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Abstract

We present the description logic PN-ALCKα
NF for reasoning

about actions with sensing under qualitative and probabilis-
tic uncertainty, which is an extension of the description logic
ALCKα

NF by actions with nondeterministic and probabilis-
tic effects. We define a formal semantics of PN-ALCKα

NF
in terms of deterministic, nondeterministic, and probabilistic
transitions between epistemic states, which are sets of possi-
ble states of the world. We introduce the notions of a condi-
tional plan and its goodness under qualitative and probabilis-
tic uncertainty. We then formulate the problem of conditional
planning in this framework, and we present an algorithm for
solving it. This algorithm is based on a reduction to reasoning
in description logics, and is shown to be sound and complete
in the sense that it generates all optimal plans. We also de-
scribe an application in a robotic-soccer scenario.

Introduction
In reasoning about actions for mobile robots in real-world
environments, one of the most crucial problems that we have
to face is uncertainty, both about the initial situation of the
robot’s world and about the results of the actions taken by
the robot. One way of adding uncertainty to reasoning about
actions is based on qualitative models in which all possible
alternatives are equally considered. Another way is based on
quantitative models where we have a probability distribution
on the set of possible alternatives, and thus can numerically
distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about
actions such as the situation calculus (Reiter 2001) allow for
expressing qualitative uncertainty about the initial situation
and the effects of actions through disjunctive knowledge.
Similarly, recent formalisms for reasoning about actions that
are inspired by the action languageA (Gelfond & Lifschitz
1993), such as the action languageC+ (Giunchigliaet al.
2004) and the planning languageK (Eiteret al. 2003), allow
for qualitative uncertainty in the form of incomplete initial
states and nondeterministic effects of actions.

There are a number of formalisms for probabilistic rea-
soning about actions. In particular, Bacchus, Halpern, &
Levesque (1999) propose a probabilistic generalization of
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the situation calculus, which is based on first-order logics
of probability, and which allows to reason about an agent’s
probabilistic degrees of belief and how these beliefs change
when actions are executed. Poole’s independent choice logic
(1997; 1998) is based on acyclic logic programs under dif-
ferent “choices”. Each choice along with the acyclic logic
program produces a first-order model. By placing a proba-
bility distribution over the different choices, one then obtains
a distribution over the set of first-order models. Mateuset
al. (2001; 2002) allow for describing the uncertain effects
of an action by discrete, continuous, and mixed probability
distributions, and focus especially on probabilistic tempo-
ral projection and belief update. Finzi & Pirri (2001) add
probabilities to the situation calculus to quantify and com-
pare the safety of different sequences of actions. Boutilier,
Dean, & Hanks (2001) introduce first-order Markov deci-
sion processes (MDPs) that are formulated in a probabilistic
generalization of the situation calculus, and present a dy-
namic programming approach for solving them. A compan-
ion paper (Boutilieret al. 2000) presents a generalization
of Golog, called DTGolog, that combines robot program-
ming in Golog with decision-theoretic planning in MDPs.
Großkreutz & Lakemeyer (2002; 2001) propose a proba-
bilistic generalization of Golog, called pGolog, especially
for probabilistic projection and belief update. A probabilis-
tic extension of the action languageA is given by Baral,
Tran, & Tuan (2002), which aims especially at an elabo-
ration-tolerant representation of MDPs and at formulating
observation assimilation and counterfactual reasoning.

Even though there is extensive work on reasoning about
actions under qualitative and probabilistic uncertainty sepa-
rately, there is only little work that orthogonally combines
qualitative and probabilistic uncertainty in a uniform frame-
work for reasoning about actions. One important such ap-
proach is due to Halpern & Tuttle (1993), which combines
nondeterminism and probabilistic uncertainty in a game-
theoretic framework. Halpern & Tuttle argue in particular
that “some choices in a distributed system must be viewed
as inherently nondeterministic (or, perhaps better, nonprob-
abilistic), and that it is inappropriate, both philosophically
and pragmatically, to model probabilistically what is inher-
ently nondeterministic”. This underlines the strong need
for explicitly modeling qualitative uncertainty in addition to
probabilistic uncertainty in reasoning about actions.



The main idea behind this paper is to orthogonally com-
bine qualitative and probabilistic uncertainty in a uniform
framework for reasoning about actions. This idea is already
pursued in a companion paper (Eiter & Lukasiewicz 2003)
that presents the languagePC+ for probabilistic reasoning
about actions, which is a generalization ofC+ that allows
for expressing probabilistic and nondeterministic effects of
actions as well as probabilistic and qualitative uncertainty
about the initial situation of the world. A formal semantics
of PC+ is defined in terms of probabilistic transitions be-
tween sets of states. Using a concept of a history and its
belief state, it is then shown how the problems of prediction,
postdiction, and (unconditional) planning under qualitative
and probabilistic uncertainty can be formulated inPC+.

The present paper continues this important line of re-
search. Its main aim is to develop a formalism that addi-
tionally allows forsensing in reasoning about actions un-
der qualitative and probabilistic uncertainty, and thus to for-
mulate the problem ofconditional planning under qualita-
tive and probabilistic uncertainty, and to elaborate an algo-
rithm for solving it. The base formalism that we use in this
paper is the description logicALCKαNF (Iocchi, Nardi, &
Rosati 2000), which is a fragment of the autoepistemic de-
scription logicALCKNF (Donini, Nardi, & Rosati 2002).
It allows for specifying an initial epistemic state and tran-
sitions between epistemic states, where an epistemic state
represents the set of all alternatives that an agent considers
possible in the world, and thus already expresses some form
of qualitative uncertainty in reasoning about actions. It has
been successfully implemented and used for a robotic soccer
team (Iocchi, Nardi, & Rosati 2000).

