knowab or —ab after sensealignedtoball

inertial [ after « (for every fluent literal and actiony)
causedba if cb
causedgs, —gs after openlegs

causedcb:0.8, —ba:0.1, —cb:0.1 after gotoball
caused—baM—ip:0.1, ~baMip:0.5, —ip:0.1, T:0.3 after bodykick
caused—ba:0.9, T:0.1 after straightkick

caused—ba:0.7, T:0.3 after sidekick

causedab:0.7, —ab:0.3 after aligntoball

Figure 1: Extended Action Description

which corresponds to selecting one context.oh every e-

state. The notions of states, e-states, and the executability of

to the direction of the ball moving towards its own goal), and
several sensing actions for some of the fluents.

Note that the actiompenlegs has both the deterministic
effect that the goalkeeper is able to save the goal when it is
aligned to the ball direction, as well as nondeterministic ef-
fects, which encode a possible capability of saving the goal
even when the alignment is not known. In addition, if the
robot is assumed to be always in its own area, then the ax-
iom causedba if cb allows for defining indirect effects of
actions (e.g., in several actions, the effebh indirectly im-
plies—cb). Finally, all the fluents are inertial herel.

Conditional Plans

The conditional planning problem (see also the section on
related work below) under qualitative and probabilistic un-
certainty in our framework can be formulated as follows.
Given an extended action description, an initial state de-
scription ¢y, and a goal descriptioth, compute the best
conditional plan to achievgé from ¢;. In this section, we
first define conditional plans in our framework. Using the
notion of a belief tree, we then define the goodness of a con-
ditional plan for achieving)s from ¢;.

actions in e-states are defined as above. In particular, a stateConditional Plans

is a truth assignment to the fluents without the context con-
cepts. If a nondeterministic or probabilistic actians exe-
cutable in an e-stat&, then thesuccessor e-statef S after
executingx in its contextv, denotedd,, (.S, «), is the small-
est e-state’ with KBU KB, = K(¢s M VYY) CE Va.dg:.

Let S be an e-state. For every nondeterministic action
executable inS, the set of successor e-states S un-
der « is defined asF,(S) ={®,(S,a) | vedom(V(x))}.
Intuitively, executinga in .S nondeterministically leads to
some S’ € F,,(S). For every probabilistic actiom ex-
ecutable inS, the probability distribution on the suc-
cessor e-statesf S undera, denotedPr,(-|S), is de-
fined by Pra(S'1S) = 3 cdom(v(a)), 5/, (5,a) LTa (V)
Intuitively, executing« in S leads to S"'=d,(S, ),
v € dom(V ()), with the probabilityPr,,(S’|S).

We sayD is consistentff § ¢ F,,(S) (resp.,Prq(0]S) =
0) for every nondeterministic (resp., probabilistic) action
and every e-stat& wherea is executable. In the rest of
this paper, we implicitly assume that every extended action
descriptionD = (KB, C) is consistent.

Example 1 We describe the actions of a goalkeeper in
robotic soccer, specifically in the RoboCup Four-Legged
League. The extended action description is shown in Fig. 1.
It includes the fluentsb (the robot is close to the ballpa

(the ball is in the penalty ared} (the space ahead the goal-
keeper is free)ip (the goalkeeper is in the correct position),
bm (the ball is moving towards its own goahb (the goal-
keeper is aligned with the direction of the ball), arsdthe
goal has been saved). The actions gseoball (a move-
ment towards the ball, which possibly touches the ball and
moves it outside the penalty areapdykick, straightkick,
andsidekick (three different kinds of kicks with different ca-
pabilities),openlegs (a position for intercepting a ball kicked
towards its own goalgligntoball (a movement for aligning

A conditional plan is a binary directed tree (i.e., a directed
acyclic graph (DAG) in which every node has exactly one
parent, except for theoot, which has no parents; nodes
without children ardeave$, where each arrow represents
an action, and each branching expresses the two outcomes
of a sensing action, which can thus be used to select the
proper actions. Formally, eonditional planIl is either (i)

the empty conditional plandenoted), or (ii) of form oIl’,

or (iii) of form G; if w then {I1,} else {11}, wherea is

an effect actiong is a sensing action of outcomesand—w,
andIl’, II,, andII_, are conditional plans. We abbreviate
“m; A" by “x”, and omit “else {II_, }" whenTI_, = A.

