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Abstract

In this paper, a possible worlds framework for repre-
senting general belief change operators is presented.
In common with many approaches, an agent’s set of
beliefs are specified by a subset of the set of possible
worlds. The central intuition is that there is a dis-
tance given between every pair of possible worlds, giv-
ing the similarity of one world to another; the set of
worlds together with this distance form a metric space.
An operator such as revision is defined as expected:
in revising by proposition A, the revised belief state
is characterised by those worlds closest to the worlds
characterising the agent’s original beliefs in which A is
true. We propose that a suitable fundamental change
operator is one where an agent’s beliefs are decreased
as a result of the agent becoming more skeptical to a
specified degree. This approach is compared and con-
trasted with the central quantitative framework for be-
lief change, that due to Spohn.

Introduction
The notion of similarity between possible worlds (or, al-
ternatively, interpretations) has played a prominent role
in the modelling of belief change operators. For exam-
ple, Grove’s modelling of theory change (Grove 1988)
is based on the system of spheres semantics of (Lewis
1973), in which a revision function is determined based
on the possible worlds most similar to a given set of
worlds representing a belief state. Other authors have
expanded on this theme, or proposed other approaches
to belief change based on a notion of relative similarity
or closeness between possible worlds.

We address belief revision based on a notion of simi-
larity between possible worlds in the following way. To
begin with, we assume a notion of “conceivable states of
affairs”, or ways that the world could be imagined to be,
together with a subset of these worlds which correspond
to the agent’s actual set of beliefs. A “conceivable state
of affairs” is modelled by the notion of a possible world,
an object to which we associate a truth assignment, an
assignment of true or false to every atomic sentence.
A given subset of the possible worlds characterises the
agent’s beliefs, stipulating the ways the (actual) world
could be assuming that the agent’s beliefs are in fact
true.

We also assume that there is a distance given be-
tween every pair of possible worlds, giving the degree
to which the two worlds are similar. The intuition is
that one has some general, fixed, overarching theory
(Newtonian or relativistic mechanics for example) given
a priori, by which the “distance” between two worlds
would be measured. Thus, given such a theory, the
relative similarity between worlds (containing contin-
gent information) would be fixed. That is, since belief
change is a result of the acquisition of new contingent
information (by revision, update, or whatever), there is
no need to change the background distance metric. For
example, a world that is similar to the present world
might be, at first pass, a world that differs in few de-
tails from our own, where the notion of “similarity” is
in part bound by physical laws. Hence a world like the
present, except that my cat is moved 1 cm. horizon-
tally is presumably quite similar to the world at hand,
whereas one in which my cat can levitate 1 cm. above
the ground is not.

We make the relatively strong assumption (at least
with respect to the literature) that the set of possi-
ble worlds and distance function in fact define a metric
space, where the distance function, among other prop-
erties, satisfies the triangle inequality. This distance be-
tween worlds allows for the specification of an absolute
notion of similarity between worlds; as well, it allows for
the specification of relative similarity, for example that
world w is more similar to w1 than to w2. From this
it is straightforward to define a revision function that
satisfies the AGM postulates: every subset of possible
worlds in this model (given a couple more plausible as-
sumptions) induces a system of spheres, and then via
Grove’s result we can specify a revision function, where
the revision of the set of worlds K by proposition A is
characterised by the closest A-worlds to K.

Work along these lines is not new. For example (Dalal
1988) and others propose approaches in which the dis-
tance between two worlds is given by the number of
atomic sentences on which the worlds disagree with re-
spect to their truth values. (Spohn 1988) uses ordinal
conditional functions to characterise quantitative ex-
tensions to belief change operators such as revision and
contraction; see also (Williams 1994). (Lehmann et al.



2001) develop a general approach to distance-based be-
lief revision based on a qualitative notion of distance
that they call a pseudo-distance; see also (Delgrande et
al. 2003).

Interestingly, (Lehmann et al. 2001) argues that re-
vision functions are too weak, or coarse-grained, to ad-
equately characterise pseudo-distance. If one accepts
their result, then this would seems to indicate that an
investigation of the stronger, quantitative, notion of a
metric distance would be of limited use with respect to
belief revision. While this may be the case with respect
to belief revision, it is not necessarily so with respect to
other belief change operators. In particular, we show
that an operator of skepticism, whereby an agent be-
comes more skeptical to a given degree, is sufficient to
fully capture a given metric space (under a couple of
standard assumptions). As well, other belief change
operators are easily defined in terms of this notion of
skepticism along with standard (set theoretic) operators
for working with sets of possible worlds.

