
Enhancing Answer Set Programming with Templates
Giovambattista Ianni

Giuseppe Ielpa
Adriana Pietramala

Maria Carmela Santoro
Francesco Calimeri

Mathematics Dept., Università della Calabria,
Via Pietro Bucci, 30B

87036 Rende (CS), Italy
E-mail: {lastname}@mat.unical.it

Abstract

The work aims at extending Answer Set Programming (ASP)
with the possibility of quickly introducing new predefined
constructs and to deal with compound data structures: we
show how ASP can be extended with ‘template’ predicate’s
definitions. We present language syntax and give its oper-
ational semantics. We show that the theory supporting our
ASP extension is sound, and that program encodings are
evaluated as efficiently as ASP programs. Examples show
how the extended language increases declarativity, readabil-
ity, compactness of program encodings and code reusability.1.

Introduction
Research on Answer Set Programming (ASP, in the follow-
ing) produced several, mature, implemented systems featur-
ing clear semantics and efficient program evaluation (Faber
et al. 1999; Faber, Leone, & Pfeifer 2001; Niemelä 1999;
Simons 2000; Anger, Konczak, & Linke 2001; Eglyet
al. 2000; McCain & Turner 1998; Raoet al. 1997;
East & Truszczýnski 2000). ASP has recently found a num-
ber of promising applications: several tasks in informa-
tion integration and knowledge management require com-
plex reasoning capabilities, which are explored, for instance,
in the INFOMIX and ICONS projects (funded by the Euro-
pean Commission)(INFOMIX ; ICONS). It is very likely
that this new generation of ASP applications require the in-
troduction of repetitive pieces of standard code. Indeed, a
major need of complex and huge ASP applications such as
(Nogueiraet al. 1999) is dealing efficiently with large pieces
of such a code and with complex data structures, more so-
phisticated than the simple, native ASP data types.
Indeed, the non-monotonic reasoning community has con-
tinuosly produced, in the past, several extensions of non-
monotonic logic languages, aimed at improving readabil-
ity and easy programming through the introduction of new
constructs, employed in order to specify classes of con-
straints, search spaces, data structures, new forms of reason-
ing, new special predicates (Cadoliet al. 2000; Eiter, Got-
tlob, & Leone 1997; Kuper 1990), such as aggregate predi-
cates (Dell’Armiet al.).

1This work has been partially funded by the EU research project
IST-2002-33570 (INFOMIX)

The languageDLPT we propose here has two purposes.
First, DLPT moves the ASP field towards industrial appli-
cations, where code reusability is a crucial issue. Second,
DLPT aims at minimizing developing times in ASP system
prototyping. ASP systems developers wishing to introduce
new constructs are enabled to fast prototype their languages,
make their language features quickly available to the scien-
tific community, and successively concentrate on efficient
(and long lasting) implementations. To this end, it is neces-
sary a sound specification language for new ASP constructs.
ASP itself proves to fit very well for this purpose.
The proposed framework introduces the concept of ‘tem-
plate’ predicate, whose definition can be exploited whenever
needed through binding to usual predicates: this approach is
somehow similar to the clause view approach, common in
Object Oriented Logic Programming (Davison 1993).
Template predicates can be seen as a way to define inten-
sional predicates by means of a subprogram, where the sub-
program is generic and reusable. This eases coding and im-
proves readability and compactness of ASP programs:
Example 1.1 The following template definition
#template max[p(1)](1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X), not exceeded(X).

}

introduces a generic template program, defining the predi-
catemax, intended to compute the maximum value over the
domain of a generic unary predicatep. A template defini-
tion may be instantiated as many times as necessary, through
template atoms, like in the following sample program
:- max[weight(*)](M), M > 100.

:- max[student(Sex,$,*)](M), M >25.

