Enhancing Answer Set Programming with Templates
Giovambattista lanni

Giuseppe

lelpa

Adriana Pietramala
Maria Carmela Santoro
Francesco Calimeri
Mathematics Dept., Universitdella Calabria,
Via Pietro Bucci, 30B
87036 Rende (CS), Italy
E-mail: {lastnamé@mat.unical.it

Abstract

The work aims at extending Answer Set Programming (ASP)
with the possibility of quickly introducing new predefined
constructs and to deal with compound data structures: we
show how ASP can be extended with ‘template’ predicate’s
definitions. We present language syntax and give its oper-
ational semantics. We show that the theory supporting our
ASP extension is sound, and that program encodings are
evaluated as efficiently as ASP programs. Examples show
how the extended language increases declarativity, readabil-
ity, compactness of program encodings and code reusability.

Introduction

Research on Answer Set Programming (ASP, in the follow-
ing) produced several, mature, implemented systems featur-
ing clear semantics and efficient program evaluation (Faber
et al. 1999; Faber, Leone, & Pfeifer 2001; Nierae1999;
Simons 2000; Anger, Konczak, & Linke 2001; Egét

al. 2000; McCain & Turner 1998; Raet al. 1997;
East & Truszczfiski 2000). ASP has recently found a num-
ber of promising applications: several tasks in informa-
tion integration and knowledge management require com-
plex reasoning capabilities, which are explored, for instance,
in the INFOMIX and ICONS projects (funded by the Euro-
pean Commission)(INFOMIX ; ICONS). It is very likely
that this new generation of ASP applications require the in-
troduction of repetitive pieces of standard code. Indeed, a
major need of complex and huge ASP applications such as
(Nogueiraet al. 1999) is dealing efficiently with large pieces
of such a code and with complex data structures, more so-
phisticated than the simple, native ASP data types.

Indeed, the non-monotonic reasoning community has con-
tinuosly produced, in the past, several extensions of non-
monotonic logic languages, aimed at improving readabil-
ity and easy programming through the introduction of new
constructs, employed in order to specify classes of con-

The languageDLP” we propose here has two purposes.
First, DLP” moves the ASP field towards industrial appli-
cations, where code reusability is a crucial issue. Second,
DLPT aims at minimizing developing times in ASP system
prototyping. ASP systems developers wishing to introduce
new constructs are enabled to fast prototype their languages,
make their language features quickly available to the scien-
tific community, and successively concentrate on efficient
(and long lasting) implementations. To this end, it is neces-
sary a sound specification language for new ASP constructs.
ASP itself proves to fit very well for this purpose.

The proposed framework introduces the concept of ‘tem-
plate’ predicate, whose definition can be exploited whenever
needed through binding to usual predicates: this approach is
somehow similar to the clause view approach, common in
Object Oriented Logic Programming (Davison 1993).
Template predicates can be seen as a way to define inten-
sional predicates by means of a subprogram, where the sub-
program is generic and reusable. This eases coding and im-
proves readability and compactness of ASP programs:

Example 1.1 The following template definition
#template max[p(1)](1)

{
exceeded(X) - p(X),p(Y), Y > X.
max(X) :- p(X), not exceeded(X).

introduces a generic template program, defining the predi-
catemay, intended to compute the maximum value over the
domain of a generic unary predicgte A template defini-
tion may be instantiated as many times as necessary, through
template atomdike in the following sample program

- max[weight(*)](M), M > 100.

- max[student(Sex,$,*)](M), M >25.

Template definitions may be unified with a template atom
in many ways. The above program containplain invo-
cation ax[weight(*)](M)), and acompoundnvoca-

tion (max[student(Sex,$,*)](M)). The latter al-
lows to employ the definition of the template predicatax

straints, search spaces, data structures, new forms of reasonen a ternary predicate, discarding the second attribute of

ing, new special predicates (Cadetial. 2000; Eiter, Got-
tlob, & Leone 1997; Kuper 1990), such as aggregate predi-
cates (Dell’Armiet al.).

