
ASP − PROLOG : A System for Reasoning about Answer Set Programs in Prolog

Omar Elkhatib, Enrico Pontelli, Tran Cao Son
Department of Computer Science

New Mexico State University
{okhatib | epontell | tson}@cs.nmsu.edu

Abstract

We present a system (ASP − PROLOG) which pro-
vides a tight and well-defined integration of Prolog and
Answer Set Programming (ASP). The combined system
enhances the expressive power of ASP, allowing us to
write programs that reason about dynamic ASP mod-
ules and about collections of stable models. These fea-
tures are vital in a number of application domains (e.g.,
planning, scheduling, diagnosis). We describe the de-
sign of ASP − PROLOG along with its implementa-
tion, realized using CIAO Prolog and Smodels.

Introduction
Stable model semantics (Gelfond & Lifschitz 1988) is a
widely accepted approach to provide semantics to logic pro-
grams with negation. Stable model semantics relies on the
idea of accepting multiple minimal models as a descrip-
tion of the meaning of a program. In spite of its wide ac-
ceptance and its extensive mathematical foundations, sta-
ble models semantics have only recently found its way into
“practical” logic programming. The recent successes have
been sparked by the availability of efficient inference en-
gines (such as Smodels (Niemelä & Simons 1997), Cmodels
(Lierler & Maratea 2004), ASSAT (Lin & Zhao 2002), and
DLV (Eiter et al. 1998)) and a substantial effort towards
understanding how to write programs under stable mod-
els semantics (Niemelä 1999; Marek & Truszczyński 1999;
Lifschitz 1999). This has led to the development of a novel
programming paradigm, commonly referred to as Answer
Set Programming (ASP). ASP is a computation paradigm in
which logical theories (Horn clauses with negation) serve as
problem specifications and solutions are represented by col-
lection of models. ASP has been concretized in a number
of related formalisms—e.g., disjunctive logic programming
(Eiter et al. 1998). In comparison to other non-monotonic
logics, ASP is syntactically simple and, at the same time,
very expressive. ASP has been adopted in various do-
mains (e.g., (Lifschitz 1999; Heljanko & Niemelä 2003;
Nogueira et al. 2001)).

Most existing ASP inference engines have been extended
to provide front-ends that are suitable to encode different
types of knowledge. Smodels provides a rich set of built-
in structures to express choices, weight-constraints, and re-
stricted forms of optimizations. DLV provides different

classes of constraint rules (e.g., weak constraints), aggre-
gates, and alternative front-ends (e.g., diagnosis, planning),
allowing the development of programs in specific applica-
tions domains using very high-level languages. In spite of
these extensions, there are aspects of reasoning that cannot
be conveniently expressed in ASP:

• The development of an ASP program is mostly viewed
as a monolithic and batch process. Most existing ASP
systems offer only a batch approach to execution of
programs—programs are completely developed, they go
through a “compilation” process, executed and finally sta-
ble models are proposed to the user. The process lacks
of any level of interaction with the user. In particu-
lar, it does not directly support an interactive develop-
ment of programs (as it is possible in the case of Prolog),
where one can immediately explore the results of simply
adding/removing rules.

• ASP programmers can control the computation of stable
models through the rules that they include in the logic pro-
gram. Nevertheless, ASP systems offer very limited capa-
bilities for reasoning on the whole class of stable mod-
els associated to a program—e.g., to perform selection
of models according to user-defined criteria or to com-
pare across models. These activities are very important
in many application domains—e.g., to express soft con-
straints on models, to support preferences when using
ASP to perform planning.

• ASP systems are independent systems; interaction with
other languages can be performed only through low level
and complex APIs; this prevents programmers from writ-
ing programs that manipulate ASP programs and stable
models as first-class citizens. We would like to be able
to write programs in a high-level language (Prolog in this
case), which are capable to access ASP programs, modify
their structure (by adding or removing rules and facts),
and access and reason with stable models. This type of
features is essential in many ASP applications. For ex-
ample, ASP planners require to pre-specify the maximum
length of the plan; the ability to access and modify ASP
programs would allow us to write programs that automat-
ically modify the length of the plan until a plan with the
desired property is found.

In this project we propose a system, called

ASP − PROLOG. The system represents a tight and
semantically well-defined integration of ASP in Prolog.
The language is developed using the module and class
capabilities of CIAO Prolog. ASP − PROLOG allows
programmers to assemble a variety of different modules
to create a program; along with the traditional types of
modules supported by CIAO Prolog, it allows the presence
of an arbitrary number of ASP modules, each a collection
of ASP rules and facts. Each Prolog module can access any
ASP module (using the traditional module qualification of
Prolog), read its content, access its models, and modify it
(using the traditional assert and retract).

We are not aware of any system with the same capabili-
ties as ASP − PROLOG. Relatively limited work has been
presented exploring effective ways of integrating ASP in the
context of other programming languages. Smodels provides
a very low level API (Syrjänen 1998) which allows C++
programs to use Smodels as a library. DLV does not doc-
ument any external API, although a Java wrapper has been
recently announced (dlv 2003). XASP (Castro, Swift, &
Warren 2002) proposes an interface from XSB to the API
of Smodels. It provides a subset of the functionalities of
ASP − PROLOG, with a deeper integration with the capa-
bilities of XSB of handling normal logic programs.