Template definitions may be unified with a template atom
in many ways. The above program contains aplain invo-
cation (max[weight(*)](M)), and acompoundinvoca-
tion (max[student(Sex,$,*)](M)). The latter al-
lows to employ the definition of the template predicatemax
on a ternary predicate, discarding the second attribute of
student , and grouping by values of the first attribute.2
The operational semantics of the language is defined through
a suitable algorithm which is able to produce, from a set of
nonrecursive template definitions and aDLPT program, an
equivalent ASP program. There are some important theoret-
ical questions to be addressed, such as the termination of the

algorithm, and the expressiveness of theDLPT language.
Indeed, we prove that it is guaranteed thatDLPT program
encodings are as efficient as plain ASP encodings, since un-
folded programs are just polynomially larger with respect to
the originating program.
TheDLPT language has been successfully implemented and
tested on top of the DLV system (Faber, Leone, & Pfeifer
2001). Anyway, the proposed paradigm does not rely at all
on DLV special features, and is easily generalizable. In sum,
benefits of theDLPT language are: improved declarativity
and succinctness of the code; code reusability and possibil-
ity to collect templates within libraries; capability to quickly
introduce new, predefined constructs; fast language proto-
typing.
The paper is structured as follows: next section briefly gives
syntax and semantics of ASP and syntax of the language
DLPT . Features ofDLPT are then illustrated by examples
in section . Section formally introduces the semantics of
DLPT . Theoretical properties ofDLPT are discussed in
section . In section we describe architecture and usage of the
implemented system. Eventually, in section , conclusions
are drawn.

Syntax of theDLPT language
We give a quick definition of the syntax and informal seman-
tics of DLP programs2. We assume the reader to be familiar
with basic notions concerning with DLP semantics. A thor-
ough definition of concepts herein adopted can be found in
(Eiteret al. 2000). A (DLP) rule r is a construct

a1 ∨ · · · ∨ an :− b1, · · · , bk, not bk+1, · · · , not bm.

wherea1, · · · , an are standard atoms,b1, · · · , bm are lit-
erals, andn ≥ 0, m ≥ k ≥ 0. The disjunction
a1 ∨ · · · ∨ an is the headof r, while the conjunction
b1, ..., bk, not bk+1, ..., not bm is thebodyof r. A rule
having precisely one head literal (i.e.n = 1) is called anor-
mal rule. A rule without head literals (i.e.n = 0) is usually
referred to as anintegrity constraint(or strong constraint).
A DLP program is a set ofDLP rules. The semantics of a
DLP program is introduced through the Gelfond-Lifschitz
transform as defined in (Lifschitz 1996). Given aDLP pro-
gram P , we denoteM(P) the set of stable models ofP
computed according to the Gelfond-Lifschitz transform.
A DLPT program is aDLP program, where rules and
constraints may contain (possibly negated)template atoms.
Definition of template atoms is provided in the following of
this section.

Definition 1.2 A template definitionD consists of:
- a template header,

#template nD[f1(b1) , ... , fn(bn)](bn+1)

where eachbi(1 ≤ i ≤ n+1) is a nonnegative integer value,
and f1, . . . , fn are predicate names, said in the following
formal predicates. nD is calledtemplate name;
- an associatedDLPT subprogram enclosed in curly braces;
nD may be used within the subprogram as predicate of arity

2Disjunctive Logic Programming. Throughout this paper, we
will adopt the first historical definition of ASP (Lifschitz 1999) as
synonym of Disjunctive Logic Programming.

bn+1, whereas each predicatefi(1 ≤ i ≤ n) is intended to
be of aritybi. At least a rule havingnD within its head must
be declared. For instance, the following is a valid template
definition:
#template

subset[p(1)](1)

{

subset(X) v -subset(X) :- p(X).

}

Definition 1.3 A template atomt is of the form:
nt[p1(X1) , . . . , pn(Xn)](A)

wherep1, . . . , pn are predicate names (namelyactualpred-
icates), andnt is a template name. EachXi(1 ≤ i ≤ n) is
a list of specialterms (referred in the following asspecial
list of terms). A special list of terms can contain either a
variable name, a constant name, a dollar ‘$’ symbol (from
now on, projection term) or a ‘*’ (from now on, parame-
ter term). Variables and constants are calledstandardterms.
Eachpi(Xi)(1 ≤ i ≤ n) is calledspecialatom.A is a list of
usual terms (i.e. either variables or constants) calledoutput
list. Given a template atomt, let D(t) be the corresponding
template definition having the same template name. It is as-
sumed there is a unique definition for each template name.