In this paper, we present an extension ofALCKαNF by
actions with nondeterministic and probabilistic effects. The
main contributions can be summarized as follows:
• We present the description logic PN-ALCKαNF for rea-
soning about actions with sensing under qualitative and
probabilistic uncertainty, which is an extension ofALCKαNF
(Iocchi, Nardi, & Rosati 2000) by actions with nondetermin-
istic and probabilistic effects. As a central feature, it orthog-
onally combines in a single framework qualitative as well as
probabilistic uncertainty about the effects of actions. It also
allows for some qualitative uncertainty in epistemic states.
• We define a formal semantics of PN-ALCKαNF by inter-
preting an action description in PN-ALCKαNF as a system of
deterministic, nondeterministic, and probabilistic transitions
between epistemic states, which are sets of possible states of
the world. Here,probabilistic transitionsare like in partially
observable Markov decision processes (POMDPs) (Kael-
bling, Littman, & Cassandra 1998), but they are between
epistemic states and sosets of statesrather thansingle states.
• We formulate the problem of conditional planning under
qualitative and probabilistic uncertainty in PN-ALCKαNF .
In particular, we define the notion of a conditional plan.
Based on the concept of a belief tree, we then formulate the
goodness of a conditional plan with respect to a goal and
an initial observation. In the extended report (Iocchiet al.
2003), we also give a compact representation of belief trees
and prove its correctness in implementing belief trees.
• We present an algorithm for conditional planning under

qualitative and probabilistic uncertainty in PN-ALCKαNF ,
and we prove in particular that the algorithm is sound and
complete in the sense that it generates the set of all optimal
conditional plans. It is a significant extension of a previous
algorithm for conditional planning inALCKαNF .
• We describe a formulation of a robotic-soccer scenario in
PN-ALCKαNF , which gives evidence of the usefulness of
our formalism in realistic applications.

ALCKα
NF

We now recall a subset of the description logicALCKNF
(Donini, Nardi, & Rosati 2002) (see Appendix A), called
ALCKαNF , which we use as a formalism for representing
dynamic systems (Iocchi, Nardi, & Rosati 2000). From the
semantic viewpoint, the main idea behind this framework
is the interpretation of the dynamic system specification at
the agent’s knowledge level, through the notion of anepis-
temic state, which is a set of possible states of the world.
An epistemic state encodes what the agent knows about the
world, in contrast to what is true in the world, and plan-
ning in the presence of sensing is obtained by modeling
the dynamics of the agent’s epistemic state, rather than the
dynamics of the world. Thus, the notion of an epistemic
state allows for expressing a form of qualitative uncertainty
in reasoning about actions. The representation of dynamic
systems inALCKαNF is based on the following correspon-
dences: (i) roles and concepts encode actions and properties
of the world, respectively, and (ii) theepistemic operators
K andA are used to encode the epistemic state of an agent.

Syntax
We first recall the syntax of initial state and action descrip-
tions inALCKαNF . They allow for modeling what an agent
knows about the properties of the world and how this knowl-
edge changes through the execution of actions. Properties
(resp., actions) are encoded by concepts (resp., roles), and
the dynamics of the world by inclusion axioms.

We assume a nonempty finite setA of atomic concepts,
calledfluents, which are divided intostaticanddynamicflu-
ents. We use⊥ and> to denote the constantsfalse andtrue,
respectively. Afluent literal is either a fluentA or its nega-
tion¬A. A fluent conjunctionis of the formL1 u · · · u Ln,
whereL1, . . . , Ln are fluent literals andn> 1. The set
of fluent formulasis the closure ofA∪{⊥,>} under the
Boolean operators¬, u, andt (that is, if φ andψ are flu-
ent formulas, then also¬φ, φ u ψ, andφ t ψ). We assume
a setR of atomic roles, calledactions, which are divided
into effectandsensing actions.

A precondition axiomis of the formKφ v ∃Kα.> (ab-
breviated asexecutableα if φ), whereφ is a fluent formula,
andα is an action. Informally,α is executable in every state
that satisfiesφ. If φ=>, thenα is always executable.

A conditional effect axiomis of the formKφv∀α.ψ (ab-
breviated ascausedψ after α when φ, and ascausedψ
after α, whenφ=>), whereφ is a fluent formula,ψ is a
fluent conjunction, andα is an action. Informally, if the cur-
rent state satisfiesφ, then executingα has the direct effectψ.
Note that indirect effects may be formulated through domain
constraint axioms, which are introduced below.



A sensing effect axiomis of the form>vK(∀α.ω) t
K(∀α.¬ω) (abbreviated ascaused to knowω or ¬ω af-
ter α), whereω is a fluent conjunction, andα is a sensing
action. Informally, after executing the sensing actionα, the
agent knows thatω is either true or false. That is, sensing
actions modify the epistemic state of the agent without af-
fecting the state of the world (Levesque 1996). Note that we
assume that sensing actions have only two outcomes, but our
approach can be easily generalized tok > 2 outcomes.

A default frame axiomis of the formKφv∀Kα.A¬φ t
Kφ (abbreviated asinertial φ after α), whereφ is a fluent
conjunction, andα is an action. Informally, ifφ holds in the
current state, thenφ holds also after the execution ofα, if it
is consistent with the effects ofα.

A domain constraint axiomis of the formφ v ψ (abbre-
viated ascausedψ if φ), whereφ andψ are fluent formulas.
It represents background knowledge, which is invariant rel-
ative to the execution of actions.

An initial state descriptionφI is a fluent formula. An
action descriptionKB is a finite set of precondition, condi-
tional effect, sensing effect, default frame, and domain con-
straint axioms. Agoal descriptionψG is a fluent formula.

Semantics
We next recall the semantics of initial state descriptionsφI
and action descriptionsKB . Informally,φI represents a set
of possible states, whileKB encodes a system of state transi-
tions between sets of possible states (a directed graph, where
state sets serve as nodes, and the outgoing arrows of each
node are labeled with pairwise distinct actions).