The approach would appear to be of interest for sev-
eral other reasons. First, as with other distance-based
approaches, it straightforwardly allows iterated belief
revision. Unlike approaches founded on that of (Spohn
1988) it does not rely on the notion of an evolving epis-
temic state (beyond the trivial fact that the agent’s con-
tingent knowledge will evolve). As well, unlike (Spohn
1988) and related work, in which the similarity rela-
tion between worlds is modified, the proposed approach
adopts a static similarity relation. Further, we suggest
that the approach at hand may lead to the development
of interesting elaborations of the standard belief change
framework.

The next section discussed related work in belief
change in more detail, while Section introduces the
proposed approach. Section discusses the proposed
central belief change operator, constituting increased
skepticism on the agent’s beliefs. This is followed by a
brief concluding section.

Belief Revision

Formal Preliminaries
We assume a logical language L over a set of atomic
sentences P = {p, q, . . .}, closed under the usual con-
nectives ¬, ∧, ∨, ⊃, and ≡, and with distinguished
element ⊥ for falsity. The truth relation is denoted by
|=, and is defined in the usual fashion. A theory is a log-
ically closed set of sentences, that is a set of sentences
T which satisfies the constraint:

φ ∈ T iff T |= φ.

In the literature, the set of beliefs of an agent have
been formally modelled by two principal means. In
many approaches to belief revision, including the orig-
inal papers on the subject (see e.g. (Alchourrón et al.
1985)), an agent’s beliefs are modelled by sets of sen-
tences, called belief sets, corresponding to theories in
a logic that includes classical propositional logic. Al-
ternatively, other approaches have employed a modal

framework, based on a set of possible worlds W . A
possible world w ∈ W is an object to which a (com-
plete and consistent) truth assignment to atomic sen-
tences is associated. We assume that distinct worlds
are assigned distinct truth assignments. The truth of
a sentence at a possible world is given by the expected
definition. We also write w |= α to assert that α is true
at w. Capital letters such as K, A denote subsets of W
or propositions. For A ⊆ W , Ā will stand for W \ A.
We define

‖α‖ = {w ∈W | w |= α}

as the proposition expressed by α. We will generally use
K, perhaps subscripted, to denote an agent’s knowledge
base, expressed as a set of possible worlds. Thus for
K ⊆ W , an agent believes α just if for every w ∈ K
we have w |= α, or, what comes out to the same thing,
K ⊆ ‖α‖. Conversely, given a set of possible worlds,
K ⊆ W the corresponding belief set is given by |K| =
{α | for every w ∈ K we have w |= α} or, what comes
out to the same thing, |K| = {α | ‖α‖ ⊆ K}.

Belief Revision and Similarity

Belief revision is the process whereby an agent changes
its beliefs in order to incorporate new information. The
seminal work in this area is the AGM approach (Al-
chourrón et al. 1985), in which standards for revision
functions are given by rationality postulates. The intent
is to describe belief change at the knowledge level, that
is on an abstract level, independent of how beliefs are
represented and manipulated. As described above, be-
lief states are modelled by sets of sentences, called belief
sets, corresponding to logical theories. For belief set T
and formula φ, T+φ is the deductive closure of T ∪{φ},
the expansion of T by φ. T⊥ is the inconsistent belief
set (i.e. T⊥ = L). Revision represents the situation in
which the new information may be inconsistent with
the reasoner’s beliefs and needs to be incorporated in a
consistent manner where possible. A revision function ∗
is a function from 2L×L to 2L; given space constraints
and general familiarity with the approach, we omit a
listing of the revision postulates.

Two well-known constructions for belief revision op-
erators have been proposed. The first is that of epis-
temic entrenchment (Gärdenfors and Makinson 1988).
An epistemic entrenchment ordering related to a belief
set T is a total preorder ≤ on the formulas in L, re-
flecting the relative degree of acceptance of sentences.
Various conditions are given for an entrenchment or-
dering, including the stipulations such as sentences not
in T are minimally entrenched while logical truths are
maximally entrenched. Given an entrenchment order-
ing, a corresponding revision function can subsequently
be defined. Gärdenfors and Makinson show that the
set of revision functions definable via entrenchment or-
derings corresponds exactly to the class of functions
satisfying the preceding postulates.