Example 2 We use the domain of Example 1 for defining
two planning problems as follows. The first is specified by
the initial situationg; = barlipf1—bm, where the robot is in
its standard position, the ball is in its own area, and it is
not moving, and the goabs = —baip, which requires the
robot to kick away the ball and to remain in its position.
Some conditional plans for this first problem are:

II; = gotoball; bodykick
II2 = gotoball; sensefreeahead;
if fa then {straightkick} else {sidekick} .

The second problem is specified by the initial situation
¢; =bm, where the ball is moving, and the gaal; = gs,
where the goal has been saved. Some conditional plans for
this second problem are:

) = openlegs Q2 = aligntoball; openlegs
Q3 = sensealignedtoball; if ab then {openlegs}
else {aligntoball; openlegs} . O

We next define historiels for a conditional plaril, which
are paths of actions from the root to some nodH iand are
used to address actionslih A history i for 11 is either (i)



theempty historydenoted:, or (ii) of form oi/, if I = oIl’
andh’ is a history foll’, or (iii) of form a, hy, 0 € {w, ~w},

if Il = o if w then {II,} else {II_, } andh, is a history
for I1,,. Theaction lengthof & is the number of occurrences
of effect actions irh. We inductively defindI.h as follows:
() If h=e andIll=aR, thenIl.h=cq. (ii) If h=«ah’ and
II=all', thenTl.A =T1I".A'. (iii)) If h=a,h,, c€{w,~w},
andll=q; if w then {II,} else {1, }, thenll.h =1I,,.h,.

Belief Trees

We now define belief trees for conditional plafisunder
initial observationsp. Intuitively, a belief tree is a directed
tree over e-states as nodes. Every arrow (eventually with
an associated probability) represents a transition, and ev-
ery branching represents the different possible effects (resp.,
outcomes) of some effect (resp., sensing) action. Formally,
thebelief treeT” = (G, Pr) for IT underg, denotedl,¢;, con-
sists of a directed tre@ = (V, E), where the nodes are pairs
(h, S) of a historyh for IT and an e-stat&, and a mapping
Pr: E—[0,1], which are constructed by the steps (1)—(3):

(1) Initially, T is only the nodée, S,).

(2) Consider the tred’= (G, Pr) with G=(V, E) built
thus far. For every leafh,.S) such thatll.h =« is ex-
ecutable inS, enlargeT” as follows:

(2.1) If «is a sensing action, then addtoevery arrow
(h,S)— (hay,S’) such thats’ = ®(S, a,) # 0, and
o is a possible outcome of.

(2.2) If « is deterministic (resp., nondeterministic), then
add to T every arrow (h,S)— (ha,S") such that
S'=®(S, a) (resp.,S’ € F,(5)).

(2.3) If « is probabilistic, then add td’ every ar-
row e=(h,S)— (ha,S’) such thatS’ =o,(S,«)
for somewv € dom(V («)) along with the probability
Pr(e) =X yedom(V (), 5'=0.(s,a) Fra(v).

(3) Repeat (2) untilT is free of leavesh,S) such that
IT.h = « is executable irb.