2

An example of template atom is
max[company(\$,State,*)](Income).

Intuitively, projection terms (‘$’ symbols) are intended in
order to indicate attributes of an actual predicate which
have to be ignored. A standard term (a constant or a vari-
able) within an actual atom indicates a ‘group-by’ attribute,
whereas parameter terms (‘* ’ symbols) indicate attributes
to be considered as parameter. The intuitive meaning of the
above template atom is to define a predicate computing the
companies with maximum value of the ‘income’ attribute
(the third attribute of thecompanypredicate), grouped by the
‘state’ attribute (the second one), ignoring the first attribute.
The computed values ofIncome are returned through the
output list.

Knowledge Representation byDLPT

In this section we show by examples the main advantages
of template programming. Examples point out the provision
of a succinct, elegant and easy-to-use way for quickly intro-
ducing new constructs through theDLPT language.

Aggregates. Aggregate predicates (Ross & Sagiv 1997),
allow to represent properties over sets of elements. Aggre-
gates or similar special predicates have been already studied
and implemented in several ASP solvers (Dell’Armiet al. ;
Simons 2000): the next example shows how to fast proto-
type aggregate semantics without taking into account of the
efficiency of a built-in implementation. Here we take ad-
vantage of the template predicatemax, defined in Example
1.1. The next template predicate defines a general program
to count distinct values of a predicatep, given an order re-
lation succ defined on the domain ofp. We assume the
domain of integers is bounded to some finite value.

#template

count[p(1),succ(2)](1)

{

partialCount(0,0).

partialCount(I,V) :- not p(Y),

I=Y+1, partialCount(Y,V).

partialCount(I,V2) :- p(Y), I=Y+1,

partialCount(Y,V), succ(V,V2).

partialCount(I,V2) :- p(Y),I=Y+1,

partialCount(Y,V),

max[succ(*,$)](V2).

count(M) :- max[partialCount($,*)](M).

}

The above template definition is conceived in order to
count, in a iterative-like way, values of thep predicate
through thepartialCount predicate. A ground atom
partialCount(i, a) means that at the stagei, the constant
a has been counted up. The predicatecount takes the value
which has been counted at the highest (i.e. the last) stage
value. The above program is somehow involved and shows
how difficult could be to simulate aggregate constructs in
Answer Set Programming. Anyway, the use of templates
allows to write it once, and reuse it as many times as neces-
sary.
It is worth noting howmax is employed over the binary
predicatepartialCount , instead of an unary one. Indeed,
the ‘$’ and ‘*’ symbols are employed to project out the
first argument ofpartialCount . The last rule is equiva-
lent to the piece of code:

partialCount’(X) :- partialCount(_,X).

count(M) :- max[partialCount’(*)](M).

Definition of ad hoc search spaces. Template definitions
can be employed to introduce and reuse constructs defin-
ing the most common search spaces. This improves declar-
ativity of ASP programs to a larger extent. The next two
examples show how to define a predicatesubset and a
predicatepermutation , ranging, respectively, over sub-
sets and permutations of the domain of a given predicatep.
Such kind of constructs enriching plain Datalog languages
have been proposed, for instance, in (Greco & Saccà 1997;
Cadoliet al. 2000).

#template

subset[p(1)](1)

{

subset(X) v -subset(X) :- p(X).

}

#template permutation[p(1)](2).

{

permutation(X,N) v npermutation(X,N)

:- p(X),#int(N),count[p(*),>(*,*)](N1),N<=N1.

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

}

The explanation of thesubset template predicate is quite
straightforward. As for thepermutation definition, a
ground atompermutation(x, i) tells that the elementx

(taken from the domain ofp), is in positioni within the cur-
rently guessed permutation. The rest of the template subpro-
gram forces permutations properties to be met.
Next we show howcount andsubset can be exploited
to succinctly encode thek-cliqueproblem (Garey & John-
son 1979), i.e., given a graphG (represented by predicates
node andedge), find if there exists a complete subgraph
containing at leastk nodes (we consider here the 5-clique
problem):

in_clique(X) :- subset[node(*)](X).