We first define states, epistemic states (e-states), the exe-
cutability of an action in an e-state, and the successor e-state
after executing an action in an e-state. In the sequel, letKB
be an action description.

A states is a truth assignment to the fluents inA. Every
states is associated with the fluent formulaφs, which is the
conjunction of allA (resp.,¬A) such thatA∈A ands(A)
is true (resp.,false). An epistemic state(or e-state) is a set
of statesS whereKB 6|= φsv⊥ for all s∈S. Every e-state
S is associated with the fluent formulaφS =

⊔
{φs | s∈S},

whereφS =⊥, if S= ∅.
An action α is executablein an e-stateS iff KB |=

KφS v∃Kα.>. In this case, thesuccessor e-stateof S
under an effect actionα, denotedΦ(S, α), is the small-
est e-stateS′ such thatKB |=KφS v∀α.φS′ . The suc-
cessor e-stateof S under a sensing actionα with outcome
σ ∈{ω,¬ω}, denotedΦ(S, ασ), is the smallest e-stateS′

such thatKB |=KφS v ∀α.φS′ andKB |=φS′ vσ. Intu-
itively, φS′ encodes the direct effects of the action, the indi-
rect effects due to the domain constraints, and the propaga-
tion of inertial properties.

We now define the semantics of initial state and action
descriptions as follows. An action descriptionKB encodes
the directed graphGKB =(N,E), whereN is the set of all
e-states, andE containsS→S′ labeled with an effect ac-
tion α (resp., sensing actionα with outcomeσ ∈{ω,¬ω})
iff (i) α is executable inS and (ii) S′=Φ(S, α) (resp.,
S′=Φ(S, ασ)). An initial state descriptionφI encodes the
e-stateS=SφI

whereKB |= φI ≡ φS .

PN-ALCKα
NF

In this section, we define the novel description logic PN-
ALCKαNF , which extendsALCKαNF by actions with non-
deterministic and probabilistic effects.

Syntax
We divide the set of all effect actions (without sensing ac-
tions) intodeterministic, nondeterministic, andprobabilistic
actions. Note that deterministic actions are a special case
of nondeterministic and probabilistic actions, however, non-
deterministic actions are not a special case of probabilistic
actions. In order to encode different effects of a nondeter-
ministic or probabilistic actionα, we specify a set of dif-
ferent contexts forα and the effects ofα under each such
context. Ifα is probabilistic, then we also specify a proba-
bility distribution over the contexts forα.

We first introducedynamic context formulas, which as-
sociate with suchα a set of contexts and eventually also a
probability distribution over its set of contexts. Anondeter-
ministic(resp.,probabilistic) dynamic context formulafor a
nondeterministic (resp., probabilistic) actionα is of form

V (α)=(v1, . . . , vn) (resp.,V (α)=(v1:p1, . . . , vn:pn)),

where (i)V (α) is thecontext variablefor α, which may take
on values fromdom(V (α)) = {v1, . . . , vn}, and (ii)n> 1.
Every vi is called acontextof α, and is associated with a
new atomic conceptV vi

α (called context concept). If α is
probabilistic, thenp1, . . . , pn> 0, p1 + · · · + pn =1, and
every contextvi of α has the probabilityPrα(vi)= pi.

The effects of the nondeterministic (resp., probabilistic)
action α in the contextvi of α can now be encoded by
conditional effect axioms of the formK(φuV vi

α )v∀α.ψi,
whereφ is a fluent formula, andψi is a fluent conjunction.
Informally, “if V (α) = vi andφ is known, then executingα
has the effectψi”. A dynamic context formula forα as above
along with the axiomsK(φuV vi

α )v∀α.ψi, i∈{1, . . . , n},
is also abbreviated ascausedψ1, . . . , ψn after α when φ
(resp.,causedψ1 : p1, . . . , ψn : pn after α whenφ), where
we omit “whenφ” whenφ=>.

An extended action descriptionD=(KB ,C ) consists of
an action descriptionKB in ALCKαNF and a finite setC
of dynamic context formulas, exactly one for each nondeter-
ministic or probabilistic action inKB .

Semantics
We define the semantics of an extended action description
D=(KB , C) through a system of deterministic, nondeter-
ministic, and probabilistic transitions between e-states. To
this end, we add to the transition system ofKB a mapping
that assigns to each pair(S, α) of a current e-stateS and
a nondeterministic (resp., probabilistic) actionα executable
in S, a set of (resp., a probability distribution on a set of)
successor e-states after executingα.

In the sequel, letD=(KB ,C ) be an extended action de-
scription. For every nondeterministic or probabilistic ac-
tionα inD, we defineKBα = {>v

⊔
v∈dom(V (α)) KV

v
α }∪

{KV uαv¬V vα |u, v∈dom(V (α)), u 6=v}. Informally, KBα

encodes that theV vα ’s are exhaustive and pairwise disjoint,



executablegotoball if bau¬bm
executablebodykick if cb
executablestraightkick if cbufa
executablesidekick if cbu¬fa
executablealigntoball if bm
executableopenlegs if bm
executablesensealignedtoball if bm

causedgs after openlegs whenab

caused to knowcb or ¬cb after senseballclose
caused to knowfa or ¬fa after sensefreeahead
caused to knowab or ¬ab after sensealignedtoball

inertial l after α (for every fluent literall and actionα)
causedba if cb

causedgs,¬gs after openlegs

causedcb:0.8,¬ba:0.1,¬cb:0.1 after gotoball
caused¬bau¬ip:0.1,¬bauip:0.5,¬ip:0.1,>:0.3 after bodykick
caused¬ba:0.9,>:0.1 after straightkick
caused¬ba:0.7,>:0.3 after sidekick
causedab:0.7,¬ab:0.3 after aligntoball

Figure 1: Extended Action Description

which corresponds to selecting one context ofα in every e-
state. The notions of states, e-states, and the executability of
actions in e-states are defined as above. In particular, a state
is a truth assignment to the fluents without the context con-
cepts. If a nondeterministic or probabilistic actionα is exe-
cutable in an e-stateS, then thesuccessor e-stateof S after
executingα in its contextv, denotedΦv(S, α), is the small-
est e-stateS′ with KB ∪KBα |= K(φS u V vα ) v ∀α.φS′ .