Goodness

We define the goodness of a conditional plafor obtaining

a goaly under an initial observation using the belief tree
Teon=((V, E), Pr) as follows. The success (resp., failure)
leaves ofl'y;; have the goodneds(resp. 0). We then propa-
gate the goodness to every nodél pf;, using the goodness
of the children and the probabilities eventually associated
with an arrow. The goodness of is the goodness of the
root of Tyr;. Formally, thegoodnes®f 11 for obtainingy
given ¢ is defined agj,  (IT) = g(R), whereR is the root

of Tyn=((V,E), Pr),andg: V — [0, 1] is defined by:

e g(v)=1 (resp.,g(v) =0) for every leafv=(h,S) eV
(success leafresp., failure leaf)) such thatll.h=¢ and
VseS: sk (resp.IlLh£cordseS: s = );

e g(v)= min, g g(v') for every nodev=(h,S)eV
such thaflI.4 is either a sensing action, or deterministic ef-
fect action, or nondeterministic effect action;

o g(v)=>, yep Prv—"1") - g(v') for all v=(h, S)eV
such thafll.h is a probabilistic effect action.

e o = =

Figure 2: Computing the Goodness of a Conditional Plan

Example 3 The belief trees and the goodness of the condi-
tional plans of Example 2 are shown in Fig.2.

Conditional Planning

The problem of conditional planning in our framework can
be defined as follows. Given an extended action descrip-
tion D = (KB, C), an initial state descriptiog;, and a goal
descriptiony), compute a conditional plafl that, when
executed from a state in whichy is true, reaches a state
in which the goak)q is true (for any possible outcome of
sensing) with maximum goodness.

We now present a planning method for solving this prob-
lem, which is divided into three steps: (1) computing the
first-order extension (FOE) of the extended action descrip-
tion; (2) computing all valid conditional plans for the plan-
ning problem; (3) evaluating the goodness for each of these
conditional plans and selecting the best one (that is, the con-
ditional plan with maximum goodness).

Note that all proofs and further details can be found in the
extended report (locchat al. 2003).

FOE Generation

Given an epistemic knowledge baSeconsisting of an ex-
tended action descriptioP = (KB, C) and an initial state
descriptiong;, the first-order extensio(FOE) of X, de-
noted FOE(Y), is the non-epistemiglLC knowledge base
that consists of the domain constraints, the specification of
the initial state, and the assertions which are consequences
(up to renaming of individuals) of the epistemic sentences
in X.. The FOE ofX provides a unique characterization of
the knowledge that is shared by all the model&a&nd that

is relevant with respect to the planning problem. The com-
putation of the FOE is described in Appendix B.

The FOE constitutes the basis of a sound and complete
planning method. More precisely, it is possible to reduce
a planning problem in the epistemic knowledge basto
an entailment problem i OE(X) in the same way as de-
scribed in (locchi, Nardi, & Rosati 2000).

Plan Extraction

The second step of the planning method is achieved by the
Plan Generation Algorithm shown in Fig. 3 for extracting



Algorithm Plan Generation

Input: FOE(X), initial state descriptior;, goal description)g.

Output: SP = {II; = {(S;, 4, S;)}}: set of conditional plans
with positive goodness.

I is an initial state in whick); holds;
SP = findAllPaths(FOE(X), I,v¢, 0);
while 3P € SP: (S27 A;, SJ) eEP A (Sl, -A;, Sk) ¢ P do
SPauz = ﬁndAllPathS(FOE(E), Sk, VG, .7:13([, Sk));
SP = SP —{P};
foreach P,yx € SPau. dO
Pnew =PU {(Sz, _‘Ai7 Sk)} U Pauz ;
SP = SP U{Pew}
end for
end while;
SP = unify(SP);
return SP.

Figure 3: Plan Generation Algorithm

plans from the FOE of the knowledge base The out-
put of the algorithm is the set of all valid conditional plans
for the planning problem. Each plan is a direct acyclic
graph represented as a set of tup(és, A;, S;), whose
meaning is that from the e-staig it is possible to ex-
ecute the actiond; leading to the successor e-stafe.
The actionA; can be either an action without sensing ef-
fects or one of the two possible outcomes (true or false)
of a sensing effect. In the latter case, also the other out-
come (denoted by A;) must be present in the plan start-
ing from the same e-statd;. If, during the algorithm,
this condition is not satisfied for a given (partially built)
plan P (that is, (S;, A;, S;) € P A (S;, ~A;, Si) € P), then

the stateS; in P must be further expanded.