:- count[in_clique(*),>(*,*)](K), K < 5. :-

in_clique(X),in_clique(Y), X <> Y, not edge(X,Y).

The first rule of this example guesses a clique from a subset
of nodes. The first constraint forces a candidate clique to be
at least of5 nodes, while the last forces a candidate clique
to be strongly connected. Thepermutation template can
be employed, for instance, to encode the Hamiltonian Path
problem: given a graphG, find a path visiting each node of
G exactly once:

path(X,N) :- permutation[node(*)](X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Handling of complex data structures. DLPT can be
fruitfully employed to introduce operations over complex
data structures, such as sets, dates, trees, etc.
Sets: Extending Datalog with Set programming is another
matter of interest for the ASP field. This topic has been al-
ready discussed (e.g. in (Kuper 1990; Leone & Rullo 1993)),
proposing some formalisms aiming at introducing a suit-
able semantics with sets. It is fairly quick to introduce set
primitives usingDLPT ; a setS is modeled through the do-
main of a given unary predicates. Intuitive constructs like
intersection , union , or symmetricdifference ,
can be modeled as follows.

#template intersection[a(1),b(1)](1).

{

intersection (X) :- a(X),b(X).

}

#template union[a(1),b(1)](1).

{

union(X) :- a(X).

union(X) :- b(X).

}

#template symmetricdifference[a(1),b(1)](1)

{

symmetricdifference(X)

:- union[a(*),b(*)](X),

not intersection[a(*),b(*)](X).

}

Dates: managing time and date data types is another impor-
tant issue in engineering applications ofDLP. For instance,
in (Ianniet al. 2003 Reggio Calabria Italy), it is very impor-
tant to reason on compound records containing date values.
The following template shows how to compare dates repre-
sented through a ternary relation〈day, month, year〉.
#template before[date1(3),date2(3)](6)

{

before(D,M,Y,D1,M1,Y1)

:- date1(D,M,Y),date2(D1,M1,Y1),Y<Y1.

before(D,M,Y,D1,M1,Y1)

:- date1(D,M,Y),date2(D1,M1,Y1),Y==Y1,M<M1.

before(D,M,Y,D1,M1,Y1)

:- date1(D,M,Y),date2(D,M1,Y1),Y==Y1,M==M1,D<D1.

}

Semantics ofDLPT

The semantics of theDLPT language is given through a suit-
able ‘‘explosion’’ algorithm. It is given aDLPT program
P . The aim of theExplodealgorithm, introduced next, is to
remove template atoms fromP . Each template atomt is re-
placed with a standard atom, referring to a fresh intensional
predicatept. The subprogramdt, defining the predicatept,
is computed taking into account of the template definition
D(t) associated tot. Actually, many template atoms may
be grouped and associated to the same subprogram. The
concept of atom signature, introduced next, helps in find-
ing groups of equivalent template atoms. The final output
of the algorithm is aDLP programP ′. Answer sets of the
originating programP are constructed,by definition, from
answer sets ofP ′. Throughout this section, we will refer to
Example 1.1 as running example. By little abuse of notation,
a ∈ P (resp. a ∈ r) means that the atoma appears in the
programP (the ruler, respectively).

Definition 1.4 Given a template atomt, the corresponding
template signatures(t) is obtained fromt by replacing each
standard term with a conventional (mute variable) ‘’ sym-
bol. LetD(s(t)) be the template definition associated to the
signatures(t); Given aDLPT programP , let A(P) be the
set of template atoms occurring inP . Let S(A(P)) be the
set of signatures{s(t) : t ∈ A(P)}. 2

For instance,max[p(*,S,$)](M) has the same signature
(max[p(*,_,$)](_)) asmax[p(*,a,$)](H) .