The second construction builds on work by David
Lewis characterising counterfactual assertions (Lewis



1973). Grove, in (Grove 1988) uses Lewis’ system of
spheres semantics to obtain a modelling of the AGM
postulates. We have the following additional notation:
A theory U is complete just if for every α ∈ L we
have α ∈ U or ¬α ∈ U . The set of all complete,
consistent theories is denoted ML; hence these theo-
ries are analogous to interpretations or possible worlds.
The letters U , V , X , . . . denote subsets of ML, while
T denotes an arbitrary theory. For α ∈ L we define
[[α]] = {I ∈ ML | I |= α}.1

Definition 1 ((Grove 1988)) A set of subsets S of
ML is a system of spheres centred onX where X ⊆ML,
if it satisfies the conditions:

S1 S is totally ordered by ⊆.

S2 X is the minimum of S under ⊆.

S3 ML ∈ S.

S4 If [[α]] 6= ∅ then there is a least (wrt ⊆) sphere c(α)
such that c(α) ∩ [[α]] 6= ∅ and U ∩ [[α]] 6= ∅ implies
c(α) ⊆ U for every U ∈ S.

fS(α) is defined to pick out the least (if such there be)
interpretations containing α, that is

fS(α) = [[α]] ∩ c(α).

From this, a revision function can be defined with re-
spect to a given system of spheres: If S is a system of
spheres in ML centred on [[T ]] and α ∈ L where 6|= ¬α
then define

T ∗ α = ∩{x ∈ fS(α)}.

For |= ¬α, the revision is taken to be L.
Grove shows that the set of functions generated by

systems of spheres is exactly the set of functions given
by the AGM revision postulates. In a sense then, this
work can be seen as specifying a static, 3-place similar-
ity relation on interpretations: For a system of spheres
centred on X , for I1 ∈ X we can say that I1 is not less
similar to I2 than to I3 just if there are spheres U , V
where I2 ∈ U , I3 ∈ V and U ⊆ V .

A limitation of these constructions is that they do not
address the issue of iterated belief revision; nor of course
do the AGM postulates deal with iterated revision in
any substantive way. To address this, it has been ar-
gued (perhaps implicitly in some cases) that one needs
to consider not just a belief set and recipe for a single
revision, but rather one needs to consider, along with
the agent’s current beliefs, an encoding of the strategy
that the agent uses to revise its beliefs. The belief set
and revision strategy can be called an epistemic state,
and the challenge now is to revise not just an agent’s
belief set, but also its epistemic state.

The seminal work here is that of Spohn (Spohn 1988),
which develops ordinal conditional functions as a way of
characterising belief revision. Subsequent work in this
area includes (Boutilier 1993; Williams 1994; Darwiche
and Pearl 1997). In this framework, epistemic states are
represented by rankings on possible worlds. An ordinal

1Grove uses the notation |α| for [[α]].

conditional function (OCF) or ranking, denoted κ, is a
function from the set of possible worlds into the class
of ordinals, representing the degree of plausibility of
a possible world, such that some possible world(s) are
assigned to 0. The ranking is extended to propositions,
represented by sets of possible worlds, so that the rank
of a proposition is the least rank assigned to a possible
world that satisfies the proposition. That is, for A ⊆W
where A 6= ∅ define

κ(A) = min{κ(w) | w ∈ A}.

A ranking accepts a proposition A ⊆W if the negation
of the proposition is implausible, i.e. κ(Ā) > 0.

A change in belief is represented by a pair (A,m)
where ∅ 6= A ⊆ W is a proposition and m is the post-
revision degree of plausibility of A, called the (A,m)-
conditionalisation of κ:

κ(A,m)(w) =

{

κ(w) − κ(A) if w ∈ A
m+ κ(w) − κ(Ā) if w 6∈ A.

Thus the A part of the OCF is effectively shifted uni-
formly2 so that the least A worlds have value 0, while
the Ā part is shifted uniformly so that the least Ā
worlds have valuem. As Spohn describes, this approach
generalized both revision and contraction to quantita-
tive versions of these operators. Thus one can regard
A being held with firmness m following the (A,m)-
conditionalisation of κ.