It uses the functionfindAllPaths(FOE(X), S, vq, F),
which returns the set of all possible paths (without cycles) in
the FOE from the e-stat§ to an e-state in whickis holds,
without considering any of the states specifiedrin Since
a path is a sequence of actions, in this function, only one
outcome of a sensing action or one context of an action with
either nondeterministic or probabilistic effects is considered.

of terms that suitably represent conditional plans.

Intuitively, the algorithm first builds all the possible sub-
graphs of FOEX) that have the following features: (i) there
are no states unexpanded (that is, in which only an outcome
of sensing has been included), (ii) there are no cycles, and
(iii) in each leaf node, the goal; holds. Then, it completes
this set of plans by unifying plans in order to derive more
general plans that consider combination of contexts.

Optimal Plan Selection

The third step of the planning method is a procedure that
computes the goodness for all the valid conditional plans
retrieved in the previous step and returns the best one.

Observe that, for efficiency reasons, the planning algo-
rithm given above generally builds conditional plans in the
form of DAGs, while the goodness of such plans is given in
terms of conditional plans expressed in the form of trees. In
fact, DAGs can be considered as a compact representation
of trees and thus the computation of the goodness for such
plans can be easily obtained by a transformation of the DAG
into a tree (by recursively duplicating those subgraphs in the
DAG whose root has more than one parent).

Example 4 The first planning problem of Example 2 ad-
mits several other conditional plans besidés and II,.
Among them isll; = gotoball; senseballclose; if cb then

{if fa then {straightkick} else {sidekick}}, which has
goodness 0.66. The conditional plais andII; have the
same goodness, which is also the maximally possible good-
ness, and thus they are both optimal plans.

Related Work

In comparison with the previous approaches in the litera-
ture cited in the introduction, we provide a very rich frame-
work for modeling dynamic systems: epistemic states of the
agent, sensing actions, inertial properties, exogenous events,
and static domain constraints. Furthermore, we have de-
vised effective techniques for plan generation in this frame-

The returned linear path may have states that must be fur- work (locchi, Nardi, & Rosati 2000). As for the modeling
ther expanded, since they may lack the other outcome of of actions with probabilistic effects, the most closely re-
sensing. Moreover, since we are only interested in gener- lated approach is Poole’s independent choice logic (1997;
ating conditional plans (without cycles), it is necessary to 1998), which uses a similar way of adding probabilities to
limit the search of the paths ifindAllPaths, by excluding an approach based on acyclic logic programs. But the cen-
the states that have already been considered in the path fromtral conceptual difference is that Poole’s independent choice

the initial state to the current state: this is obtained by the

computation of the set of statg% (7, S ), that includes alll

the states in the current plai for which it exists a path

to Si. In this way, findAllPaths never returns a path that

can produce cycles when combined with the current ptan
Observe that the first part of the Plan Generation Algo-

rithm only finds those plans that are valid by considering

a single context for each nondeterministic or probabilistic

action. However, it is also necessary to derive plans that

logic does not allow for qualitative uncertainty in addition to

probabilistic uncertainty. Poole circumvents the problem of
dealing with qualitative uncertainty by imposing the strong
condition of acyclicity on logic programs.

From a more general perspective, our approach is also
related to planning under uncertainty in Al, since it can
roughly be understood as a combination of conditional
planning under nondeterministic uncertainty in Al (Geffner
2002) with conditional planning under probabilistic uncer-

can be executed when considering at the same time multiple tainty in Al, both in partially observable environments.