Brief Semantic Foundations
In this section, we discuss the semantic foundation of
ASP − PROLOG and motivate the basic constructions of
the language. For simplicity, we will assume a pure Prolog
system, though in the real systems, full-blown Prolog will
be allowed.

Language Formalization
Let us consider a language signature 〈F ,V,Π〉, where
• V is a denumerable set of variables;

• F is a set of function symbols; in particular, F = FP ∪
FA ∪ FC , where FP are called user functions, FA are
called ASP functions, and FC are called interface func-
tions. We assume that FA ⊆ FP and FA is finite.

• Π is a set of predicate symbols; in particular, Π = ΠP ∪
ΠA ∪ ΠC , where true,false ∈ ΠP ∩ ΠA and

• ΠP are called user-defined predicates;
• ΠA are called ASP-defined predicates;
• ΠC are called Interface predicates. In this pre-

sentation we will limit our attention to ΠC =
{assert,retract,models}.

• FA ∪ ΠA ⊆ FC .
The function ar determines the arity of the various symbols.
We assume that ∀f ∈ FA : ar(f) = 0, and assert, re-
tract, and models are all unary predicates.

The language adopted is multi-sorted, and it is based on
the two sorts P (i.e., Prolog) and A (i.e., ASP). The language
should meet the following requirements:
• each function (predicate) symbol f in FP (ΠP) has sort

Par(f) → P (Par(f));

• each function (predicate) symbol f in FA (ΠA) has sort
Aar(f) → A (Aar(f));

• the symbols in FA and ΠA are of sort A and P at the same
time.

Intuitively, the sort A is used to identify terms and atoms that
belong to ASP modules, while P is used for the construction
of Prolog modules. We assume that terms and atoms are
well-formed w.r.t. sorts. An atom built using symbols from
ΠA and FA ∪ V is called an ASP-atom; an atom built using
symbols from FP ∪ V and ΠP is called a Prolog-atom; an
atom built using symbols from FP ∪ V and ΠC is called an
Interface-atom.

Definition 1 An ASP-literal is either an ASP-atom or a for-
mula of the type not A, where A is an ASP-atom. An ASP
clause is a rule of the form1

A :− L1, . . . , Ln (1)

:− L1, . . . , Ln (2)

where A is a ground ASP-atom, and L1, . . . , Ln are ground
ASP-literals. Rules of type (2) are known as constraint rules.

Definition 2 (ASP constraint) An ASP constraint is a for-
mula of the type L1 ∧ . . . ∧ Lk, where k ≥ 0 and each Li

is
• an ASP-literal (A or not A); or

• a formula of the type α : L where α is a P-term and L is
an ASP-literal.

Definition 3 (Interface Constraints) An Interface con-
straint is a conjunction L1 ∧ . . . ∧ Lk (k ≥ 0) of interface
atoms of the type

assert(A :− B1, . . . , Bn)

retract(A :− B1, . . . , Bn)

models(t)

where A :− B1, . . . , Bn is an ASP clause and t is a P-term.

Definition 4 (ASP − PROLOG rule) An
ASP − PROLOG rule is a formula of the form

H :− C1, C2 [] B1, . . . , Bk

where H, C1, C2, and B1, . . . , Bk are a Prolog-atom, an
ASP-constraint, an Interface constraint, and Prolog-atoms,
respectively.

A static ASP − PROLOG rule (or, simply, a static rule)
is a ASP − PROLOG rule that does not contain any inter-
face constraint based on assert or retract.

Definition 5 (ASP − PROLOG program) An
ASP − PROLOG program2 is a pair 〈Pr,As〉 where
Pr is a set of ASP − PROLOG rules and As is a set
of ASP rules. A static ASP − PROLOG program is a
ASP − PROLOG program 〈Pr,As〉 such that all the rules
in Pr are static.

1For convenience, we use ‘∧’ interchangebly with ‘,’ in writ-
ting ASP-clauses, whenever it seems that using ‘∧’ improves the
readability of the paper.

2For the sake of simplicity we focus on a single ASP module;
the presentation can be easily generalized to accommodate multiple
ASP modules.

For example, the following is an ASP clause: p(a) :− q(a)∧
r(b) where p, q, r are in ΠA and a, b are in FA.

Operational Semantics
Let us denote with HA (HP) the Herbrand universe built us-
ing the symbols in FA (FP). The notation H will represent
the complete Herbrand universe. We will also use the nota-
tion BA (resp. BP , B) to denote the Herbrand base obtained
from the symbols of FA ∪ ΠA (resp. FP ∪ ΠP , F ∪ Π).

Let us start by focusing on static programs. The absence
of assert and retract operations in the interface con-
straints guarantees that the content of the As part of the pro-
gram will remain unchanged throughout the execution.