As with Grove’s construction involving a system of
spheres, an OCF can be seen as specifying (or, equiva-
lent to) a three-place similarity relation on (here) pos-
sible worlds. OCFs extend Grove’s construction in two
main ways. First, an OCF provides a quantitative rank-
ing on worlds, rather than the relative, qualitative rank-
ing on interpretations in a system of spheres. Thus
in an OCF one may have no worlds assigned a partic-
ular index, although there may be worlds assigned a
greater index; this degree of precision in inexpressible
in a system of spheres. Second, the similarity relation
corresponding to an OCF is dynamic, in that following
a conditionalisation operation, one obtains a different
similarity relation.

Various researchers (Borgida 1985; Dalal 1988; For-
bus 1989; Satoh 1988; Weber 1986; Winslett 1988) have
proposed specific revision (and update) operators by
defining specific distance functions between interpreta-
tions. For the revision of formula ψ by µ, the result
corresponds to the set of models of µ closest (in the
given specific distance) to models of ψ. For example,
the revision operator in (Dalal 1988) uses the Ham-
ming distance between interpretations as metric, where
the Hamming distance d(w1, w2) between two interpre-
tations w1 and w2 is the number of propositional vari-
ables on which the interpretations differ. The distance
between an interpretation w and the models of ψ is
given by:

d(Mod(ψ), w) = minwi|=ψd(wi, w).

2That is, so that the relative positions of A-worlds re-
mains unchanged.



A pre-order on interpretations is given by:

w1 ≤ψ w2 iff d(Mod(ψ), w1) ≤ d(Mod(ψ), w2).

Revision is defined by:

Mod(ψ ∗D µ) = Min(Mod(µ),≤ψ).

The resulting operator, ∗D, satisfies the AGM postu-
lates. An iterated version of Dalal’s operator follows
straightforwardly, since the distance between interpre-
tations (viz. the Hamming distance) is constant over
revisions. In (Peppas et al. 2000) the notion of similar-
ity is explicitly employed in capturing Winslett’s PMA
approach (Winslett 1988), in terms of conditions on sys-
tems of spheres.

Recently, Lehmann, Magidor, and Schlechta have ex-
plored general distance-based approaches to belief re-
vision (Lehmann et al. 2001); see also (Delgrande et
al. 2003). In their approach, a distance function d is
defined on all pairs of interpretations. The distance
function d is called a pseudo-distance, that is, a binary
function whose range is a total order. The authors allow
that d may not be symmetric. As well d may not re-
spect identity, where d respects identity iff: d(a, b) = 0
iff a = b. (For this latter property, the authors consider
only violating one direction, although it seems that ei-
ther direction may plausibly not hold.) Belief revision is
a function on two arguments, each consisting of sets of
formulas, whose result is a belief set, the theory result-
ing from the revision. Revision of a theory by a theory
representing a formula for revision is characterised by
those interpretations of the formula that are closest to
those of the original theory.

The authors consider conditions corresponding to the
AGM postulates together with the following condition:3

∗S1 If: T1 ∗ (T0 ∨ T2) 6` T0, T2 ∗ (T1 ∨ T3) 6` T1

. . .Tk ∗ (Tk−1 ∨ T0) 6` Tk−1

then: T0 ∗ (Tk ∨ T1) 6` T1.

The central result (slightly paraphrased) is the follow-
ing:

Theorem 1 (Lehmann et al. 2001): A revision op-
erator ∗ is representable by a symmetric, consistency-
preserving, identity-preserving pseudo-distance iff it
satisfies the AGM postulates and ∗S1.

The authors note that revision operators are relatively
crude means for representing distances, and they pro-
vide an example in which distances cannot be compared
by looking at the results of revisions. Their example is
somewhat intricate. Figure 1 is simpler but illustrates
the problem. Essentially the difficulty is that (obvi-
ous approaches to) using revision functions to repre-
sent the relative distances in Figure 1 fail, specifically
in the assertion that d(x1, x2) < d(x3, x4). The prob-
lem is that these distances cannot be compared via
revision functions. Now, we can reflect, for example,
that d(x1, x3) < d(x1, x2) via x1 ∗ (x3 ∨ x2) = x1 ∗ x3.

3This is for the symmetric case; the authors also consider
the not-necessarily symmetric case.
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Figure 1

However, it seems that all attempts to extend this to
the more general case fail. The obvious extension (viz.
involving (x1 ∨ x3) ∗ (x2 ∨ x4)) fails, as do all simi-
lar formulations; in each case, the other distances with
value 1 interfere with a comparison between d(x1, x2)
and d(x3, x4).