1This work has been partially funded by the EU research project
IST-2002-33570 (INFOMIX)

student , and grouping by values of the first attributel

The operational semantics of the language is defined through
a suitable algorithm which is able to produce, from a set of
nonrecursive template definitions and&P” program, an
equivalent ASP program. There are some important theoret-
ical questions to be addressed, such as the termination of the

algorithm, and the expressiveness of P language. bn+1, Whereas each predicafgl < i < n) is intended to
Indeed, we prove that it is guaranteed tBdtP” program be of arityd,. At least a rule having p within its head must
encodings are as efficient as plain ASP encodings, since un-be declared. For instance, the following is a valid template
folded programs are just polynomially larger with respectto definition:

the originating program. #template

TheDLPT language has been successfully implemented and subsetip(1)(2)

tested on top of the DLV system (Faber, Leone, & Pfeifer {

2001). Anyway, the proposed paradigm does not rely at all subset(X) v -subset(X) :- p(X).

on DLV special features, and is easily generalizable. In sum, }

benefits of theDLP?' language are: improved declarativity — Definition 1.3 A template atont is of the form:
and succinctness of the code; code reusability and possibil- nepr(X1), , p(X)](A)

ity to collect templates within libraries; capability to quickly)

introduce new, predefined constructs; fast language proto- Wherepi, .. ., p, are predicate names (namelgtual pred-

typing. icates), and; is a template name. Ead;(1 < i < n)is

The paper is structured as follows: next section briefly gives 2 list of specialterms (referred in the following aspecial

DLP”. Features oDLP” are then illustrated by examples Variable name, a constant name, a dollar '$’ symbol (from

in section . Section formally introduces the semantics of NOW On, projection term or a ™' (from now on, parame-

DLPZ. Theoretical properties obLP? are discussed in terterm. Variables and constants are caltdndardterms.

section . In section we describe architecture and usage of the Eachp (X;)(1 < i < n) is calledspecialatom. A is a list of

implemented system. Eventually, in section , conclusions usual terms (i.e. either variables or constants) calleput

are drawn. list. Given a template ator) let D(t) be the corresponding

template definition having the same template name. It is as-

Syntax of the DLPT language sumed there is a unique definition for each template name.

O
We give a quick definition of the syntax and informal seman-

tics of DLP program$. We assume the reader to be familiar ap, example of template atom is
with basic notions concerning with DLP semantics. A thor-

ough definition of concepts herein adopted can be found in M&{company(i$.State,J(Income).

(Eiteret al. 2000). A OLP) rule r is a construct Intuitively, projection terms @’ symbols) are intended in

a1 V -+ V @pi—bi, -+ by, not bry1, -+, not by,. order to indicate attributes of an actual predicate which
whereay, - - ,a, are standard atoms;, - - - , b,, are lit- have to be ignored. A standard term (a constant or a vari-
erals, andn > 0, m > k > 0. The disjunction able) within an actual atom indicates a ‘group-by’ attribute,
ai V .-+ V a, is theheadof r, while the conjunction whereas parameter terms {'symbols) indicate attributes
b, ...,bg, not bpiq,...,not b, is thebodyof r. A rule to be considered as parameter. The intuitive meaning of the
having precisely one head literal (ize= 1) is called anor- above template atom is to define a predicate computing the
mal rule. A rule without head literals (i.ex = 0) is usually companies with maximum value of the ‘income’ attribute
referred to as aimtegrity constraini(or strong constraint (the third attribute of theompanypredicate), grouped by the

A DLP programis a set ofDLP rules. The semantics ofa State’ attribute (the second one), ignoring the first attribute.
DLP program is introduced through the Gelfond-Lifschitz The computed values dfncome are returned through the

transform as defined in (Lifschitz 1996). GiverDa P pro- output list.
gram P, we denoteM (P) the set of stable models d?) T
computed according to the Gelfond-Lifschitz transform. Knowledge Representation byDLP

A DLPT program is aDLP program, where rules and In this section we show by examples the main advantages
constraints may contain (possibly negattafhplate atoms of template programming. Examples point out the provision
Definition of template atoms is provided in the following of of a succinct, elegant and easy-to-use way for quickly intro-
this section. ducing new constructs through tB.P” language.