Let P = 〈Pr,As〉 be a static ASP − PROLOG pro-
gram. The component As is a standard answer-set program
(Niemelä 1999); let us denote with

M(As) = {M ⊆ BA | M is a stable model of As}

The semantics for P can be derived as a natural extension
of the semantics of pure logic programming; the notion of
model should simply be extended to accommodate for the
meaning of ASP-constraints and interface constraints. The
only additional element we require is a map used to name the
models of the As part of the program; let ν : M(As) → HP

be an injective function, called the model-naming function.
Then, a pair 〈M,ν〉 is a model of the program if M ⊆ BP

and it satisfies all the Pr rules; in particular, the model will
satisfy a ground ASP-constraint and interface constraint if:
• A is an ASP-literal, then 〈M,ν〉 |= A iff ∀S ∈

M(As).S |= A

• A is an ASP-constraint of the form t : B, then 〈M,ν〉 |=
A iff ∃S ∈ M(As).(ν(S)=t∧S|=B)

• A is an interface constraint of the type models(t), then
〈M,ν〉 |= A iff ∃S ∈ M(As).ν(S)=t

It is straightforward to extend these definitions to deal with
entailment of an arbitrary goal and to define when clauses
are satisfied by the model. Observe that, given a program
P = 〈Pr,As〉 and a fixed model naming function ν, we
have that there exists a unique minimal model 〈M,ν〉 of P ,
according to the ordering v defined as: 〈M1, ν〉 v 〈M2, ν〉
iff M1 ⊆ M2.

Let us now proceed in extending the semantics structure
when updates to the ASP theory are allowed through the
assert and retract interface constraints. We will fo-
cus on a top-down operational semantics.

Definition 6 (Update) Given a program P = 〈Pr,As〉 and
an interface constraints p, we define the update of P w.r.t. p
(i.e., U(P, p)) as follows:

U(P, p) =

{

〈Pr,As ∪ {r}〉 if p = assert(r)
〈Pr,As \ {r}〉 if p = retract(r)

Let R be a computation rule (Lloyd 1987)—i.e., a function
R : B∗ → B which is used to select a subgoal; in partic-
ular we will denote with RProlog the computation rule that
selects always the leftmost subgoal.

Definition 7 (State) A state is a tuple 〈G, σ, τ, As〉 where

• G ∈ B∗ is called the goal list

• σ is a substitution (i.e., a function from V to H

• τ is a function τ : HP → 2BA called model retrieval
function

• As is an ASP-program.
Given a program P = 〈Pr,As〉, the initial state is the tu-
ple 〈G0, ε, τ0, As〉, where G0 is the initial goal, ε is the
empty substitution (i.e., the function such that forall X ∈
V.ε(X) = X), and τ0 is the function that is undefined for
every input.

The notion of entailment is defined through a transition re-
lation between states.

Definition 8 (Derivation Step) Let 〈G, σ, τ, As〉 be a state.
The relation

〈G, σ, τ, As〉 |−R〈G
′, σ′, τ ′, As′〉

holds if:
• R(G) = A

• if A is a P-atom, then there exist a rule H :− B̄ ∈ Pr,
such that θ = mgu(A,H), σ′ = σ◦θ, τ = τ ′, As = As′,
and G′ = ([A/B̄]G)θ.

• if A is an ASP-literal, then there exists a ground sub-
stitution θ for A such that ∀S ∈ M(As).S |= Aθ,
G′ = (G \ {A})θ, σ′ = σ ◦ θ, τ ′ = τ , As′ = As.

• if A is of the form t : H , then there exists a grounding
substitution θ for t : H such that τ(tθ) is defined, τ(tθ) ∈
M(As), τ(tθ) |= Hθ, G′ = (G \ {A})θ, σ′ = σ ◦ θ,
τ = τ ′, As = As′.

• if A is of the form models(t), then there exists a
grounding substitution θ for t such that τ(tθ) is defined,
τ(tθ) ∈ M(As), G′ = (G \ {A})θ, σ′ = σ ◦ θ, τ ′ = τ ,
and As′ = As.

• if A is of the form assert(r), then G′ = G \ {A},
σ′ = σ, As′ = As ∪ {r}, K is a set of terms from HP

(model names) such that

• |K| = |M(As′)|

• for each t ∈ K we have that τ(t) is undefined
• s1, . . . , sr is an enumeration of K

• S1, . . . , Sr is an enumeration of M(As)

• τ ′ = τ ◦ {s1 7→ S1, . . . , sr 7→ Sr}

• if A is of the form retract(r), θ is a grounding sub-
stitution such that rθ ∈ As, then G′ = (G \ {A})θ,
σ′ = σ ◦ θ, As′ = As \ {rθ}, K is a set of terms from
HP (model names) such that

• |K| = |M(As′)|

• for each t ∈ K we have that τ(t) is undefined
• s1, . . . , sr is an enumeration of K

• S1, . . . , Sr is an enumeration of M(As)

• τ ′ = τ ◦ {s1 7→ S1, . . . , sr 7→ Sr}

Definition 9 (Entailment) Given a program P = 〈Pr,As〉
and a goal G, we say that P |= Gσ iff 〈G, ε, τ0, As〉 |
−∗

R〈∅, σ, τ, As′〉.