4

Regarding underlying similarity relations in belief re-
vision then, it can be seen that there are two distinct
approaches: In (Grove 1988) and (Spohn 1988), sim-
ilarity is treated as a three-place relation. Originally,
Lewis (Lewis 1973) used w1 ≤w w2 to mean that world
w1 is at least as similar to the world w as the world
w2 is. The relation ≤w is then asserted to be a total
preorder with minimum element w, yielding a system
of spheres centred on w. In a Grove-style system of
spheres, or a Spohnian OCF centred on a set K, this
can be written w1 ≤K w2 to mean that world w1 is at
least as similar to the knowledge baseK as the world w2

is. The (A,m)-conditionalisation of an OCF then gives
a means of determining the new ≤-relation following a
belief change operation.

The notion of similarity can be generalised to that
of relative distance between pairs of worlds. Hence one
can write

d(w1, w2) ≤ d(w3, w4) for

“w1 is at least as similar to w2 as w3 is to w4”.

This reading is common to the specific approaches
exemplified by (Dalal 1988), as well as (Lehmann et al.
2001).

We note lastly that (Williamson 1988) has studied
these general notions of similarity. The three-place re-
lation is given by the predicate:

S(X,Y, Z) for

“X is at least as similar to Y as Z is to Y ”.

A more general, four-place, notion of similarity is
given as follows:

T (W,X, Y, Z) for

“W is at least as similar to X as Y is to Z”.

4This is of course an informal argument (as is the one
in (Lehmann et al. 2001)). While it seems clear that such
distances cannot be captured by a revision function, it is not
so obvious that a suitably imaginative definition of distance
might not prove adequate. Similarly, it is not clear what a
proof of impossibility would look like.



From a four-place relation, a corresponding three-
place relation is obtained via:

S(X,Y, Z) ≡ T (X,Y, Z, Y ).

As well, (Hansson 1992) addresses belief revision based
on this notion of similarity, where the similarity rela-
tion is taken as holding among sets of formulas. Spe-
cific constructions are proposed founded on intuitions
concerning the degree to which sets differ and, alterna-
tively, the degree to which they concur.

Modelling Belief Change Operators by

Metric Spaces

A Model for Belief Change Operators

We begin with a set of possible worlds W , correspond-
ing to different ways that the world could conceivably
(factually or counterfactually) be. An agent’s beliefs K
is modelled by a subset of these possible worlds, cor-
responding to the different ways that the actual world
might be, assuming that the agent’s beliefs are in fact
correct. Thus w ∈ K just if, for all the agent knows, w
could in fact be the actual world. The agent’s belief set
can then be defined by {α ∈ L | w |= α for every w ∈
W}. Further, for every pair of possible worlds, the agent
will have an opinion as to how similar one world is to
another. This is expressed, at least initially, as a non-
negative real number. We assume that no world is more
similar to another than it is to itself; as well we assume
that similarity is symmetric.

Hence, we assume that we have a distance function
d, or metric, where d : W × W → R≥0 and:

1. d(w1, w2) = 0 iff w1 = w2

2. d(w1, w2) = d(w2, w1)

3. d(w1, w2) + d(w2, w3) ≥ d(w1, w3).

Condition 3 is the triangle inequality and (W,d) is a
metric space. Before we can define belief revision, we
require a further assumption:

4. For A,B ⊆ W, ∃w1 ∈ A, ∃w2 ∈ B, such that ∀w3 ∈
A, ∀w4 ∈ B we have d(w1, w2) ≤ d(w3, w4).

Condition 4 is a limit assumption (Lewis 1973). In
Lewis’s approach (and consequently Spohn’s) this as-
sumption restricts the range of d to the set of ordi-
nal numbers. Given our condition of symmetry, this
assumption restricts the range of d here to the (non-
negative) integers.

The distance function d is extended to sets of possible
worlds by, for ∅ 6= A,B ⊆W :

d(A,B) = d(w1, w2) where w1 ∈ A,w2 ∈ B,

and ∀w3 ∈ A, ∀w4 ∈ B, d(w1, w2) ≤ d(w3, w4).

The limit assumption guarantees that this extension is
well-defined.

We will ultimately want to relate belief change opera-
tors, expressed in terms of operations on sets of possible
worlds, to knowledge bases (or belief sets) expressed by

formulas or collections of formulas. This in turn ne-
cessitates another assumption concerning our models,
since we may have W1,W2 ⊆ W where W1 6= W2 yet
{α | W1 |= α} = {α | W2 |= α} (i.e. different belief
sets may be verified by distinct sets of possible worlds.)
Consequently we assume that the distance function d is
the same for such sets of possible worlds.