Definition 1.2 A template definitionD consists of:

~a template header, Aggregates. Aggregate predicates (Ross & Sagiv 1997),

allow to represent properties over sets of elements. Aggre-
#template np[fi(b1), .., fa(bn)](bnt1) gates or similar special predicates have been already studied
and implemented in several ASP solvers (Dell’ Aratial. ;
Simons 2000): the next example shows how to fast proto-
type aggregate semantics without taking into account of the
efficiency of a built-in implementation. Here we take ad-
vantage of the template predicatex, defined in Example
1.1. The next template predicate defines a general program
2Disjunctive Logic Programming. Throughout this paper, we 0 count distinct values of a predicate given an order re-

will adopt the first historical definition of ASP (Lifschitz 1999) as lation succ defined on the domain qf. We assume the
synonym of Disjunctive Logic Programming. domain of integers is bounded to some finite value.

where each; (1 < i < n+1) is a nonnegative integer value,
and f1,..., f, are predicate names, said in the following
formal predicatesnp, is calledtemplate name

- an associate®LPT subprogram enclosed in curly braces;
np mMay be used within the subprogram as predicate of arity

#template
count[p(1),succ(2)](1)

{
partialCount(0,0).
partialCount(l,V) :- not p(Y),
1=Y+1, partialCount(Y,V).
partialCount(1,V2) :- p(Y), 1=Y+1,
partialCount(Y,V), succ(V,V2).
partialCount(1,V2) :- p(Y),I=Y+1,
partialCount(Y,V),
max[succ(*,$)](V2).
count(M) :- max[partialCount($,*)](M).

}

The above template definition is conceived in order to
count, in a iterative-like way, values of the predicate
through thepartialCount predicate. A ground atom
partialCount(i,a) means that at the stagethe constant

a has been counted up. The predicaient takes the value
which has been counted at the highest (i.e. the last) stage
value. The above program is somehow involved and shows
how difficult could be to simulate aggregate constructs in
Answer Set Programming. Anyway, the use of templates
allows to write it once, and reuse it as many times as neces-
sary.

It isy worth noting howmax is employed over the binary
predicatepartialCount , instead of an unary one. Indeed,
the'$’ and* symbols are employed to project out the
first argument opartialCount . The last rule is equiva-
lent to the piece of code:

partialCount’(X) :- partialCount(_,X).
count(M) :- max[partialCount'(*)](M).

Definition of ad hoc search spaces. Template definitions
can be employed to introduce and reuse constructs defin-
ing the most common search spaces. This improves declar-
ativity of ASP programs to a larger extent. The next two
examples show how to define a predicatdoset and a
predicatepermutation , ranging, respectively, over sub-
sets and permutations of the domain of a given predigate
Such kind of constructs enriching plain Datalog languages
have been proposed, for instance, in (Greco & 8a@97;
Cadoliet al. 2000).

#template
subset[p(1)](1)
{
subset(X) v -subset(X) :- p(X).
}
#template permutation[p(1)](2).
{
permutation(X,N) v npermutation(X,N)
- p(X),#int(N),count[p(*),>(*,*)](N1),N<=N1.

- permutation(X,A),permutation(Z,A), Z <> X.
- permutation(X,A),permutation(X,B), A <> B.
covered(X) :- permutation(X,A).

- p(X), not covered(X).

}

The explanation of theubset template predicate is quite
straightforward. As for thgermutation definition, a
ground atompermutation(z,i) tells that the element

(taken from the domain gf), is in position: within the cur-
rently guessed permutation. The rest of the template subpro-
gram forces permutations properties to be met.

Next we show howcount andsubset can be exploited
to succinctly encode thk-clique problem (Garey & John-
son 1979), i.e., given a gragh (represented by predicates
node andedge), find if there exists a complete subgraph
containing at least nodes (we consider here the 5-clique
problem):

in_clique(X) :- subset[node(*)](X).