The ASP − PROLOG System
The ASP − PROLOG system has been developed as an ex-
tension of the CIAO Prolog system (Hermenegildo et al.
1999). The choice of CIAO was fairly natural, being a flex-
ible Prolog system, with a rich set of features aimed at fa-
cilitating the extension of the language (e.g., module system
and object oriented capabilities). The handling of the ASP
modules is left to the Smodels system (Niemelä & Simons
1997).

Concrete Syntax
The abstract syntax presented in the previous section has
been refined in the ASP − PROLOG system to better match
the characteristics of Prolog. Each ASP − PROLOG pro-
gram is composed of a collection of modules. We recog-
nize two types of modules: Prolog modules—which contain
standard CIAO Prolog code—and ASP modules—each con-
tains an ASP program. We will use an ASP program—called
plan.pl—that solves planning problems in the block world
domain, as a running example to illustrate the most impor-
tant syntactically features of our system. For our purpose,
it is enough to know that plan.pl consists of rules speci-
fying the initial configuration (left side of Fig 1), the goal
configuration (right side of Fig 1), and the effects of the ac-
tions (e.g., move(a, b) will make a on b if nothing is on top
of b, a) in this domain. The program has an input parame-
ter called steps that determines the (maximal) length of the
plan. A call to this program looks like
lparse -c steps=5 plan.pl | smodels 0
which will return all stable models of plan.pl, each cor-

responds to a plan of length 5. We will now detail the syntax
of ASP − PROLOG.

b

a

d

e

c d

b

c

a

e

Figure 1: A planning problem in the block world domain with 5
blocks a, b, c, d, and e.

Module Interface Prolog modules are required to declare
their intention to access any ASP modules; this is accom-
plished through the declarations

:− use asp(module name, file name)
:− use asp(module name, file name, parameters)

where the module name is the name used to address the ASP
module, file name is the file containing the ASP code, and
parameters is a list of parameters with their values, to be
passed from the Prolog module to the ASP module.

Example 1 A CIAO module might refer to the ASP module
plan as follows:
:- module(program1, [blocks solve/0]).
:- use asp(plan, ’plan.lp’, [(steps, 0)]).

The first line defines the CIAO module named program1
which exports a predicate named blocks solve. The sec-
ond line declares that program1will access the ASP module
plan, which is stored in the file plan.lp, with parameter
steps whose value is initiated with 0.

Interface Constraints We have provided a number of
predicates that allow Prolog modules to query and manage
ASP modules:

• model/2: in ASP − PROLOG models of an ASP mod-
ule can be retrieved using indices; the model predicate
relates an index number to the term representing the corre-
sponding model. The model predicate has to be qualified
with the ASP module on which it is meant to be applied.
E.g., the goal

plan:model(1, Q)

will allow a Prolog module to access the first model of
the module plan.pl. More precisely, variable Q will be
instantiated with the first model of plan.pl. The goal
will fail if the program plan.pl does not have a stable
model.3

• total stable model/1: the predicate is satisfied if
the argument is the number of models of the ASP module.
For example,

plan:total stable model(X), X>0
will succeed if plan.pl has at least one stable model and
fails otherwise.

• assert/1 and retract/1: the argument of these
predicates is a list of ASP rules. The effect of assert
is to add all the rules in the list to the ASP module, while
retract will remove the rules from the ASP module.
For example, if we are interested only in plans that do not
move block a on the table during their execution, we can
add a ASP-constraint that prevents the occurrence of the
action move(a, table). From a Prolog module, we can is-
sue
assert(plan:[(:-move(a,table,T),time(T))])
which will add the constraint
:-move(a, table, T), time(T).
to plan.pl.

• assert nb/1 and retract nb/1: the
ASP − PROLOG system provides also an alterna-
tive version of the assert and retract predicates.
The main difference is that the modifications derived
from assert and retract, as illustrated in the
semantics description in Section , will be undone during
backtracking, while the modifications to an ASP module
performed using assert nb and retract nb will
remain unaffected by backtracking.

• change parm/1: most ASP inference engines allow
the user to specify (typically as command-line arguments)
various parameters that affect the ASP computation (e.g.,
initial value for constants); the predicate change parm
allows the user to read and modify the value of such pa-
rameters dynamically. The following Prolog fragment al-
lows us to change the steps parameter of plan.pl:
3model is a simplified version of models/1 described earlier.

Prolog
Modules

ASP
Modules

ASP-Prolog
PreProcessor

CIAO
Prolog

ASP-Prolog
Goals

Answer
Substitutions

Updated
Prolog

Modules

Module Load

Interface
Modules

Model
Classes

Figure 2: Overall Structure of ASP − PROLOG Implementation

blocks_solve :-
plan:total_stable_models(X), X>0,
chk_condition(1, X, Q),
print_solution(Q, 0).
blocks_solve :-
plan:change_parm([(steps,V)]),
V1 is V+1,
plan:change_parm([(steps,V1)]),
blocks_solve.