contexts for an action. To this end, it is possible to gen-

Planning under probabilistic uncertainty in Al can be di-

erate more general plans by combining pairs of previously vided into (a) generalizations of classical planning in Al
computed ones. This is performed by a unification opera- and (b) decision-theoretic planning in Al, which is based
tion (implemented by thenify procedure) that unifies pairs  on work in operations research and decision science. The



planning problems of (a) can be roughly described as fol-
lows (Kushmerick, Hanks, & Weld 1994): Given a prob-
ability distribution over initial states, probabilistic actions,
a set of goal states, and a success threshpldompute

a sequence of actions that reaches the goal with a prob-

ability of at leastd. There are extensions that also al-
low for observations, and their solutions may also con-
tain conditionals and loops (Draper, Hanks, & Weld 1994).
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C-BURIDAN (Draper, Hanks, & Weld 1994), which gener-
alizes BJRIDAN (Kushmerick, Hanks, & Weld 1994), the
partial-order planner MHINUR (Onder & Pollack 1999),
C-MAXPLAN andzANDER (Majercik & Littman 2003), and
PTLPLAN (Karlsson 2001). Standard planning problems
of (b) are either fully observable Markov decision processes
(MDPs) (Puterman 1994) or the more general partially ob-
servable Markov decision processes (POMDPSs) (Kaelbling,
Littman, & Cassandra 1998). POMDPs also include costs

Appendix A: ALCIKC =

The description logicALC/KCn- models a domain of inter-

est in terms of concepts and roles, which represent classes
of individuals and binary relations between classes of in-
dividuals, respectively. Formally, we assume a nonempty
finite set ofatomic conceptsd and a nonempty finite set

of atomic rolesR. We usel (resp.,T) to denote théot-

and/or rewards associated with actions and/or states, andtom (resp.,top) concept The set of allconceptsandroles

their solutions are mappings from situations to actions that

is then inductively defined as follows. Every element of

have a high expected utility, rather than courses of actions AU {L, T} isaconcept. IC andD are concepts, anlis a

that achieve a goal with an appropriately high probability. A
recent overview on planning under probabilistic uncertainty
in Al is given in (Boutilier, Dean, & Hanks 1999).

In summary, our approach can be seen as combining con-

ditional planning under nondeterministic uncertainty and
conditional planning under probabilistic uncertainty, where

role, then-C,C N D,C U D,3R.C,VR.C,KC, andAC
are concepts. Every element®fis a role. If R is a role,
thenKR and AR are roles. The operatols and A are
called theminimal knowledge operatand thedefault as-
sumption operatqrrespectively.

A knowledge base encodes subset relationships between

the latter is perhaps closest to generalizations of classical classes, the membership of individuals to classes, and the

planning in Al. But instead of giving a threshold for the suc-
cess probability of a plan, we aim at all plans with high-

est possible success probability. In contrast to the decision-

membership of pairs of individuals to binary relations be-
tween classes. Formally, we assume a set of individual
namesN. An inclusion axiomis an expression of the form

theoretic framework, we do not assume costs and/or rewards C C D, Wh_ereC and D are concepts. Aoncept member-
associated with actions and/or states. Furthermore, sensingship axiomis of the formC/(a), whereC' is a concept, and
actions in our approach are more flexible than observations « is an individual name. Aole membership axiorhas the

in POMDPs, since they allow for preconditions, and they
can be performed at any time point when executable.

Summary and Outlook
We have presented the description logic RMCK, - for

form R(a,b), whereR is a role, andu andb are individ-
ual names. Anowledge bases a set of inclusion, concept
membership, and role membership axioms.

The description logicALCK o+ is a special case of Lif-
schitz’s logicMKNF (Lifschitz 1994). SinceMKNF has

reasoning about actions with sensing under qualitative and & semantics in possible-world structures, a#s€C/C = can

probabilistic uncertainty, which is an extensionofCK},~
by actions with nondeterministic and probabilistic effects.
We have defined a formal semantics of PMCLCR - in
terms of deterministic, nondeterministic, and probabilistic

transitions between epistemic states. We have then intro-
duced the notions of a conditional plan and its goodness un-

der qualitative and probabilistic uncertainty. We have for-

be given a similar semantics, where each possible world cor-

responds to a standard description logic interpretation.
Informally, individual names € A/, the atomic concepts

A€ A, the concepts. and T, and the atomic role® ¢ R

are interpreted with respect to standard description logic in-

terpretations, which consist of a domaiand a function

associating with the above items elementg\gpfsubsets of

mulated the problem of conditional planning and presented A, the empty set, the séX, and binary relations on, re-

a sound and complete algorithm for solving it. We have also
described an application in a robotic-soccer scenario.