Definition 2 A function f on 2W ×2W is syntax pre-
serving iff f(A1, B) = f(A2, B) whenever {α | A1 |=
α} = {α | A2 |= α}.

Thus we have our last assumption:

5. d is syntax-preserving.

The distance-based approach of (Lehmann et al. 2001)
addresses this issue by restricting the operation for be-
lief change to that of definability-preserving operations.
Here, in contrast we restrict the notion of distance
rather than any defined operator. For a discussion of
underlying issues, see (Lakemeyer and Levesque 2000),
who also show how sets of worlds that verify the same
sets of formulas may be represented by a (maximal)
canonical element.

Belief change operators are defined with respect to a
model, as given next.

Definition 3 An epistemic metric space is a tuple
M = 〈W,K, d, P 〉 where

1. W is a set (of possible worlds);

2. ∅ 6= K ⊆W ;

3. 〈W,d〉 is a metric space satisfying assumptions
4 and 5 above;

4. P : P 7→ 2W .

Belief Revision

Given an epistemic metric space (henceforth, “model”)
M , the revision of K by A is easily defined, as being
comprised of the closest set of A-worlds to the worlds
in K according to d.

Definition 4 (Revision) Let M be a model. The
function ∗ : 2W × 2W 7→ 2W

is given by:

If K = ∅ then K ∗A = A.

Otherwise:
K ∗ A = {w ∈ A | ∃w1 ∈ K such that ∀w2 ∈

A, ∀w3 ∈ K, we have d(w,w1) ≤ d(w2, w3)}.

This is different from the standard conception of be-
lief revision, which is a function from a belief set and
formula to a belief set. The phrasing above, in terms
of possible worlds is conceptually simpler, so we stick
with this formulation. It is obvious that any K ⊆ W
induces a system of spheres on W , and so revision (once
phrased in terms of possible worlds) satisfies the AGM
postulates. Alternatively, standard AGM revision, in
which the arguments to a revision operator are a belief
set and formula, can be expressed by |(‖K‖ ∗ ‖α‖)|.



Since the function ∗ is total, Definition 4 trivially
supports iterated revision. As described in the pre-
vious section, this approach has been investigated in
(Lehmann et al. 2001) and (Delgrande et al. 2003) for a
weaker, qualitative, notion of distance. As was pointed
out in these papers, the standard notion of belief re-
vision is too weak, or coarse-grained, to fully capture
a distance semantics.5 Moreover, a straightforward ar-
gument shows that the triangle inequality has nothing
of substance to say concerning distance-based revision,
in that the triangle inequality places no constraints on
a revision function defined in terms of a metric space
model.

To see this, we need to assume that revisions based
on distance are independent of the uniform addition of a
constant. As well, we assume here that we have a finite
language. So, call two distance-based models M and
M ′ over the same (finite) language similar just when
M and M ′ are identical, except that their respective
distance functions d and d′ are such that for all ∅ 6=
P,Q ⊆W where P ∩Q = ∅, we have

d(P,Q) = d′(P,Q) + c

for some fixed integer constant c. (For P ∩ Q 6= ∅,
we have d(P,Q) = 0 in any revision function.) Ar-
guably, the revision functions captured by similar mod-
els should be considered to be identical in all respects.

Consider a distance based model M with associated
distance function d; without loss of generality, assume
that d ranges over nonnegative integers. Let m be the
maximum (distance) over all values of d, i.e.

m = max{d(w1, w2) | w1, w2 ∈ W}.

Define a new model M ′ that is identical to M , except
that the distance function d′ is defined by:

1. If d(P,Q) = 0 then d′(P,Q) = 0.

2. If d(P,Q) 6= 0 then d′(P,Q) = d(P,Q) +m.

The models M and M ′ are similar according to the
above definition. Consider arbitrary distinct possible
worlds w1, w2, w3. We have that

d(w1, w2), d(w2, w3), d(w1, w3) ∈ [1, m].

Thus d′(w1, w2), d
′(w2, w3), d

′(w1, w3) ∈ [m + 1, 2m].
Hence d′(w1, w2) + d′(w2, w3) ∈ [2m+2, 4m]. But this
means that d′(w1, w2)+d′(w2, w3) > d′(w1, w3). Hence
the triangle inequality is satisfied for w1, w2, w3.