- countfin_clique(*),>(*)](K), K < 5. :-

in_clique(X),in_clique(Y), X <> Y, not edge(X,Y).

The first rule of this example guesses a clique from a subset
of nodes. The first constraint forces a candidate clique to be
at least of5 nodes, while the last forces a candidate clique
to be strongly connected. Tipermutation template can

be employed, for instance, to encode the Hamiltonian Path
problem: given a grapty, find a path visiting each node of

G exactly once:

path(X,N) :- permutation[node(*)](X,N).
- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Handling of complex data structures. DLPT can be
fruitfully employed to introduce operations over complex
data structures, such as sets, dates, trees, etc.

Sets Extending Datalog with Set programming is another
matter of interest for the ASP field. This topic has been al-
ready discussed (e.g. in (Kuper 1990; Leone & Rullo 1993)),
proposing some formalisms aiming at introducing a suit-
able semantics with sets. It is fairly quick to introduce set
primitives usingDLP”’; a setS is modeled through the do-
main of a given unary predicate Intuitive constructs like
intersection , union , or symmetricdifference ,
can be modeled as follows.

#template intersection[a(1),b(1)](1).
{
intersection (X) :-
}
#template union[a(1),b(1)](1).
{
union(X) :- a(Xx).
union(X) :- b(X).
}
#template symmetricdifference[a(1),b(1)](1)
{
symmetricdifference(X)
- union[a(*),b(*)](X),
not intersection[a(*),b(*)](X).

a(X),b(x).

}

Dates managing time and date data types is another impor-
tant issue in engineering applicationsf P. For instance,

in (lanniet al. 2003 Reggio Calabria Italy), it is very impor-
tant to reason on compound records containing date values.
The following template shows how to compare dates repre-
sented through a ternary relati¢aiay, month, year

#template before[datel1(3),date2(3)](6)

{
before(D,M,Y,D1,M1,Y1)

- date1(D,M,Y),date2(D1,M1,Y1),Y<Y1.
before(D,M,Y,D1,M1,Y1)

- date1(D,M,Y),date2(D1,M1,Y1),Y==Y1,M<M1.
before(D,M,Y,D1,M1,Y1)

- date1(D,M,Y),date2(D,M1,Y1),Y==Y1,M==M1,D<D1.
}

Semantics ofDLPT

The semantics of thBLPT language is given through a suit-
able “explosion” algorithm. It is given &©LPT program
P. The aim of theExplodealgorithm, introduced next, is to
remove template atoms frofd. Each template atomis re-

placed with a standard atom, referring to a fresh intensional

predicatep;. The subprogram,, defining the predicatg;,
is computed taking into account of the template definition
D(t) associated te. Actually, many template atoms may

be grouped and associated to the same subprogram. The

concept of atom signature, introduced next, helps in find-
ing groups of equivalent template atoms. The final output
of the algorithm is &LP programP’. Answer sets of the
originating programP are constructedyy definition from
answer sets oF’. Throughout this section, we will refer to
Example 1.1 as running example. By little abuse of notation,
a € P (resp.a € r) means that the atom appears in the
programpP (the ruler, respectively).

Definition 1.4 Given a template atonty the corresponding
template signatura(¢) is obtained front by replacing each
standard term with a conventional (mute variablésym-
bol. Let D(s(t)) be the template definition associated to the
signatures(t); Given aDLP” programP, let A(P) be the
set of template atoms occurring . Let S(A(P)) be the
set of signature$s(t) : t € A(P)}. O

For instancemax[p(*,S,$)](M) has the same signature
(max[p(*,_$)I)) asmax[p(*,a,$)I(H)

The Explode algorithm

The Explode algorithm € in the following) is sketched in
Figure 1. It is given &LP” programP and a set of tem-
plate definitionsI’. The output of€ is aDLP programP”’.

£ takes advantage of a stack of signatuses/hich contains
the set of signatures to be processed; d/sebntains the al-
ready processed signaturésis initially filled up with each
template signature occurring withia, while U is initially
empty.