Let S be an e-state. For every nondeterministic actionα
executable inS, the set of successor e-statesof S un-
der α is defined asFα(S) = {Φv(S, α) | v ∈dom(V (α))}.
Intuitively, executingα in S nondeterministically leads to
someS′ ∈Fα(S). For every probabilistic actionα ex-
ecutable inS, the probability distribution on the suc-
cessor e-statesof S underα, denotedPrα( · |S), is de-
fined by Prα(S′|S) =

∑
v∈dom(V (α)), S′=Φv(S,α) Prα(v).

Intuitively, executing α in S leads to S′=Φv(S, α),
v ∈dom(V (α)), with the probabilityPrα(S′|S).

We sayD is consistentiff ∅ 6∈Fα(S) (resp.,Prα(∅|S) =
0) for every nondeterministic (resp., probabilistic) actionα
and every e-stateS whereα is executable. In the rest of
this paper, we implicitly assume that every extended action
descriptionD=(KB , C) is consistent.

Example 1 We describe the actions of a goalkeeper in
robotic soccer, specifically in the RoboCup Four-Legged
League. The extended action description is shown in Fig. 1.
It includes the fluentscb (the robot is close to the ball),ba
(the ball is in the penalty area),fa (the space ahead the goal-
keeper is free),ip (the goalkeeper is in the correct position),
bm (the ball is moving towards its own goal),ab (the goal-
keeper is aligned with the direction of the ball), andgs (the
goal has been saved). The actions aregotoball (a move-
ment towards the ball, which possibly touches the ball and
moves it outside the penalty area),bodykick, straightkick,
andsidekick (three different kinds of kicks with different ca-
pabilities),openlegs (a position for intercepting a ball kicked
towards its own goal),aligntoball (a movement for aligning

to the direction of the ball moving towards its own goal), and
several sensing actions for some of the fluents.

Note that the actionopenlegs has both the deterministic
effect that the goalkeeper is able to save the goal when it is
aligned to the ball direction, as well as nondeterministic ef-
fects, which encode a possible capability of saving the goal
even when the alignment is not known. In addition, if the
robot is assumed to be always in its own area, then the ax-
iom causedba if cb allows for defining indirect effects of
actions (e.g., in several actions, the effect¬ba indirectly im-
plies¬cb). Finally, all the fluents are inertial here.2

Conditional Plans
The conditional planning problem (see also the section on
related work below) under qualitative and probabilistic un-
certainty in our framework can be formulated as follows.
Given an extended action description, an initial state de-
scriptionφI , and a goal descriptionψG, compute the best
conditional plan to achieveψG from φI . In this section, we
first define conditional plans in our framework. Using the
notion of a belief tree, we then define the goodness of a con-
ditional plan for achievingψG from φI .

Conditional Plans
A conditional plan is a binary directed tree (i.e., a directed
acyclic graph (DAG) in which every node has exactly one
parent, except for theroot, which has no parents; nodes
without children areleaves), where each arrow represents
an action, and each branching expresses the two outcomes
of a sensing action, which can thus be used to select the
proper actions. Formally, aconditional planΠ is either (i)
theempty conditional plan, denotedλ, or (ii) of form αΠ′,
or (iii) of form β; if ω then {Πω} else {Π¬ω}, whereα is
an effect action,β is a sensing action of outcomesω and¬ω,
andΠ′, Πω, andΠ¬ω are conditional plans. We abbreviate
“π;λ” by “π”, and omit “else {Π¬ω}” whenΠ¬ω =λ.

Example 2 We use the domain of Example 1 for defining
two planning problems as follows. The first is specified by
the initial situationφI = bauipu¬bm, where the robot is in
its standard position, the ball is in its own area, and it is
not moving, and the goalψG =¬bauip, which requires the
robot to kick away the ball and to remain in its position.
Some conditional plans for this first problem are:

Π1 = gotoball; bodykick
Π2 = gotoball; sensefreeahead;

if fa then {straightkick} else {sidekick} .

The second problem is specified by the initial situation
φI = bm, where the ball is moving, and the goalψG = gs,
where the goal has been saved. Some conditional plans for
this second problem are:

Ω1 = openlegs Ω2 = aligntoball; openlegs
Ω3 = sensealignedtoball; if ab then {openlegs}

else {aligntoball; openlegs} . 2

We next define historiesh for a conditional planΠ, which
are paths of actions from the root to some node inΠ and are
used to address actions inΠ. A historyh for Π is either (i)



theempty history, denotedε, or (ii) of form αh′, if Π =αΠ′
andh′ is a history forΠ′, or (iii) of form ασhσ, σ ∈{ω,¬ω},
if Π =α; if ω then {Πω} else {Π¬ω} andhσ is a history
for Πσ. Theaction lengthof h is the number of occurrences
of effect actions inh. We inductively defineΠ.h as follows:
(i) If h= ε andΠ =αR, thenΠ.h=α. (ii) If h=αh′ and
Π =αΠ′, thenΠ.h=Π′.h′. (iii) If h=ασhσ, σ∈{ω,¬ω},
andΠ=α; if ω then {Πω} else {Π¬ω}, thenΠ.h=Πσ.hσ.