The Explode algorithm

The Explode algorithm (E in the following) is sketched in
Figure 1. It is given aDLPT programP and a set of tem-
plate definitionsT . The output ofE is a DLP programP ′.
E takes advantage of a stack of signaturesS, which contains
the set of signatures to be processed; a setU contains the al-
ready processed signatures.S is initially filled up with each
template signature occurring withinP , while U is initially
empty.
The purpose of the main loop ofE is to iteratively apply
the U (Unfold) operation toP , until S is empty. Given
a signatures, theU operation generates from the template
definitionD(s) a DLPT programP s which defines a fresh
predicatets, wheret is the template name ofs. In cases is
being processed for the first time (s 6∈ U), P s is appended
to P ; furthermore, each template atoma ∈ P , such thata
has signatures, is replaced with a suitable atomas(X′). It is
important pointing out that, ifP s contains template atoms,
the unfolding operation updatesS with new template signa-
tures.
We show next howP s is constructed and template atoms are
removed.

Explode(Input: aDLPT programP , a set of template definitionsT .

Outputs: an updated version ofP ′ of P in DLP form.

Data Structures: a stackS, a setU)

begin
pushS(A(P)) in S;

U = ∅; P ′ = P

while (S is not empty)do begin
pop a template signatures from S;

//Start of theU (Unfold) operation;

if (s 6∈ U)

constructP s (see Subsection), then setP = P ∪ P s;

pushS(A(P s)) in S;

for each template atoma ∈ P

if a has signatures

construct the standard atomas(X′) (see Subsection);

replacea with as(X′);

//End of theU operation;

U = U ∪ {s}.

end;

end.

Figure 1:The Explode (E) Algorithm

Let the header ofD(s) be

#template t[f1(b1) , . . . , fn(bn)](bn+1)

Let s be of the form

t[p1(X1) , . . . , pn(Xn)](Xn+1)

Given a special listX of terms, letX[j] denote thejth

term of X; let fr(X) be a list of |X| fresh variables
FX,1, . . . , FX,|X|; let st(X), pr(X) andpa(X) be the sub-
list of (respectively) standard, projection and parameter
terms withinX. Given two listsA andB, let A&B be the
list obtained appendingB to A.

How P s is constructed.
The programP s is built in two steps. On the first step,P s

is enriched with a set of rules, intended in order to deal with
projection variables.
For eachpi ∈ s, we introduce a predicateps

i and we enrich
P s with the auxiliary ruleps

i (X
′
i) ← pi(X′′

i), where:
- X′′

i is built fromXi substitutingpr(Xi) with fr(pr(Xi)),
substituting pa(Xi) with fr(pa(Xi)), and substituting
st(Xi) with fr(st(Xi));
- X′

i is set tofr(st(Xi))&fr(pa(Xi)).
For instance, given the signature

s2 = max[student(,$, ∗)]()
and the example template definition given in Example 1.1,
let L be the list〈_,$,* 〉; it is introduced the rule:

students2(Fst(L),1, Fpa(L),1)
: −student(Fst(L),1, Fpr(L),1, Fpa(L),1).

Note that projection variables are filtered out fromstudents.
In the second step, for each ruler belonging toD(s), we
create an updated versionr′ to be put inP s, where each
atoma ∈ r is modified this way:
- if a is fi(Y) wherefi is a formal predicate, it is substituted
with the atomps

i (Y
′). Y′ is set tofr(st(Xi))&Y;

- if a is a either a standard (included atoms havingt as pred-
icate name) or a special atom (in this latter casea occurs
within a template atom)p(Y), it is substituted with an atom
ps(Y′), where

Y vect′ = fr(st(X1))& . . . &fr(st(Xn))&Y.

Example 1.5 For instance, consider the rule
max(X):− p(X), not exceeded(X).

from Example 1.1, and the signature
s2 = max[student(_,$,*)](_) ;

let L be the special list〈 , $, ∗〉; according to the steps intro-
duced above, this rule is translated to

maxs2(FL,1, X):−students2(FL,1, X),
not exceededs2(FL,1, X). 2

How template atoms are replaced3.
Consider a template atom in the form

t[p1(X1) , . . . , pn(Xn)](Xn+1).
It is substituted with

ts(X′)
where

X′ = st(X1)& . . . &st(Xn)&Y.

Example 1.6 The complete output ofE on the constraint
:−max[student(, $, ∗)](M), M > 25.

coupled with the template definition ofmax given in Exam-
ple 1.1 is:

students2(S1, P1) :− student(S1, , P1).

exceededs2(FL,1, X) :− students2(FL,1, X),

students2(FL,1, Y), Y > X.

maxs2(FL,1, X) :− students2(FL,1, X),

not exceededs2(FL,1, X).