The purpose of the main loop &f is to iteratively apply
the & (Unfold) operation toP, until S is empty. Given
a signatures, thel/ operation generates from the template
definition D(s) a DLPT programP* which defines a fresh
predicatet®, wheret is the template name a&f In cases is
being processed for the first time ¢ U), P? is appended
to P; furthermore, each template atame P, such thatu
has signature, is replaced with a suitable atomi(X'). Itis
important pointing out that, i* contains template atoms,
the unfolding operation updatéswith new template signa-
tures.

We show next howP? is constructed and template atoms are
removed.

Explode(input: aDLPT programP, a set of template definitioris.
Outputs: an updated version 8f of P in DLP form.
Data Structures: a stack, a setU)
begin
pushS(A(P))in S;
U=0;P' =P
while (S is not empty)do begin
pop a template signaturefrom S;
/IStart of thel4 (Unfold) operation;
if (sgU)
constructP® (see Subsection), then set= P U P?;
pushS(A(P?))in S;
for each template atom € P
if a has signature
construct the standard atoni (X’) (see Subsection)
replacea with a® (X');
/IEnd of thel/ operation;
U =UU{s}.
end;
end.

Figure 1:The Explode £) Algorithm

Let the header oD(s) be
#template t[f1(b1), ...
Let s be of the form
tp1(Xa), - pa(Xn)[(Xnt)

Given a special listX of terms, letX[j] denote thej!"
term of X; let fr(X) be a list of |X| fresh variables
Fx,...,Fx x; letst(X),pr(X) andpa(X) be the sub-
list of (respectively) standard, projection and parameter
terms withinX. Given two listsA andB, let A&B be the

list obtained appendinB to A.

How P? is constructed.

The programpP* is built in two steps. On the first step’

is enriched with a set of rules, intended in order to deal with
projection variables.

For eactp; € s, we introduce a predicaig and we enrich
P# with the auxiliary rulep; (X.) « p;(X!), where:

- X! is built fromX; substitutingor (X;) with fr(pr(X;)),
substituting pa(X;) with fr(pa(X;)), and substituting
st(X;) with fr(st(X;));

- X! is settofr(st(X;))& fr(pa(X;)).

For instance, given the signature

so = mazx|[student($,*)](-)
and the example template definition given in Example 1.1,
let L be the list{(_,$,*);itis introduced the rule:

student®® (Fyy 11, Fpa(r),1)
: —student(FSt(L)ﬂl, Fpr(L),h Fpa(L),l)'

Note that projection variables are filtered out fretndent®.

In the second step, for each rutebelonging toD(s), we
create an updated versiof to be put inP*?, where each
atoma € r is modified this way:

-if ais f;(Y) wheref; is a formal predicate, it is substituted
with the atonp$ (Y”). Y’ is settofr(st(X;))&Y;

» Fr(bn)](brt1)

- if a is a either a standard (included atoms haviag pred- - Finding whether and whe# terminates; in general, we

icate name) or a special atom (in this latter caseccurs observe that might not terminate, for instance, in case of

within a template atom)(Y), it is substituted with an atom recursive template definitions. Anyway, we prove that it can

p*(Y’'), where be decided in polynomial time whethérterminates on a
Yvect' = fr(st(X1))& ... &fr(st(X,))&Y. given input.

- Establishing whethed LP” programs are encoded as effi-
ciently asDLP programs. In particular, we are able to prove
thatP’ is polynomially larger tha®. ThusDLP? keeps the
same expressive power & P. This way, we are guaranteed
thatDLP” program encodings are as efficient as pRIoP
encodings, since unfolded programs are always reasonably
larger with respect to the originating program.