Belief Trees
We now define belief trees for conditional plansΠ under
initial observationsφ. Intuitively, a belief tree is a directed
tree over e-states as nodes. Every arrow (eventually with
an associated probability) represents a transition, and ev-
ery branching represents the different possible effects (resp.,
outcomes) of some effect (resp., sensing) action. Formally,
thebelief treeT =(G,Pr) for Π underφ, denotedTφG, con-
sists of a directed treeG=(V,E), where the nodes are pairs
(h, S) of a historyh for Π and an e-stateS, and a mapping
Pr : E→ [0, 1], which are constructed by the steps (1)–(3):

(1) Initially, T is only the node(ε, Sφ).
(2) Consider the treeT =(G,Pr) with G=(V,E) built

thus far. For every leaf(h, S) such thatΠ.h=α is ex-
ecutable inS, enlargeT as follows:

(2.1) If α is a sensing action, then add toT every arrow
(h, S)→ (hασ, S′) such thatS′=Φ(S, ασ) 6= ∅, and
σ is a possible outcome ofα.

(2.2) If α is deterministic (resp., nondeterministic), then
add to T every arrow (h, S)→ (hα, S′) such that
S′=Φ(S, α) (resp.,S′ ∈Fα(S)).

(2.3) If α is probabilistic, then add toT every ar-
row e=(h, S)→ (hα, S′) such that S′=Φv(S, α)
for somev ∈dom(V (α)) along with the probability
Pr(e) =

∑
v∈dom(V (α)), S′=Φv(S,α) Prα(v).

(3) Repeat (2) untilT is free of leaves(h, S) such that
Π.h=α is executable inS.

Goodness
We define the goodness of a conditional planΠ for obtaining
a goalψ under an initial observationφ using the belief tree
TφΠ =((V,E),Pr) as follows. The success (resp., failure)
leaves ofTφΠ have the goodness1 (resp.,0). We then propa-
gate the goodness to every node ofTφΠ, using the goodness
of the children and the probabilities eventually associated
with an arrow. The goodness ofΠ is the goodness of the
root of TφΠ. Formally, thegoodnessof Π for obtainingψ
givenφ is defined asgφ,ψ(Π)= g(R), whereR is the root
of TφΠ =((V,E),Pr), andg : V → [0, 1] is defined by:

• g(v) = 1 (resp.,g(v) = 0) for every leafv=(h, S)∈V
(success leaf(resp., failure leaf)) such thatΠ.h= ε and
∀s∈S : s |= ψ (resp.,Π.h 6= ε or ∃s∈S : s 6|= ψ);
• g(v) = minv→v′∈E g(v′) for every nodev=(h, S)∈V
such thatΠ.h is either a sensing action, or deterministic ef-
fect action, or nondeterministic effect action;
• g(v)=

∑
v→v′∈E Pr(v→ v′) · g(v′) for all v=(h, S)∈V

such thatΠ.h is a probabilistic effect action.
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Figure 2: Computing the Goodness of a Conditional Plan

Example 3 The belief trees and the goodness of the condi-
tional plans of Example 2 are shown in Fig. 2.2

Conditional Planning
The problem of conditional planning in our framework can
be defined as follows. Given an extended action descrip-
tionD=(KB , C), an initial state descriptionφI , and a goal
descriptionψG, compute a conditional planΠ that, when
executed from a state in whichφI is true, reaches a state
in which the goalψG is true (for any possible outcome of
sensing) with maximum goodness.

We now present a planning method for solving this prob-
lem, which is divided into three steps: (1) computing the
first-order extension (FOE) of the extended action descrip-
tion; (2) computing all valid conditional plans for the plan-
ning problem; (3) evaluating the goodness for each of these
conditional plans and selecting the best one (that is, the con-
ditional plan with maximum goodness).

Note that all proofs and further details can be found in the
extended report (Iocchiet al. 2003).

FOE Generation
Given an epistemic knowledge baseΣ consisting of an ex-
tended action descriptionD=(KB , C) and an initial state
descriptionφI , the first-order extension(FOE) of Σ, de-
notedFOE(Σ), is the non-epistemicALC knowledge base
that consists of the domain constraints, the specification of
the initial state, and the assertions which are consequences
(up to renaming of individuals) of the epistemic sentences
in Σ. The FOE ofΣ provides a unique characterization of
the knowledge that is shared by all the models ofΣ and that
is relevant with respect to the planning problem. The com-
putation of the FOE is described in Appendix B.

The FOE constitutes the basis of a sound and complete
planning method. More precisely, it is possible to reduce
a planning problem in the epistemic knowledge baseΣ to
an entailment problem inFOE(Σ) in the same way as de-
scribed in (Iocchi, Nardi, & Rosati 2000).

Plan Extraction
The second step of the planning method is achieved by the
Plan Generation Algorithm shown in Fig. 3 for extracting



Algorithm Plan Generation
Input: FOE(Σ), initial state descriptionφI , goal descriptionψG.
Output: SP = {Πi = {(Si, A, Sj)}}: set of conditional plans

with positive goodness.

I is an initial state in whichφI holds;
SP = findAllPaths(FOE(Σ), I, ψG, ∅);
while ∃P ∈SP : (Si, Ai, Sj)∈P ∧ (Si,¬Ai, Sk) 6∈P do

SPaux = findAllPaths(FOE(Σ), Sk, ψG,FP (I, Sk));
SP = SP − {P};
foreachPaux ∈ SPaux do
Pnew = P ∪ {(Si,¬Ai, Sk)} ∪ Paux ;
SP = SP ∪ {Pnew}

end for
end while;
SP = unify(SP);
return SP .