Here, the predicate chk conditionwill check whether
a plan satisfies certain condition or not (see below) and
print solution will print the solution to the screen.
The first call to change parm will instantiate V to the
current value of steps, while the second will modify the
value of the constant.

• compute/2: this predicate has been introduced to
specifically match another control feature provided by
Smodels—it allows the presence of a compute statement,
used to establish bounds on the number of models and to
specify elements that have to be present in all the mod-
els. The compute predicate allows the Prolog module to
dynamically affect these properties. For example, if we
want to limit the maximum number of models to 3 in the
ASP module plan, then we can issue the goal plan :
compute(3,).

• clause/2: this predicate is used to allow a Prolog mod-
ule to access the rules of an ASP module—in the same
spirit as the clause predicate is employed in Prolog to
access the Prolog rules present in the program. The two
arguments represent respectively the head and the body of
the rule.

Example 2 Let us assume that the ASP module plan
contains the following rules defining the predicate p:

p(a) :− q(a), r(a). p(b) :− r(b).

Then the Prolog goal plan:clause(p(X), Y) has
two solutions:

{X 7→ a, Y 7→ (q(a), r(a))}
{X 7→ b, Y 7→ r(b)}

Observe that, due to the fact that the syntax of Smodels is
not ISO-compliant, certain Smodels constructs (e.g., cardi-
nality and weight constraints) have a slightly different syn-
tactic representation when used within Prolog modules. For

example, if an ASP module (e.g., module plan) contains the
rule

p :− 1{r, s, t}2
then the execution of the goal plan:clause(p,X)

will produce the substitution {X 7→′ {}′(1, (r, s, t), 2)}.

ASP Constraints The syntax used to express ASP con-
straints is the same one described in the abstract syntax.
E.g., if we would like to find plans that do not move block
a to the table (represented by the atom move(a, table, t)
where t is some number between 0 and steps), we can use
the following rules:
chk_condition(Y, _, Q) :-
plan:model(Y, Q),
chk_cond(Q), !.
chk_condition(Y, X, Q) :-
Y=<X, Y1 is Y+1,
chk_condition(Y1, X, Q).
chk_cond(Q) :-
Q: move(a, table, _), !, fail.
chk_cond(_).
The next group of rules extract a plan from a stable model
and display it on the screen:
print_solution(Q, T) :-
Q:move(_, _, T), !,
print_sol(Q, T),
T1 is T+1,
print_solution(Q, T1).

print_solution(_, _).
print_sol(Q, T) :-
Q:move(X, Y, T),
display(’move ’), display(X),
display(’ on ’), display(Y),
display(’ at time ’),
display(T), nl, fail.
print_sol(_, _).

System Implementation
The overall structure of the implementation is depicted in
Figure 2. The system is composed of two parts, a preproces-
sor and the actual CIAO Prolog system.

Preprocessing The input to the preprocessor is composed
of (i) the main Prolog module (Pr); (ii) a collection of

CIAO Prolog modules (m1,m2, . . . ,mn); (iii) a collection
of ASP modules (e1, e2, . . . , em). The output of the pre-
processor is: a modified version of the main Prolog mod-
ule (NP), a modified version of the other Prolog modules
(nm1, nm2, . . . , nmn), and for each ASP module ei the pre-
processor creates a CIAO module (imi) and a class defini-
tion (ci).4

The transformation of the Prolog modules consists of a
simple rewriting process, used to adapt the syntax of the in-
terface constraints and make it compatible with CIAO Pro-
log’s syntax. For example, the rules passed as arguments to
assert and retracts have to be quoted to allow the pe-
culiarities of ASP syntax (e.g., the use of braces for choice
rules) to be accepted.

The transformation of each ASP module leads to the cre-
ation of two entities that will be employed during the actual
program execution: an interface module and a model class.
These are described in the following subsections.

The preprocessor will also automatically invoke the CIAO
Prolog toplevel and load all the appropriate modules for ex-
ecution. The interaction with the user is the same as that of
the standard CIAO Prolog toplevel.

Interface Modules The preprocessor generates one inter-
face module for each ASP module present in the original
input program. The interface module is implemented as a
standard CIAO Prolog module and it provides the client Pro-
log modules with the predicates used to access and manage
the ASP module. The interface module is created for each
ASP module by instantiating a generic module skeleton to
the content of the specific ASP module considered.

The overall structure of the interface module is illustrated
in Figure 3. The module has an export list which includes
all the predicates used to manipulate ASP modules (e.g.,
assert, retract, model) as well as all the predicates
that are defined within the ASP module.5 The typical
module declaration generated for an interface module will
look like:

:− module(’t23.xxx’,
[assert/1, retract/1,
assert nb/1, retract nb/1,
model/2, change parm/1,
compute/2,
total stable model/1,
p/0, q/0, r/0
]).