Example 1.5 For instance, consider the rule
maz(X):— p(X), not exceeded(X).
from Example 1.1, and the signature
s9 = max[student(_,$,%)]() ;
let L be the special list, $, x); according to the steps intro-
duced above, this rule is translated to

maz®?(Fy,1, X)—student™ (Fy,1, X), Definition 1.8 It is given aDLP? program P, and a set
not exceeded™(Fy1, X). 0 of template definitiong”. The dependency graptis p =
(V, E) encoding dependencies between template atoms and
How template atoms are replaced. template definitions is built as follows. Each template def-
Consider a template atom in the form inition ¢ € T will be represented by a corresponding node
tpr(X1), .., pn(X)] (Xpg1). vy of V.V contains a nodep associated ta” as well.
It is substituted with E will contain a direct edgéu,, vy) if the templatet con-
£5(X) tains a template atom referring to the templédtenside its
where subprogram (as for the node referredRpwe consider the
X' = st(X1)& ... &st(X,)&Y. whole programP). Let Gz, p(u) € Gt p be the subgraph
containing nodes and arc 6f p reachable from. O
Example 1.6 The complete output &f on the constraint . T
—maz[student(_, $, +)] (M), M > 25. Theorem 1.91tis given aDLP" programp, and a.set_of
coupled with the template definition ofax given in Exam- template definitiond". It can be decided in polynomial time
ple 1.1 s: whether€ terminates whe® and7" are taken as input.
Proof. (Sketch). It is easy to see thé&tterminates iff
student®(S1, P1) :— student(S1, -, P1). Gr p(up) is acyclic. Indeed, consider that each operation
exceeded®®(FL1,X) :— student™(FL1,X), of unfolding corresponds to the visit of an arc®f p(up).
student®®(Fu1,Y),Y > X. If GT_,P(U,P) acyclic, & b_eha_v_es Iike_an in-depth, arc visit
maz®(Fo1, X) — student™(Fp., X), algorithm, Where_ no arc is visited tW|c§.
: o emeededé (Fu1. X) Vice versa, if Grp(up) contains some cycle
. e u,v1,...,0,,u, an infinite series of new signatures
= maz™(Sex, M), M > 25. o will be produced and queued for processing. Indeed,
We are now able to give the formal semanticsDufP” . assume each artu,v;), (vi,v2),...,(vs,u) has been

processed. After thev,,,u) processing, the an@:, v;) will
be re-enqueued with a new signature, not present in the set
of used signaturel, thus causing an infinite loop. O

Definition 1.10 A set of template definitions” is said
nonrecursiveif for any DLPT program P, the subgraph
Gr.p(up) is acyclic. O

It is important highlighting that stable models oL P”
program are, by definition, constructed in terms of stable
models of an equivaleLP program.

Definition 1.7 Given aDLP” programP, and a set of tem-
plate definitionsT, let P’ the output of theExplodealgo-

rithm on input(P, T'). Let H(P) be the Herbrand base of : i . .
P’ restricted to those atoms having predicate hame appear- It is useful to deal with nonrecursive sets of template defini-

ing in P. Given a stable modeh € M (P'), then we define tion, since they may be safely employed with any program.
H(P)n'm as a stable model a?. 0 Checking whether a set of template definitions is nonrecur-

.)) sive is quite easy.

Note that the Herbrand base oDa.P® programis defined prgnosition 1.11 A set of template definition® is nonre-
in terms of the Herbrand base ofdP programwhich is e i i :

cursive iff Gy is acyclic.
notthe output of€. ’

Theorem 1.12 Itis given aDLP? programP, and a nonre-

Theoretical properties of DLP? cursive set of template definitiods The outputP’ of £ on

input (P, T') is polynomially larger thar® andT'.
Proof. (Sketch). We simply observe that each execution
of U/ adds toP a number of rules/constraints whose overall
size is bounded by the size @ If T is nonrecursive, the

*Depending on the form oD (s), some template atom might ~ Number ofi/ operations carried out by corresponds to the

not to be allowed, since some atom with same predicate name but Number of arcs otz p. The number of arcs o'z, p is
with mismatched arities could be generated. We do not discuss bounded by the overall size @fandP. Thus the size of”’

here these syntactic restriction for space reasons. isO(|T|(IT| + | P|))- m

The explosion algorithm replaces template atoms from a
DLPT programP, producing eDLP programP”’. Itis very
important to investigate about two theoretical issues:

Filtered
Models

ASP | Collectionof [~ ol
Models —‘POSTPARSLRI

SOLVER |

. :
DLP PREPARSER DLP
Program Tnternal

Format

DLP" Asp
INFLATER | Program

Figure 2: Architecture of th®LPT compiler

Corollary 1.13 DLP” has the same expressive power as
DLP.