Since w1, w2, w3 are arbitrary, this means that the
triangle inequality is satisfied by every triple of possible
worlds in M ′. (The case of zero distances is straight-
forward and doesn’t alter the argument.) Thus, for
every model there is a similar model in which the tri-
angle inequality trivially holds. Consequently, since the
same revision function is determined by similar distance

5That is, in the sense of the Grove representation re-
sult, in which there is a correspondence between systems of
spheres and revision operators.

based models, the triangle inequality has nothing of
substance to say concerning distance based revision.

These results would seem to limit the usefulness of
metric spaces as a means of modelling revision func-
tions. However, as we argue in the full paper, the ad-
ditional granularity of metric spaces makes them ap-
propriate for modelling other belief change operators,
in particular belief set merging. This also raises the
question as to whether there are other operators that
may adequately capture a metric space. In the next
subsection we examine one such operator.

Skeptical Belief Change

Given the notion of a model as defined above, we pro-
pose a primitive, characterising, belief change operator
that, for lack of a better term, we will call (quanti-
tative) skepticism.6 In a model, an agent has a set of
beliefsK ⊆W modelled by a set of possible worlds, and
a notion of the distance between every pair of worlds.
Thus it makes sense to ask what an agent would believe,
should it become more skeptical, or cautious, about
what it believes. Assuming integral distances, if an
agent were to become more skeptical by degree i, then
the agent’s beliefs would be given by the set of worlds of
distance no greater than i from the worlds in K. This
gives rise to the following:

Definition 5 Let M be a model. The function Sk :
2W × I 7→ 2W is given by:

Sk(K, i) = {w ∈W | d(w,K) ≤ i}

It is straightforward to define belief revision in terms of
Sk:

Definition 6 Let M be a model. The function ∗ : 2W×
2W 7→ 2W is given by:

If K = ∅ then K ∗A = A.

Otherwise: K ∗A = Sk(K, d(K,A)) ∩ A.

That is, revision by A corresponds to just those worlds
in A that are obtained by the agent becoming mini-
mally (more) skeptical so that it believes A is possible.
Clearly contraction can be similarly defined, either di-
rectly, or via the Harper Identity. As well, Sk is closely
related to (a quantitative version of) severe withdrawal
(Rott and Pagnucco 1999): the severe withdrawal of A
would require the agent becoming skeptical to a mini-
mal degree sufficient to include a Ā world.

Discussion

It is instructive to compare this framework with that of
(Spohn 1988). The primary point of similarity between
these approaches is their quantitative aspect; further,
both allow iterated revision. However, beyond these
points the approaches differ significantly. First, similar-
ity as defined in (Spohn 1988) is a three-place relation

6The term “skeptical” isn’t terrific, given its use as a
type of default reasoning; however it isn’t clear what would
make a better alternative.



(see Section ), whereas here similarity can be regarded
as a 4-place relation. In (Spohn 1988), an ordinal con-
ditional function (OCF) represents an epistemic state,
and a conditionalisation of an ordinal conditional func-
tion yields a new epistemic state. That is to say, the
three-place similarity relation is dynamic. In contrast,
in the approach at hand, we have a static four place
similarity relation, that nonetheless allows iterated re-
vision. Consequently, in the present approach, we do
not require the notion of an epistemic state, or, per-
haps more accurately, we need deal only with a single,
static epistemic state within which belief revision can
be defined for all knowledge bases and sentences for re-
vision.7

This gives rise to the question as to whether there
are reasons for preferring one approach over another.
I feel that a plausible case can be made for the met-
ric space approach proposed here. First, the proposed
approach is arguably founded on a plausible intuition,
that given a fixed background theory, an agent will have
a fixed, contingent-information-independent notion as
to how similar two possible worlds are. Revision then
concerns new contingent information about the world at
hand, applied in the context of this background infor-
mation. In OCFs there is similarly some sort of back-
ground information, reflected in the initial OCF, but
where similarity is relative to the contingent state of
affairs, and the similarity relation itself is modified as
a result of new contingent information. Arguably then
an OCF conflates the distinction between contingent
knowledge and a background theory. As well, there are
various ways in which one may modify an OCF to reflect
belief change operators. However, of the well-known
proposals (for example (Boutilier 1993; Williams 1995;
Darwiche and Pearl 1997)) inappropriate properties are
obtained in some plausible scenarios (see (Darwiche and
Pearl 1997; Delgrande and Schaub 2003)).