The definition of the various exported predicates (except
for the predicates defined in the ASP module) is derived by
instantiating a generic definition of each predicate. Each
module has an initialization part, which is in charge of set-
ting up the internal data structures (e.g., the internal repre-
sentation of the ASP module, tables to store parameters and

4CIAO provides the ability to define classes and create class
instances (Pineda & Bueno 2002).

5Due to a limitation in the current implementation of CIAO’s
module system, we cannot dynamically add new predicates to an
existing ASP module—as CIAO does not support, yet, dynamic
redefinition of a module.

stable models), and invoke the answer set solvers for the first
time on the ASP module—in the current prototype we are
using Smodels as answer set solver. The result of the compu-
tation of the models will be encoded as a collection of Model
Objects (see the description of the Model Classes in the next
subsection). The module will maintain a number of internal
data structures, including a representation of the ASP code,
a representation of the parameters to be used for the compu-
tation of the stable models (e.g., values of constants), a list
containing the objects representing the models of the ASP
module, a counter of the number of stable models currently
present, etc.

Model Classes The preprocessor generates a CIAO class
definition for each ASP module. The objects obtained from
the instantiation of such class will be used to represent the
individual models of the ASP module. Prolog modules can
obtain reference to these objects (e.g., using the model
predicate supplied by the interface module) and use them
to directly query the content of one model. The definition of
the class is obtained through a straightforward parsing of the
ASP module, to collect the names of the predicates defined
in it; the class will provide a public method for each of the
predicates present in the ASP module. In addition, the class
defines also a public method add/1 which is employed by
the interface module to initialize the content of the model.

Each model is stored in one instance of the class; the ac-
tual atoms representing the model are stored internally in the
objects as facts of the form s(〈fact〉).

For instance, if we have a simple ASP module containing
the rules:

p :− q. q :− r. r.
then the preprocessor will generate a class definition of

the type:

:- class(t23_class).
:- dynamic s/1. %% used to store
%% the facts of the model
%% export declarations for the
%% ASP predicates
:- export(p/0).
:- export(q/0).
:- export(r/0).
%% utility method for building the
%% model
:- export(add/1).
%% definition of the methods
p :- s(p).
q :- s(q).
r :- s(r).
%% add a new element to the model
add(X) :- assertz_fact(s(X)).

Implementation Details
Interface Predicates: The various interface predicates are
implemented in CIAO Prolog in a fairly straightforward
way. Some general observations:
• The implementation of assert proceeds by adding the

new rules to the module and recomputing the models; the
structure of the main clause implementing it is

Public Part
Export List

Private
Data

Module
Initialization

* access ASP file & parameters
* computation of initial models
* generation of model objects
* interface initialization

MODELS
* Internal ASP Program representation
* Model Objects
* Backtracking checkpoints
* Support Tables

* interface predicates
 - assert/1, assert_nb/1
 - retract/1, retract_nb/1
 - models/2, total_stable_models/1
 - compute/2, change_parm/1

Figure 3: Structure of the Interface Module

assert(L) :- assert1(L),
module_concat(’t23.xxx’, assert2(L), M),
und(M).

assert2(L) :- \+ empty_list(L),
retract_nbf(L).

The module concat and und are internal predicates
of CIAO Prolog that allows us to specify what action to
take upon backtracking through the clause; in this case,
assert2 will be called upon backtracking, which will
undo the modifications and restore the previous set of
models. assert nb will avoid the final step—since
changes will not be undone during backtracking.

• The implementation of retract follows a similar struc-
ture; rules are removed (if they are present) from the mod-
ule and the models are recomputed accordingly. The mod-
ifications are cached to ensure undoing upon backtrack-
ing. The main clauses implementing it are:

retract(L) :-
\+ empty_list(L), !,
retract1(L),
store_list_rr(L1),
module_concat(’t23.xxx’, retract2(L1), M),
und(M).

retract2(L) :-
\+ empty_list(L),
assert_nb(L).

The retract1 performs the modification of the module
and the recomputation of the models; store list rr
places the modifications in the trail structure; the final
declarations in the retract rule indicate what predicate
should be call upon backtracking—retract2. As we
can see, retract2 simply restores the rules that have
been previously removed (using assert nb), and re-
stores the original set of models.

• the same structure can be found in the implementation

of compute; if called with arguments unbound, then
the predicate will access the current compute configura-
tion (i.e., it will indicate how many models have been re-
quested and whether there is a core of literals that have to
be true in every model); if called with bound arguments,
having a value different then the current compute con-
figuration, then the models will be recomputed with the
new configuration. As for assert and retract, the
compute will set up a hook to allow for undoing effect
of the changes during backtracking.