Figure 3: Plan Generation Algorithm

plans from the FOE of the knowledge baseΣ. The out-
put of the algorithm is the set of all valid conditional plans
for the planning problem. Each plan is a direct acyclic
graph represented as a set of tuples(Si, Ai, Sj), whose
meaning is that from the e-stateSi it is possible to ex-
ecute the actionAi leading to the successor e-stateSj .
The actionAi can be either an action without sensing ef-
fects or one of the two possible outcomes (true or false)
of a sensing effect. In the latter case, also the other out-
come (denoted by¬Ai) must be present in the plan start-
ing from the same e-stateSi. If, during the algorithm,
this condition is not satisfied for a given (partially built)
planP (that is,(Si, Ai, Sj)∈P ∧ (Si,¬Ai, Sk) 6∈P ), then
the stateSi in P must be further expanded.

It uses the functionfindAllPaths(FOE (Σ), S, ψG,F),
which returns the set of all possible paths (without cycles) in
the FOE from the e-stateS to an e-state in whichψG holds,
without considering any of the states specified inF . Since
a path is a sequence of actions, in this function, only one
outcome of a sensing action or one context of an action with
either nondeterministic or probabilistic effects is considered.

The returned linear path may have states that must be fur-
ther expanded, since they may lack the other outcome of
sensing. Moreover, since we are only interested in gener-
ating conditional plans (without cycles), it is necessary to
limit the search of the paths infindAllPaths, by excluding
the states that have already been considered in the path from
the initial state to the current state: this is obtained by the
computation of the set of statesFP (I, Sk), that includes all
the states in the current planP for which it exists a path
to Sk. In this way,findAllPaths never returns a path that
can produce cycles when combined with the current planP .

Observe that the first part of the Plan Generation Algo-
rithm only finds those plans that are valid by considering
a single context for each nondeterministic or probabilistic
action. However, it is also necessary to derive plans that
can be executed when considering at the same time multiple
contexts for an action. To this end, it is possible to gen-
erate more general plans by combining pairs of previously
computed ones. This is performed by a unification opera-
tion (implemented by theunify procedure) that unifies pairs

of terms that suitably represent conditional plans.
Intuitively, the algorithm first builds all the possible sub-

graphs of FOE(Σ) that have the following features: (i) there
are no states unexpanded (that is, in which only an outcome
of sensing has been included), (ii) there are no cycles, and
(iii) in each leaf node, the goalψG holds. Then, it completes
this set of plans by unifying plans in order to derive more
general plans that consider combination of contexts.

Optimal Plan Selection

The third step of the planning method is a procedure that
computes the goodness for all the valid conditional plans
retrieved in the previous step and returns the best one.

Observe that, for efficiency reasons, the planning algo-
rithm given above generally builds conditional plans in the
form of DAGs, while the goodness of such plans is given in
terms of conditional plans expressed in the form of trees. In
fact, DAGs can be considered as a compact representation
of trees and thus the computation of the goodness for such
plans can be easily obtained by a transformation of the DAG
into a tree (by recursively duplicating those subgraphs in the
DAG whose root has more than one parent).

Example 4 The first planning problem of Example 2 ad-
mits several other conditional plans besidesΠ1 and Π2.
Among them isΠ3 = gotoball; senseballclose; if cb then
{if fa then {straightkick} else {sidekick}}, which has
goodness 0.66. The conditional plansΠ2 andΠ3 have the
same goodness, which is also the maximally possible good-
ness, and thus they are both optimal plans.2

Related Work
In comparison with the previous approaches in the litera-
ture cited in the introduction, we provide a very rich frame-
work for modeling dynamic systems: epistemic states of the
agent, sensing actions, inertial properties, exogenous events,
and static domain constraints. Furthermore, we have de-
vised effective techniques for plan generation in this frame-
work (Iocchi, Nardi, & Rosati 2000). As for the modeling
of actions with probabilistic effects, the most closely re-
lated approach is Poole’s independent choice logic (1997;
1998), which uses a similar way of adding probabilities to
an approach based on acyclic logic programs. But the cen-
tral conceptual difference is that Poole’s independent choice
logic does not allow for qualitative uncertainty in addition to
probabilistic uncertainty. Poole circumvents the problem of
dealing with qualitative uncertainty by imposing the strong
condition of acyclicity on logic programs.

From a more general perspective, our approach is also
related to planning under uncertainty in AI, since it can
roughly be understood as a combination of conditional
planning under nondeterministic uncertainty in AI (Geffner
2002) with conditional planning under probabilistic uncer-
tainty in AI, both in partially observable environments.

Planning under probabilistic uncertainty in AI can be di-
vided into (a) generalizations of classical planning in AI
and (b) decision-theoretic planning in AI, which is based
on work in operations research and decision science. The



planning problems of (a) can be roughly described as fol-
lows (Kushmerick, Hanks, & Weld 1994): Given a prob-
ability distribution over initial states, probabilistic actions,
a set of goal states, and a success thresholdθ, compute
a sequence of actions that reaches the goal with a prob-
ability of at leastθ. There are extensions that also al-
low for observations, and their solutions may also con-
tain conditionals and loops (Draper, Hanks, & Weld 1994).
Some planning systems are, e.g., the partial-order planner
C-BURIDAN (Draper, Hanks, & Weld 1994), which gener-
alizes BURIDAN (Kushmerick, Hanks, & Weld 1994), the
partial-order planner MAHINUR (Onder & Pollack 1999),
C-MAXPLAN andZANDER (Majercik & Littman 2003), and
PTLPLAN (Karlsson 2001). Standard planning problems
of (b) are either fully observable Markov decision processes
(MDPs) (Puterman 1994) or the more general partially ob-
servable Markov decision processes (POMDPs) (Kaelbling,
Littman, & Cassandra 1998). POMDPs also include costs
and/or rewards associated with actions and/or states, and
their solutions are mappings from situations to actions that
have a high expected utility, rather than courses of actions
that achieve a goal with an appropriately high probability. A
recent overview on planning under probabilistic uncertainty
in AI is given in (Boutilier, Dean, & Hanks 1999).