As for semantic aspects, an interesting topic of future re-
search is to also allow for sensing actions with noisy out-
comes. Moreover, it would be interesting to extend condi-
tional plans to cyclic execution structures. From the compu-
tational perspective, an interesting topic of further work is
to exploit the notion of goodness to implement heuristics for

spectively. The conceptsC, C M D, C U D, 3R.C, and
VR.C are interpreted recursively, as usual. Finally, the op-
eratorsK and A are interpreted with respect to two sets of
possible worlds\1 and/, respectively, where each possible
world is a standard description logic interpretation. For ex-
ample, KC'(d) encodes thad is “known” to be an instance
of C, which holds ifd is an instance of” in every possible
world of M. Similarly, AC(d) encodes thad is “assumed

efficient search in the space of epistemic states, and to pro- to be” an instance aof’, which holds ifd is an instance of’

vide a detailed complexity analysis of our algorithm and the
general problem of conditional planning in our framework.

in every possible world oV
Formally, aclassical interpretatiorZ = (A, -Z) consists



of a nonempty denumerabiomain A and a function-”
that associates with each individual name frafnan ele-
ment of A (under the usualnique name assumptigthat is,
for any two different individual names b € V, it holds that
a® #bT), with each atomic concept frord a subset ofA,
and with each atomic role froR a subset ofA x A. An
epistemic interpretatiod = (Z, M, \) over the domaim\
consists of a classical interpretati@dnover the domaimA
and two sets of classical interpretatiofé and N over the
domainA. The function¢ then interprets individual names,
concepts, and roles by induction as follows (whens an
individual name A is an atomic concept; and D are con-
cepts,P are atomic roles, anf is a role):

I s
a = a
Aé‘ _ AI
15 =9
T = A
(-C)¥ = A-C*
(cnp)® = ¢ nD*f
(cup)® = cfuD®
(3R.C)* = {deA|3d:(d,d) e R® andd’ € C*}
(VR.C)®* = {deA|Vd': if (d,d') € R® thend e C°}
(KC)® = (VMM 7 em}
(AC)" = (oYM Teny
Pé‘ — PZ
(KR)® (R MM | 7 e M}
(AR)® = [{RY™MM | 7enN}.

For example, it holdgl e (KC)Z-MAN) iff d e C(T-MN)
for all classical interpretationg € M. Furthermored €
(A-C)TMN) it g e ~CT-MN) for all classical inter-
pretations7 € NV. Similarly,d € (3K R.T)@MN) iff some
d' € A exists with(d, d') € RW-MN) for all 7 € M.

An epistemic interpretatiofi = (Z, M, \') is amodelof
an inclusion axionC C D, or & satisfiesC C D, denoted
£ | C C D, iff C¢£CDf. The epistemic interpretation

£ is amodelof a concept (resp., role) membership axiom

C(a) (resp.,R(a,b)), or & satisfiesC(a) (resp., R(a,b)),
denotedt = C(a) (resp.£ = R(a,b)), iff af € CF (resp.,
(af,b%) € RY). The epistemic interpretatiahis amodelof
a knowledge bas& B iff it is a model of everyF € KB.

We finally define satisfiability and logical consequence

for knowledge base#® B in terms of preferred models of
KB. Amodel& = (Z, M, N) of KB is apreferredmodel

of KB iff (i) Te M, (i) M=N, (i) (7, M,N) = KB
for all 7 € M, and (iv) M is maximal with (iii) (that is,
there exists nov’ > M such that( 7, M’ N) = KB for

all 7 e M’). A knowledge base(B is satisfiable(resp.,
unsatisfiablgiff KB has a (resp., no) preferred model. An
axiomF'is alogical consequencef KB, denotedB |= F,

iff every preferred model o B is also a model of'.