Internal Data Structures: A number of tables are main-
tained by each interface module to support the execution of
ASP modules. Some of the relevant internal structures in-
clude:

• fn: used to maintain a (Prolog-based) representation of
the rules composing the ASP module;

• uf: a temporary table aimed at supporting the process
of rules unification during execution of assert and
retract;

• stable ref: a table (implemented as Prolog facts) that
maintain references to the current models of the ASP
module (as pairs model number/object reference that
maps name of models to objects representing the models);

• retract rule: a trail structure that caches the modifications
performed by assert and retract; this is required to
allow undoing of the chances;

• prm: a table (encoded as Prolog facts) that stores the pa-
rameters to be used during the computation of the models
of the ASP module.

Examples
Let us continue with the example of the planning problem.
The planner is aimed at computing the movements of blocks
from initial state to a goal state. We have three blocks a, b
and c. Initially, block a is on block b, block b is on the table
and block c is on the table. The goal state is: block b is on c,
block c is on a and finally block a is on the table. The objec-
tive is to determine what block moves (represented by facts
of the type move(source,destination,time)) are
required to achieve the goal state—assuming that we can
move only one block at a time, and we can move only blocks
that are not covered by other blocks. The Prolog module al-
lows the user to
• use the Prolog program to explore the space of possible

plans—e.g., if we do not want to accept plans that move
block a to block b, then we can add the goal

setof(T,(plan:model(Y,Q),Q:move(a,b,T)),[])

which will determine a model (if any) that does not con-
tain any fact of the form move(a,b,T).

• we can perform selection of models according to some
quantitative criteria. For example, if we assume that each
move action has a cost—i.e., the facts generated during
planning have the form

move(source, destination, time, cost)

then we can select the plan with the lowest cost by writing

...
setof([X,Y], plan:model(X,Y), List),

%% collect all models
find_smallest_plan(List,P,Cost).
find_smallest_plan([[Index,Model]],

Model, Cost) :-
findall(C, Model:move(_,_,_,C),Costs),
sum_list(Costs,Cost).

find_smallest_plan([[Index,Model]
| Rest], MinModel, MinCost) :-

find_smallest_plan(Rest,M1,C1),
findall(C,Model:move(_,_,_,C),Costs),
sum_list(Costs, Cost),
(Cost < C1 -> MinModel = Model,

MinCost=Cost;
MinModel = M1,
MinCost=C1).

Conclusion and Future Work
In this paper we presented ASP − PROLOG, a system
which provides a tight and semantically well-founded inte-
gration between Prolog (in the form of CIAO Prolog) and
answer set programming (in the form of Smodels). The sys-
tem allows to create programs which are composed of Pro-
log modules and ASP modules. ASP modules contain either
complete or fragments of ASP programs, expressed using
the lparse input language (Syrjänen 1998). Prolog modules
are capable of accessing ASP modules, to read and/or mod-
ify their content—through the traditional Prolog assert
and retract predicates. Prolog modules are also capa-
ble of accessing the stable models of each ASP module, and
use them during the execution—e.g., to solve goal against

them. At the syntax level, ASP − PROLOG guarantees the
same style of programming and syntax as traditional Prolog
programming, integrating ASP modules and stable models
as first-class citizens of the languages. ASP − PROLOG

allows to extend the expressive power of ASP, allowing to
write Prolog programs that can dynamically modify ASP
modules, reason about stable model, and promotes incre-
mental and ’what-if’ approaches to the construction of ASP
programs.

The prototype implementation of ASP − PROLOG,
built using CIAO Prolog and Smodels, is available at www.
cs.nmsu.edu/˜okhatib/asp_prolog.html. We
will continue the development of ASP − PROLOG by:
– using ASP − PROLOG in the development of various

ASP applications where an interactive environment is
more appropriate; and

– investigating the possibility of a reverse communication
process, where the ASP modules are capable of proac-
tively requesting information from the Prolog modules—
an investigation in this direction is in progress to allow
ASP modules to make use of CLP capabilities (Son &
Pontelli 2004).

Acknowledgments.
This work is partially supported by NSF grants
CCR9875279, CCR9900320, CDA9729848, EIA0130887,
EIA9810732, and HRD9906130.

This paper also appears in the proceeding of the Sixth In-
ternational Symposium on Practical Aspects of Declarative
Languages, Dallas, Texas, USA, June 18-19, 2004.

Appendix
The following program is a Prolog program named
plan1.pl which finds the shortest plan to solve a plan-
ning problem in the block world (initial state: a is on b, b is
on the table, and c is on the table; goal state: b on c, c on a,
and a is on the table). The ASP program is named bw3.pl
and is taken from (Niemelä 1999). The ASP program uses
the constant steps to specify the length of the plan that is a
solution to the planning problem. Since we would like to
find the shortest plan, we initiate this constant with the value
1. We are allowed to move only one block at a time and
can only move blocks that are clear. The Prolog module will
compute the minimum number of steps required to reach the
goal state and prints one of its solutions.