:− maxs2(Sex, M), M > 25. 2

We are now able to give the formal semantics ofDLPT .
It is important highlighting that stable models of aDLPT

program are, by definition, constructed in terms of stable
models of an equivalentDLP program.

Definition 1.7 Given aDLPT programP , and a set of tem-
plate definitionsT , let P ′ the output of theExplodealgo-
rithm on input〈P, T 〉. Let H(P) be the Herbrand base of
P ′ restricted to those atoms having predicate name appear-
ing in P . Given a stable modelm ∈ M(P ′), then we define
H(P) ∩m as a stable model ofP . 2

Note that the Herbrand base of aDLPT program is defined
in terms of the Herbrand base of aDLP programwhich is
not the output ofE .

Theoretical properties of DLPT

The explosion algorithm replaces template atoms from a
DLPT programP , producing aDLP programP ′. It is very
important to investigate about two theoretical issues:

3Depending on the form ofD(s), some template atom might
not to be allowed, since some atom with same predicate name but
with mismatched arities could be generated. We do not discuss
here these syntactic restriction for space reasons.

- Finding whether and whenE terminates; in general, we
observe thatE might not terminate, for instance, in case of
recursive template definitions. Anyway, we prove that it can
be decided in polynomial time whetherE terminates on a
given input.
- Establishing whetherDLPT programs are encoded as effi-
ciently asDLP programs. In particular, we are able to prove
thatP ′ is polynomially larger thanP . ThusDLPT keeps the
same expressive power asDLP. This way, we are guaranteed
thatDLPT program encodings are as efficient as plainDLP
encodings, since unfolded programs are always reasonably
larger with respect to the originating program.

Definition 1.8 It is given a DLPT programP , and a set
of template definitionsT . Thedependency graphGT,P =
〈V,E〉 encoding dependencies between template atoms and
template definitions is built as follows. Each template def-
inition t ∈ T will be represented by a corresponding node
vt of V . V contains a nodeuP associated toP as well.
E will contain a direct edge(ut, vt′) if the templatet con-
tains a template atom referring to the templatet′ inside its
subprogram (as for the node referred toP , we consider the
whole programP). Let GT,P (u) ⊆ GT,P be the subgraph
containing nodes and arc ofGT,P reachable fromu. 2

Theorem 1.9 It is given aDLPT programP , and a set of
template definitionsT . It can be decided in polynomial time
whetherE terminates whenP andT are taken as input.
Proof. (Sketch). It is easy to see thatE terminates iff
GT,P (uP) is acyclic. Indeed, consider that each operation
of unfolding corresponds to the visit of an arc ofGT,P (uP).
If GT,P (uP) acyclic, E behaves like an in-depth, arc visit
algorithm, where no arc is visited twice.
Vice versa, if GT,P (uP) contains some cycle
u, v1, . . . , vn, u, an infinite series of new signatures
will be produced and queued for processing. Indeed,
assume each arc(u, v1), (v1, v2), . . . , (vn, u) has been
processed. After the(vn, u) processing, the arc(u, v1) will
be re-enqueued with a new signature, not present in the set
of used signaturesU , thus causing an infinite loop. 2

Definition 1.10 A set of template definitionsT is said
nonrecursiveif for any DLPT programP , the subgraph
GT,P (uP) is acyclic. 2

It is useful to deal with nonrecursive sets of template defini-
tion, since they may be safely employed with any program.
Checking whether a set of template definitions is nonrecur-
sive is quite easy.
Proposition 1.11 A set of template definitionsT is nonre-
cursive iffGT,∅ is acyclic.