Appendix B: Computing the FOE

Given an epistemic knowledge base-T's UT'p UT'f, con-
sisting of the domain constraink;, the action descriptions

Algorithm FOE Computation
Input: X =TsUT5 UT;
Output: FOE(X)

Procedure create_new_state(s, R)
s’ = new state name;
A'=AU{R(s,s")} U{D(s") |
D € post(s, R,I's U A, Fﬁ)};
if 3s” € all_states such that
concepts(I's U A, ") = concepts(T's U A, s") then

A=AUR(s,s")
else
A=A,

active_states = active_states U {s'};
all_states = all_states U {s'}
end if;

active_states = {init};
all_states = {init};
A=Tp;
repeat
s = choose(active_states);
for eachactionR do
if 3IKC C JKR.T €I'p such thatI's U A = C(s) then
if R has no sensing effetiten
create_new_state(s, R)
else

create_new_state(s, RT);
create_new_state(s, R™)
end if
end if
end for;
active_states = active_states — {s};
until active_states = (;
return I's U A.

Figure 4: FOE Computation Algorithm

I'p, and an initial state descriptidry, thefirst-order exten-

sion of X, denotedFOE(Y), is the ALC knowledge base

which consists of (i) the domain constraintsIig, (ii) the

specification of the initial state through the assertions;in

and (iii) the assertions that are consequences (up to renam-

ing of individuals) of¥. The FOE of% provides a unique

characterization of the knowledge that is shared by all the

models ofY and that is relevant w.r.t. the planning problem.
To compute the FOE, we replace each sensing adtjgn

by two special actioni%g andR;. We denote b)l% the

set of axiomd"p in which those for the sensing actioRs

are replaced by the following axioms:

K¢ CIKRLT TLCVRES
K¢ C 3KRg.T TLCVRg.—S.

A nondeterministic or a probabilistic actioRy is re-
placed byn actionsR’,, with the same preconditions and
deterministic effects and different nondeterministic effects

K¢ C IKRy.T K¢ C VR K(¢nVy ) CVRy.4)

for every context;, i € {1,...,n}. We also use only a finite
number of instances of the default frame axioms

KL CVKRE.A-LUKL KL LCVKRy\.A-LUKL



obtained by instantiating the frame axiom schema for each
atomic concepL = A or its negation. = - A.

The FOE ofX is computed by the algorithm shown in
Fig. 4. Hereconcepts(TsUA, s) = {C | TsUA E C(s)}
denotes the set of concepts that aadid for the explicitly
named individuals, occurring in the set of instance asser-
tions A, with respect to thed£C knowledge bas&'s U A.
Moreover,post(s, R,T's UA,T5) = {D | KC CVR.D €
'S andl's U A |= C(s)} denotes the effect of the applica-
tion of all the triggered rules belonging to the E% involv-
ing the actionR in the states, namely the set of postcondi-
tions (concepts) of the rules that are triggeredby

Informally, starting from the initial staténit, the algo-
rithm applies to each state the rules in therggtwhich are
triggered by such a state. A new state is thus generated,

unless a state with the same properties has already been cre-

ated. In this way, the effect of the rules is computed, obtain-
ing a sort of “completion” of the knowledge base.

The FOE ofX is unique, that is, every order of extrac-
tion of the states fronactive_states produces the same set
of assertions, up to renaming of states. Furthermore, the al-
gorithm terminates, that is, the conditiantive_states = ()

is eventually reached, since the number of states generated

is bound by the number of axioms Ih'g More precisely,
the number of generated statesis given byn, < 2" +1,
wheren,. is the number of axioms ifi%.

Finally, concepts(I'sU.A, s) = concepts(I'sUA’, s') can
be checked by verifying whether, for each conc€psuch
that eitherC(init) €Ty or KC is in the postcondition of
some axiomiT'p: T's UA = C(s) iff TgU A" = C(s).
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