In summary, our approach can be seen as combining con-
ditional planning under nondeterministic uncertainty and
conditional planning under probabilistic uncertainty, where
the latter is perhaps closest to generalizations of classical
planning in AI. But instead of giving a threshold for the suc-
cess probability of a plan, we aim at all plans with high-
est possible success probability. In contrast to the decision-
theoretic framework, we do not assume costs and/or rewards
associated with actions and/or states. Furthermore, sensing
actions in our approach are more flexible than observations
in POMDPs, since they allow for preconditions, and they
can be performed at any time point when executable.

Summary and Outlook
We have presented the description logic PN-ALCKαNF for
reasoning about actions with sensing under qualitative and
probabilistic uncertainty, which is an extension ofALCKαNF
by actions with nondeterministic and probabilistic effects.
We have defined a formal semantics of PN-ALCKαNF in
terms of deterministic, nondeterministic, and probabilistic
transitions between epistemic states. We have then intro-
duced the notions of a conditional plan and its goodness un-
der qualitative and probabilistic uncertainty. We have for-
mulated the problem of conditional planning and presented
a sound and complete algorithm for solving it. We have also
described an application in a robotic-soccer scenario.

As for semantic aspects, an interesting topic of future re-
search is to also allow for sensing actions with noisy out-
comes. Moreover, it would be interesting to extend condi-
tional plans to cyclic execution structures. From the compu-
tational perspective, an interesting topic of further work is
to exploit the notion of goodness to implement heuristics for
efficient search in the space of epistemic states, and to pro-
vide a detailed complexity analysis of our algorithm and the
general problem of conditional planning in our framework.
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Appendix A: ALCKNF

The description logicALCKNF models a domain of inter-
est in terms of concepts and roles, which represent classes
of individuals and binary relations between classes of in-
dividuals, respectively. Formally, we assume a nonempty
finite set ofatomic conceptsA and a nonempty finite set
of atomic rolesR. We use⊥ (resp.,>) to denote thebot-
tom (resp.,top) concept. The set of allconceptsand roles
is then inductively defined as follows. Every element of
A∪{⊥,>} is a concept. IfC andD are concepts, andR is a
role, then¬C, C uD, C tD, ∃R.C, ∀R.C, KC, andAC
are concepts. Every element ofR is a role. IfR is a role,
thenKR andAR are roles. The operatorsK andA are
called theminimal knowledge operatorand thedefault as-
sumption operator, respectively.

A knowledge base encodes subset relationships between
classes, the membership of individuals to classes, and the
membership of pairs of individuals to binary relations be-
tween classes. Formally, we assume a set of individual
namesN . An inclusion axiomis an expression of the form
C v D, whereC andD are concepts. Aconcept member-
ship axiomis of the formC(a), whereC is a concept, and
a is an individual name. Arole membership axiomhas the
form R(a, b), whereR is a role, anda and b are individ-
ual names. Aknowledge baseis a set of inclusion, concept
membership, and role membership axioms.

The description logicALCKNF is a special case of Lif-
schitz’s logicMKNF (Lifschitz 1994). SinceMKNF has
a semantics in possible-world structures, alsoALCKNF can
be given a similar semantics, where each possible world cor-
responds to a standard description logic interpretation.

Informally, individual namesa∈N , the atomic concepts
A∈A, the concepts⊥ and>, and the atomic rolesP ∈R
are interpreted with respect to standard description logic in-
terpretations, which consist of a domain∆ and a function
associating with the above items elements of∆, subsets of
∆, the empty set, the set∆, and binary relations on∆, re-
spectively. The concepts¬C, C u D, C t D, ∃R.C, and
∀R.C are interpreted recursively, as usual. Finally, the op-
eratorsK andA are interpreted with respect to two sets of
possible worldsM andN , respectively, where each possible
world is a standard description logic interpretation. For ex-
ample,KC(d) encodes thatd is “known” to be an instance
of C, which holds ifd is an instance ofC in every possible
world ofM. Similarly, AC(d) encodes thatd is “assumed
to be” an instance ofC, which holds ifd is an instance ofC
in every possible world ofN .

Formally, aclassical interpretationI =(∆, ·I) consists



of a nonempty denumerabledomain∆ and a function·I
that associates with each individual name fromN an ele-
ment of∆ (under the usualunique name assumption, that is,
for any two different individual namesa, b∈N , it holds that
aI 6= bI), with each atomic concept fromA a subset of∆,
and with each atomic role fromR a subset of∆ × ∆. An
epistemic interpretationE =(I,M,N ) over the domain∆
consists of a classical interpretationI over the domain∆
and two sets of classical interpretationsM andN over the
domain∆. The function·E then interprets individual names,
concepts, and roles by induction as follows (wherea is an
individual name,A is an atomic concept,C andD are con-
cepts,P are atomic roles, andR is a role):

aE = aI

AE = AI

⊥E = ∅
>E = ∆

(¬C)E = ∆− CE

(CuD)E = CE ∩DE

(CtD)E = CE ∪DE

(∃R.C)E = {d∈∆ | ∃d′ : (d, d′) ∈ RE andd′ ∈ CE}
(∀R.C)E = {d∈∆ | ∀d′ : if (d, d′) ∈ RE thend′ ∈ CE}

(KC)E =
⋂
{C(J ,M,N ) | J ∈ M}

(AC)E =
⋂
{C(J ,M,N ) | J ∈ N}

P E = P I

(KR)E =
⋂
{R(J ,M,N ) | J ∈ M}

(AR)E =
⋂
{R(J ,M,N ) | J ∈ N} .

For example, it holdsd∈ (KC)(I,M,N ) iff d∈C(J ,M,N )

for all classical interpretationsJ ∈M. Furthermore,d ∈
(A¬C)(I,M,N ) iff d∈¬C(J ,M,N ) for all classical inter-
pretationsJ ∈N . Similarly,d∈ (∃KR.>)(I,M,N ) iff some
d′ ∈∆ exists with(d, d′)∈R(J ,M,N ) for all J ∈M.