Theorem 1.12 It is given aDLPT programP , and a nonre-
cursive set of template definitionsT . The outputP ′ of E on
input 〈P, T 〉 is polynomially larger thanP andT .
Proof. (Sketch). We simply observe that each execution
of U adds toP a number of rules/constraints whose overall
size is bounded by the size ofT . If T is nonrecursive, the
number ofU operations carried out byE corresponds to the
number of arcs ofGT,P . The number of arcs ofGT,P is
bounded by the overall size ofT andP . Thus the size ofP ′
is O(|T |(|T |+ |P |)). 2

P PRE ARSER
DLPT

Program INFLATER

DLPT

I
F
nternal

ormat

DLPT

Program

ASP
SOLVER

C
M

ollection of

odels
P POST ARSER

F
M

iltered

odels

ASP

Figure 2: Architecture of theDLPT compiler

Corollary 1.13 DLPT has the same expressive power as
DLP.
Proof. (Sketch). It is proved in (Dantsinet al. 2001) that
plain DLP programs (under the brave reasoning semantics)
capture theΣP

2 complexity class.DLPT programs may al-
low to express more succinct encodings of problems. Any-
way, since unfolded program produced byE are polynomi-
ally larger only, andDLPT semantics is defined in term of
the equivalent, unfolded,DLP program,DLPT has the same
expressiveness properties asDLP. 2

System architecture and usage
The DLPT language has been implemented on top of the
DLV system (Faberet al. 1999; Faber, Leone, & Pfeifer
2001; Faber & Pfeifer since 1996). The current version
of the language is available through theDLPT Web page
(DLPT). The overall architecture of the system is shown
in Figure 2. TheDLPT system work-flow is as follows.
A DLPT program is sent to aDLPT pre-parser, which
performs syntactic checks (included nonrecursivity checks),
and builds an internal representation of theDLPT program.
The DLPT Inflater performs theExplodeAlgorithm and
produces an equivalentDLV programP ′; P ′ is piped to-
wards theDLV system. The modelsM(P ′) of P ′, com-
puted by DLV, are then converted in a readable format
through the Post-parser module; the Post-parser filters out
from M(P ′) informations about internally generated predi-
cates and rules.

Conclusions
We presented theDLPT language, an extension of ASP
allowing to define template predicates. The proposed lan-
guage is, in our opinion, very promising: we plan to further
extend the framework, and, in particular, we are thinking
abouta) generalizing template semantics in order to allow
safe forms of recursion between template definitions,b) in-
troducing new forms of template atoms in order to improve
reusability of the same template definition in different con-
texts, c) extending the template definition language using
standard languages such asC++. As far as performances are
concerned, we point out that these are strictly tied to perfor-
mances of resultingDLP programs. Nonetheless, this work
aims at introducing fast prototyping techniques, and does
not consider time performances as a primary target4.

4We would like to thank Nicola Leone and Luigi Palopoli for
their fruitful remarks.

References
Anger, C.; Konczak, K.; and Linke, T. 2001.NoMoRe: A Sys-
tem for Non-Monotonic Reasoning. InLogic Programming and
Nonmonotonic Reasoning — 6th International Conference, LP-
NMR’01, Vienna, Austria, September 2001, Proceedings, number
2173 in Lecture Notes in AI (LNAI), 406–410. Springer Verlag.

Cadoli, M.; Ianni, G.; Palopoli, L.; Schaerf, A.; and Vasile, D.
2000. NP-SPEC: An executable specification language for solv-
ing all the problems in NP.Computer Languages, Elsevier Sci-
ence, Amsterdam (Netherlands)26(2-4):165–195.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001. Com-
plexity and Expressive Power of Logic Programming.ACM Com-
puting Surveys33(3):374–425.

Davison, A. 1993. A survey of logic programming-based object-
oriented languages. In Wegner, P.; Yonezawa, A.; and Agha,
G., eds.,Research Directions in Concurrent Object Oriented Pro-
gramming, 42–106. MIT Press.

Dell’Armi, T.; Faber, W.; Ielpa, G.; Leone, N.; and Pfeifer, G.
Aggregate functions in disjunctive logic programming: Seman-
tics,complexity,and implementation in DLV.International Joint
Conference on Artificial Intelligence (IJCAI 2003).

The DLPT web site.http://dlpt.gibbi.com .

East, D., and Truszczyński, M. 2000. dcs: An implementation of
DATALOG with Constraints. InProceedings of the 8th Interna-
tional Workshop on Non-Monotonic Reasoning (NMR’2000).

Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S. 2000. Solving
Advanced Reasoning Tasks using Quantified Boolean Formulas.
In Proceedings of the Seventeenth National Conference on Arti-
ficial Intelligence (AAAI’00), July 30 – August 3, 2000, Austin,
Texas USA, 417–422. AAAI Press / MIT Press.

Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2000. Declara-
tive Problem-Solving Using the DLV System. In Minker, J., ed.,
Logic-Based Artificial Intelligence. Kluwer Academic Publishers.
79–103.

Eiter, T.; Gottlob, G.; and Leone, N. 1997. Abduction from Logic
Programs: Semantics and Complexity.Theoretical Computer Sci-
ence189(1–2):129–177.

Faber, W., and Pfeifer, G. since 1996.DLV homepage.
http://www.dlvsystem.com/.

Faber, W.; Leone, N.; Mateis, C.; and Pfeifer, G. 1999. Us-
ing Database Optimization Techniques for Nonmonotonic Rea-
soning. InProceedings of the 7th International Workshop on
Deductive Databases and Logic Programming (DDLP’99), 135–
139. Prolog Association of Japan.

Faber, W.; Leone, N.; and Pfeifer, G. 2001. Experimenting with
Heuristics for Answer Set Programming. InProceedings of the
Seventeenth International Joint Conference on Artificial Intelli-
gence (IJCAI) 2001, 635–640. Seattle, WA, USA: Morgan Kauf-
mann Publishers.

Garey, M. R., and Johnson, D. S. 1979.Computers and In-
tractability, A Guide to the Theory of NP-Completeness. W.H.
Freeman and Company.

Greco, S., and Saccà, D. 1997. NP optimization problems in
datalog. International Symposium on Logic Programming. Port
Jefferson, NY, USA181–195.

Ianni, G.; Calimeri, F.; Lio, V.; Galizia, S.; and Bonfà, A. 2003.
Reggio Calabria, Italy. Reasoning about the semantic web using
answer set programming. InAPPIA-GULP-PRODE 2003. Joint
Conference on Declarative Programming, 324–336.

The ICONS web site.http://www.icons.rodan.pl/ .

The Infomix web site. http://www.mat.unical.it/infomix.

Kuper, G. M. 1990. Logic programming with sets.Journal of
Computer and System Sciences41(1):44–64.

Leone, N., and Rullo, P. 1993. Ordered logic programming with
sets.Journal of Logic and Computation3(6):621–642.

Lifschitz, V. 1996. Foundations of Logic Programming. In
Brewka, G., ed.,Principles of Knowledge Representation. Stan-
ford: CSLI Publications. 69–127.

Lifschitz, V. 1999. Answer set planning. InInternational Con-
ference on Logic Programming, 23–37.

McCain, N., and Turner, H. 1998. Satisfiability Planning with
Causal Theories. InProceedings Sixth International Confer-
ence on Principles of Knowledge Representation and Reasoning
(KR’98), 212–223. Morgan Kaufmann Publishers.

Niemel̈a, I. 1999. Logic programming with stable model seman-
tics as constraint programming paradigm.Annals of Mathematics
and Artificial Intelligence25(3–4):241–273.

Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 1999. An A-Prolog Decision Support System for
the Space Shuttle. InProceedings of the 1st International Work-
shop on Practical Aspects of Declarative Languages (PADL’99),
number 1551 in Lecture Notes in Computer Science, 169–183.
Springer.

Rao, P.; Sagonas, K. F.; Swift, T.; Warren, D. S.; and Freire,
J. 1997. XSB: A System for Efficiently Computing Well-
Founded Semantics. InProceedings of the 4th International Con-
ference on Logic Programming and Non-Monotonic Reasoning
(LPNMR’97), number 1265 in Lecture Notes in AI (LNAI), 2–
17. Dagstuhl, Germany: Springer Verlag.

Ross, K. A., and Sagiv, Y. 1997. Monotonic aggregation in
deductive databases.Journal of Computer and System Sciences
54(1):79–97.

Simons, P. 2000.Extending and Implementing the Stable Model
Semantics. Ph.D. Dissertation, Helsinki University of Technol-
ogy, Finland.