Last, it is not clear that conditionalisation in an OCF
appropriately reflects how an underlying 3-place sim-
ilarity relation should be modified. In a revision in
an OCF by a proposition A, the closest A-worlds are
moved to rank 0, and no Ā-world has rank 0. There are
two main strategies by which Ā-worlds are dealt with.
In (Boutilier 1993; Darwiche and Pearl 1997) the Ā-
worlds are shifted minimally, and so the least Ā-worlds
will have rank 1 whenever some Ā-world was consid-
ered possible by the original knowledge base. In (Pa-
pini 2001) the opposite tack is taken, and no Ā-world
has lower rank than any A-world.

Arguably both strategies may sometimes yield a non-
intuitive notion of similarity. Consider the following ex-
ample: I currently believe that Sherlock Holmes was an
actual person; further I believe that the current tem-
perature is 18◦. I am informed that Sherlock Holmes

7Obviously the current approach could be generalised to
allow for the distances between worlds to vary following a
belief change, but it is not clear what advantages would
accrue to such a generalisation.

was in fact not a real person and that the current tem-
perature is 19◦. (That is, I believed something of the
form p ∧ q and am informed that ¬p ∧ ¬q.) In the
case of an OCF, for approaches such as (Boutilier 1993;
Darwiche and Pearl 1997), following the revision assert-
ing that Sherlock Holmes was not a real person and the
temperature is 19◦, at the least set of worlds not at level
1, it would be true that Sherlock Holmes existed and
that the temperature is 18◦. Given a second revision,
with the fact that the temperature is 18◦, one would
also lose the information that Sherlock Holmes was not
a real person, in reverting to the closest set of possible
worlds in which it is raining. Hence, this means of up-
dating an OCF seem to employ an at-least-sometimes
inappropriate notion of locality in implementing revi-
sions, in that the most recently-discarded information
is closest (or: most similar) to the current knowledge
base. In (Papini 2001), the opposite approach is taken:
given that an agent believes that the temperature is
18◦ and is informed that it is 19◦, every world in which
the temperature is 18◦ is ranked higher than any world
where the temperature is 19◦. Thus, among the 19◦

worlds there is a world in which the polar icecaps have
melted, and this world is ranked more similar to the
knowledge base than another world in which the tem-
perature is 18◦ but the icecaps are intact. Again, this
seems counterintuitive with respect to the ranking of
contingent information.

Conclusion
We have discussed a general approach to distance-based
belief revision in a possible worlds framework, in which
the set of possible worlds and distance function form
a metric space. In revising a set of beliefs by proposi-
tion A, the revised belief state is characterised by the
closest A worlds to the worlds representing the agent’s
original beliefs. Revision functions are however gen-
erally too weak to fully capture notions of distance –
in fact too weak to capture even weaker notions of dis-
tance than employed here. Consequently we propose an
alternative belief change operator, in which the agent
becomes more skeptical about its beliefs. This opera-
tor, together with standard (set-theoretic) operations
on possible worlds, is adequate to capture the suite of
revision-type belief change functions. As well, by mod-
ifying the definition of “closest” between propositions,
the approach could easily capture the update-style op-
erators of (Katsuno and Mendelzon 1992).

The approach can be contrasted with that of ordinal
conditional functions. While superficially similar (both
employ quantitative distances between possible worlds),
there are significant differences. First, an OCF provides
a three-place similarity relation, while the approach at
hand effectively employs a four-place relation. In an
OCF, the similarity relation itself is modified; hence
an epistemic state is modified in a belief change opera-
tion, rather that simply the agent’s beliefs. In contrast,
in the approach at hand, a model can be regarded as
providing a (static) epistemic state, reflecting in part



an agent’s background knowledge or theory. Hence be-
lief revision, and other belief change operations, con-
cern changes in an agent’s contingent beliefs against
this background theory.

There are several ways in which this approach can
be extended. First, properties of the basic system can
be further developed and explored. As well, we are in-
terested in using the framework to explore an extended
version of belief revision, in which an agent’s beliefs are
held with various degrees of conviction, along with its
non-beliefs. Further, the approach is readily extendible
to deal with multiple agents, both in the case of merging
the belief sets of different agents, and, in an extension
to the approach, having a different distance function
and knowledge base associated with each agent.
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