An epistemic interpretationE =(I,M,N ) is amodelof
an inclusion axiomC v D, or E satisfiesC v D, denoted
E |= C v D, iff CE ⊆DE . The epistemic interpretation
E is a modelof a concept (resp., role) membership axiom
C(a) (resp.,R(a, b)), or E satisfiesC(a) (resp.,R(a, b)),
denotedE |= C(a) (resp.,E |= R(a, b)), iff aE ∈CE (resp.,
(aE , bE)∈RE ). The epistemic interpretationE is amodelof
a knowledge baseKB iff it is a model of everyF ∈KB .

We finally define satisfiability and logical consequence
for knowledge basesKB in terms of preferred models of
KB . A modelE =(I,M,N ) of KB is a preferredmodel
of KB iff (i) I ∈M, (ii) M=N , (iii) (J ,M,N ) |= KB
for all J ∈M, and (iv)M is maximal with (iii) (that is,
there exists noM′⊃M such that(J ,M′,N ) |= KB for
all J ∈M′). A knowledge baseKB is satisfiable(resp.,
unsatisfiable) iff KB has a (resp., no) preferred model. An
axiomF is alogical consequenceof KB , denotedKB |= F ,
iff every preferred model ofKB is also a model ofF .

Appendix B: Computing the FOE
Given an epistemic knowledge baseΣ =ΓS ∪ΓD∪ΓI , con-
sisting of the domain constraintsΓS , the action descriptions

Algorithm FOE Computation
Input : Σ = ΓS ∪ Γ±D ∪ ΓI

Output : FOE(Σ)

Procedurecreate new state(s,R)
s′ = new state name;
A′ = A ∪ {R(s, s′)} ∪ {D(s′) |

D ∈ post(s,R,ΓS ∪ A,Γ±D)};
if ∃s′′ ∈ all states such that
concepts(ΓS ∪ A, s′′) = concepts(ΓS ∪ A′, s′) then
A = A ∪R(s, s′′)

else
A = A′;
active states = active states ∪ {s′};
all states = all states ∪ {s′}

end if;

active states = {init};
all states = {init};
A = ΓI ;
repeat
s = choose(active states);
for eachactionR do

if ∃KC v ∃KR.>∈ΓD such thatΓS ∪ A |= C(s) then
if R has no sensing effectthen

create new state(s,R)
else

create new state(s,R+);
create new state(s,R−)

end if
end if

end for;
active states = active states − {s};

until active states = ∅;
return ΓS ∪ A .

Figure 4: FOE Computation Algorithm

ΓD, and an initial state descriptionΓI , thefirst-order exten-
sion of Σ, denotedFOE (Σ), is theALC knowledge base
which consists of (i) the domain constraints inΓS , (ii) the
specification of the initial state through the assertions inΓI ,
and (iii) the assertions that are consequences (up to renam-
ing of individuals) ofΣ. The FOE ofΣ provides a unique
characterization of the knowledge that is shared by all the
models ofΣ and that is relevant w.r.t. the planning problem.

To compute the FOE, we replace each sensing actionRS
by two special actionsR+

S andR−S . We denote byΓ±D the
set of axiomsΓD in which those for the sensing actionsRS
are replaced by the following axioms:

Kφ v ∃KR+
S .> > v ∀R+

S .S
Kφ v ∃KR−S .> > v ∀R−S .¬S .

A nondeterministic or a probabilistic actionRN is re-
placed byn actionsRiN , with the same preconditions and
deterministic effects and different nondeterministic effects

Kφ v ∃KRiN .> Kφ v ∀RiN .ψ K(φuV vi

RN
) v ∀RiN .ψ

for every contextvi, i∈{1, . . . , n}. We also use only a finite
number of instances of the default frame axioms

KL v ∀KR±S .A¬LtKL KL v ∀KRiN .A¬LtKL



obtained by instantiating the frame axiom schema for each
atomic conceptL=A or its negationL=¬A.

The FOE ofΣ is computed by the algorithm shown in
Fig. 4. Here,concepts(ΓS ∪A, s) = {C | ΓS ∪A |= C(s)}
denotes the set of concepts that arevalid for the explicitly
named individuals, occurring in the set of instance asser-
tionsA, with respect to theALC knowledge baseΓS ∪ A.
Moreover,post(s,R,ΓS ∪ A,Γ±D) = {D | KC v ∀R.D ∈
Γ±D andΓS ∪ A |= C(s)} denotes the effect of the applica-
tion of all the triggered rules belonging to the setΓ±D involv-
ing the actionR in the states, namely the set of postcondi-
tions (concepts) of the rules that are triggered bys.

Informally, starting from the initial stateinit, the algo-
rithm applies to each state the rules in the setΓ±D which are
triggered by such a state. A new state is thus generated,
unless a state with the same properties has already been cre-
ated. In this way, the effect of the rules is computed, obtain-
ing a sort of “completion” of the knowledge base.

The FOE ofΣ is unique, that is, every order of extrac-
tion of the states fromactive states produces the same set
of assertions, up to renaming of states. Furthermore, the al-
gorithm terminates, that is, the conditionactive states = ∅
is eventually reached, since the number of states generated
is bound by the number of axioms inΓ±D. More precisely,
the number of generated statesns is given byns ≤ 2nr + 1,
wherenr is the number of axioms inΓ±D.

Finally,concepts(ΓS∪A, s) = concepts(ΓS∪A′, s′) can
be checked by verifying whether, for each conceptC such
that eitherC(init)∈ΓI or KC is in the postcondition of
some axiom inΓD: ΓS ∪ A |= C(s) iff ΓS ∪ A′ |= C(s′).
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