:- module(plan1, [p/0]).
:- use_smodel(bw1, ’bw3.lp’, [(steps, 1)]).

p :- bw1:total_stable_model(X), X>0,
chk_prop(X, Q),
display(’min. plan is: ’), nl,
prt(Q), !.

p :- bw1:change_parm(X),
q(X, Y, D), m(Y, D).

m(Y, 0) :- A = [(steps, 1)|Y],
bw1:change_parm(A), p.

m(Y, 1) :- bw1:change_parm(Y), p.

q([], [], 0).
q([(steps, V)|T], [(steps, V1)|T], 1) :-

V1 is V+1.
q([S|T], [S|T1], D) :- q(T, T1, D).

prt(Q) :- prt_time(Q, 0).
prt_time(Q, T) :-

Q:moveop(_, _, T), !,
prt_at_time(Q, T),
T1 is T+1, prt_time(Q, T1).

prt_time(_, _).

prt_at_time(Q, T) :- Q:moveop(X, Y, T),
display(’move ’), display(X),
display(’ on ’), display(Y),
display(’ at time ’), display(T), nl,
fail.

prt_at_time(_, _).

chk_pro(0, _) :- !, fail.
chk_prop(X, Q) :- bw1:model(X, Q),

chk_cond(Q), !.
chk_prop(X, Q) :- X1 is X-1, chk_prop(X1, Q).

chk_cond(Q) :- Q:moveop(a, table, _), !, fail.
chk_cond(_).

Sample Execution

hongkong[11] preprocess ’plan1.pl’
main start
Create files....
Finish create file
Create class....
Finish create class
Update .ciaorc file...
Executing ciao.............
{Including /home/grad3/okhatib/.ciaorc
{Reading /home/grad3/okhatib/ciao/prj1/

bw1_class.pl
Ciao-Prolog 1.8 \#2: Tue Sep 2 15:46:01

MDT 2003
?- p.
plans found: 2

plan 1 is:
move a on table at time 0
move c on a at time 1
move b on c at time 2

References

Castro, L.; Swift, T.; and Warren, D. 2002. XASP: Answer
Set Programming with XSB and Smodels. SUNY Stony
Brook. xsb.sourceforge.net/packages/xasp.
pdf.

2003. The DLV Wrapper Project. 160.97.47.246:
8080/wrapper.

Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello,
F. 1998. The KR System dlv: Progress Report, Com-
parisons, and Benchmarks. In International Conference
on Principles of Knowledge Representation and Reason-
ing, 406–417.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model Se-
mantics for Logic Programs. In International Symposium
on Logic Programming, 1070–1080. MIT Press.
Heljanko, K., and Niemelä, I. 2003. Bounded LTL model
checking with stable models. Theory and Practice of Logic
Programming 3(4,5):519–550.
Hermenegildo, M.; Bueno, F.; Cabeza, D.; Carro, M.;
Garcı́a de la Banda, M.; López-Garcı́a, P.; and Puebla, G.
1999. The CIAO Multi-Dialect Compiler and System: An
Experimentation Workbench for Future (C)LP Systems. In
Parallelism and Implementation of Logic and Constraint
Logic Programming. Commack, NY, USA: Nova Science.
65–85.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-
based Answer Set Solver Enhanced to Non-tight Programs.
In Lifschitz, V., and Niemelä, I., eds., Proceedings of the
7th International Conference on Logic Programming and
NonMonotonic Reasoning Conference (LPNMR’04), vol-
ume 2923, 346–350. Springer Verlag, LNCS 2923.
Lifschitz, V. 1999. Action Languages, Answer Sets, and
Planning. In The Logic Programming Paradigm. Springer
Verlag.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing Answer
Sets of A Logic Program By SAT Solvers. In AAAI, 112–
117.
Lloyd, J. 1987. Foundations of Logic Programming. Hei-
delberg: Springer-Verlag.
Marek, V., and Truszczyński, M. 1999. Stable Models and
an Alternative Logic Programming Paradigm. In Apt, K.;
Marek, V.; Truszcziński, M.; and Warren, D. S., eds., The
Logic Programming Paradigm. Springer Verlag.
Niemelä, I., and Simons, P. 1997. Smodels - An Implemen-
tation of the Stable Model and Well-Founded Semantics for
Normal LP. In Logic Programming and Non-monotonic
Reasoning, 421–430. Springer Verlag.
Niemelä, I. 1999. Logic programming with stable model
semantics as a constraint programming paradigm. Annals
of Mathematics and Artificial Intelligence 25(3,4):241–
273.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. An A-Prolog Descision Support Sys-
tem for the Space Shuttle. In Practical Aspects of Declar-
ative Languages, 169–183. Springer Verlag.
Pineda, M., and Bueno, F. 2002. The O’Ciao Approach
to Object Oriented Logic Programming. In Colloquium
on Implementation of Constraint Logic Programming Sys-
tems.
Son, T., and Pontelli, E. 2004. Planning with preferences
using logic programming. In Lifschitz, V., and Niemelä, I.,
eds., Proceedings of the 7th International Conference on
Logic Programming and NonMonotonic Reasoning Con-
ference (LPNMR’04), volume 2923, 247–260. Springer
Verlag, LNCS 2923.
Syrjänen, T. 1998. Implementation of Local Grounding for
Logic Programs with Stable Model Semantics. Technical
Report B-18, Helsinki University of Technology.