Proof. (Sketch). It is proved in (Dantsiat al. 2001) that
plain DLP programs (under the brave reasoning semantics)
capture thes!” complexity classDLP? programs may al-
low to express more succinct encodings of problems. Any-
way, since unfolded program produced &yre polynomi-
ally larger only, andDLP” semantics is defined in term of
the equivalent, unfoldedLP programDLP7T has the same
expressiveness propertiesdkP. O

System architecture and usage

The DLPT language has been implemented on top of the
DLV system (Fabeet al. 1999; Faber, Leone, & Pfeifer
2001; Faber & Pfeifer since 1996). The current version
of the language is available through tBe.P” Web page
(DLPT). The overall architecture of the system is shown
in Figure 2. TheDLPT system work-flow is as follows.

A DLPT program is sent to &LP? pre-parser, which
performs syntactic checks (included nonrecursivity checks),
and builds an internal representation of eP” program.
The DLPT Inflater performs theExplode Algorithm and
produces an equivalemLV programP’; P’ is piped to-
wards theDLV system. The model3/(P’) of P’, com-
puted by DLV, are then converted in a readable format
through the Post-parser module; the Post-parser filters out
from M (P’) informations about internally generated predi-
cates and rules.

Conclusions

We presented th®LPT language, an extension of ASP
allowing to define template predicates. The proposed lan-
guage is, in our opinion, very promising: we plan to further
extend the framework, and, in particular, we are thinking
abouta) generalizing template semantics in order to allow
safe forms of recursion between template definitidmsn-
troducing new forms of template atoms in order to improve
reusability of the same template definition in different con-
texts, c) extending the template definition language using
standard languages such@s+. As far as performances are
concerned, we point out that these are strictly tied to perfor-
mances of resultin@LP programs. Nonetheless, this work
aims at introducing fast prototyping techniques, and does
not consider time performances as a primary tédrget

“We would like to thank Nicola Leone and Luigi Palopoli for
their fruitful remarks.

References

Anger, C.; Konczak, K.; and Linke, T. 200lNoMoRe A Sys-
tem for Non-Monotonic Reasoning. Logic Programming and
Nonmonotonic Reasoning — 6th International Conference, LP-
NMR’'01, Vienna, Austria, September 2001, Proceedingmber
2173 in Lecture Notes in Al (LNAI), 406—410. Springer Verlag.

Cadoli, M.; lanni, G.; Palopoli, L.; Schaerf, A.; and Vasile, D.
2000. NP-SPEC: An executable specification language for solv-
ing all the problems in NPComputer Languages, Elsevier Sci-
ence, Amsterdam (Netherlan@®§(2-4):165-195.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001. Com-
plexity and Expressive Power of Logic ProgrammiA¢&M Com-
puting Survey83(3):374-425.

Davison, A. 1993. A survey of logic programming-based object-
oriented languages. In Wegner, P.; Yonezawa, A.; and Agha,
G., eds.Research Directions in Concurrent Object Oriented Pro-
gramming 42-106. MIT Press.

Dell’Armi, T.; Faber, W.; lelpa, G.; Leone, N.; and Pfeifer, G.
Aggregate functions in disjunctive logic programming: Seman-
tics,complexity,and implementation in DLMnternational Joint
Conference on Artificial Intelligence (IJCAI 2003)

The DLF" web site http://dipt.gibbi.com

East, D., and Truszcngki, M. 2000. dcs: An implementation of
DATALOG with Constraints. InProceedings of the 8th Interna-
tional Workshop on Non-Monotonic Reasoning (NMR’2000)

Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S. 2000. Solving
Advanced Reasoning Tasks using Quantified Boolean Formulas.
In Proceedings of the Seventeenth National Conference on Arti-
ficial Intelligence (AAAI'00), July 30 — August 3, 2000, Austin,
Texas USA417-422. AAAI Press / MIT Press.

Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2000. Declara-
tive Problem-Solving Using the DLV System. In Minker, J., ed.,
Logic-Based Atrtificial Intelligence&Kluwer Academic Publishers.
79-103.

Eiter, T.; Gottlob, G.; and Leone, N. 1997. Abduction from Logic
Programs: Semantics and Complexiteoretical Computer Sci-
encel89(1-2):129-177.

Faber, W., and Pfeifer, G.
http://www.dlvsystem.com/.

Faber, W.; Leone, N.; Mateis, C.; and Pfeifer, G. 1999. Us-
ing Database Optimization Techniques for Nonmonotonic Rea-
soning. InProceedings of the 7th International Workshop on
Deductive Databases and Logic Programming (DDLP; 9985
139. Prolog Association of Japan.

Faber, W.; Leone, N.; and Pfeifer, G. 2001. Experimenting with
Heuristics for Answer Set Programming. Rroceedings of the
Seventeenth International Joint Conference on Atrtificial Intelli-
gence (IJCAI) 2001635-640. Seattle, WA, USA: Morgan Kauf-
mann Publishers.

Garey, M. R., and Johnson, D. S. 197@omputers and In-
tractability, A Guide to the Theory of NP-Completened¥.H.
Freeman and Company.

Greco, S., and Saac D. 1997. NP optimization problems in
datalog. International Symposium on Logic Programming. Port
Jefferson, NY, USA81-195.

lanni, G.; Calimeri, F.; Lio, V.; Galizia, S.; and BanfA. 2003.
Reggio Calabria, Italy. Reasoning about the semantic web using
answer set programming. WPPIA-GULP-PRODE 2003. Joint
Conference on Declarative Programmirg4—336.

The ICONS web sitehttp://www.icons.rodan.pl/

since 1996.DLV homepage.

The Infomix web site. http://www.mat.unical.it/infomix.

Kuper, G. M. 1990. Logic programming with setdournal of
Computer and System Scienddg1):44—64.

Leone, N., and Rullo, P. 1993. Ordered logic programming with
sets.Journal of Logic and Computatia8(6):621-642.

Lifschitz, V. 1996. Foundations of Logic Programming. In
Brewka, G., ed.Principles of Knowledge Representatidtan-
ford: CSLI Publications. 69-127.

Lifschitz, V. 1999. Answer set planning. International Con-
ference on Logic Programmin@3-37.

McCain, N., and Turner, H. 1998. Satisfiability Planning with
Causal Theories. IfProceedings Sixth International Confer-
ence on Principles of Knowledge Representation and Reasoning
(KR98), 212—-223. Morgan Kaufmann Publishers.

Niemeh, 1. 1999. Logic programming with stable model seman-
tics as constraint programming paradighmnals of Mathematics
and Artificial Intelligence25(3—4):241-273.

Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 1999. An A-Prolog Decision Support System for
the Space Shuttle. IRroceedings of the 1st International Work-
shop on Practical Aspects of Declarative Languages (PADL'99)
number 1551 in Lecture Notes in Computer Science, 169-183.
Springer.

Rao, P.; Sagonas, K. F.; Swift, T.; Warren, D. S.; and Freire,
J. 1997. XSB: A System for Efficiently Computing Well-
Founded Semantics. Proceedings of the 4th International Con-
ference on Logic Programming and Non-Monotonic Reasoning
(LPNMR’97) number 1265 in Lecture Notes in Al (LNAI), 2—
17. Dagstuhl, Germany: Springer Verlag.

Ross, K. A,, and Sagiv, Y. 1997. Monotonic aggregation in
deductive databasedournal of Computer and System Sciences
54(1):79-97.

Simons, P. 2000Extending and Implementing the Stable Model
Semantics Ph.D. Dissertation, Helsinki University of Technol-
ogy, Finland.

