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Abstract

We extend the results of Konieczny and Pino
Pérez (J. Log. and Comp. 2002) concerning
merging operators in a finite logical framework
to the infinite case (countably many proposi-
tional variables). The main result is the repre-
sentation theorem. Some postulates had to be
restated in a new form, equivalent only in the
finite case, but more appropriate to deal with
the infinite case. The construction of merg-
ing operators starting from distances between
valuations is also generalized. We introduce a
new kind of operators built upon the so called
Cantor distance.

Keywords: Merging operators, Belief revi-
sion, Integrity constraints, syncretic assignment

Introduction

The general problem of merging information is
to extract a coherent common information from
several sources of information. The most nat-
ural thing to do, which consists in taking the
union of pieces of information does not work in
general because two (or more) sources of infor-
mation can be contradictory. In this case, their
union will be necessarily contradictory.

A lot of methods have been introduced
to merge information in a logical framework
(Cholvy & Hunter 1997; Cholvy 1998; Baral et
al. 1992; Lin & Mendelzon 1999; Revesz 1997;
Konieczny 1999). Different sets of logical prop-
erties that have to be satisfied by belief merging
operators, have been proposed (Revesz 1997;
Liberatore & Schaerf 1998; Lin & Mendelzon
1999; Konieczny & Pino-Pérez 1998; 1999).
These works offer a classification of (logical)
merging operators. In fact, they give some in-
teresting results concerning a semantic charac-
terization of their operators. These results are
known as Representation Theorems. Their ba-

sic framework is the finite Propositional Logic.
Since then, nothing has been done to extend
these results to infinite logical framework. This
is what we do in this work.

The motivations to study the case in which
we have countably many propositional variables
-the infinite case- are given now. First of all, in
the logic framework used to represent a piece
of information, the propositional variables play
an essential role: they represent the factual in-
formation. For instance, facts like the device
is broken, inflation is stopped, etc., are tradi-
tionally represented by propositional variables.
However, to assume that the number of propo-
sitional variables is finite supposes modeling a
situation completely closed in which there is no
room for new facts. In some cases it is interest-
ing to have the possibility of introducing new
facts. For instance, when merging information
about the causes of bad performance of a mi-
crochip, it can be useful to introduce the fact
that the intensity of the current is always chang-
ing, a new variable not considered up to now.
Another situation in which it is very common
to introduce new variables, concerns the argu-
ments about the acceptance or rejection of an
article for a conference, a journal, etc. In many
cases, one source -a reviewer- presents a new
argument that can be decisive in the final ap-
preciation.

Thus, in order to introduce the fact that one
source of information can carry out infinite in-
formation, we have to allow infinite proposi-
tional variables. This does not mean that a
source has to give always an infinite list of facts
or more complex pieces of information even if
sometimes it is necessary to have those kinds of
complex representations. We know that some
kind of infinite information can be encoded with
finite information. For instance, the theory gen-
erated by a finite set of formulas is a truly in-



finite object which is completely encoded by a
finite number of finite objects. The approach
used in this work will be to represent the piece
of information of an agent (a source) by a logi-
cal theory (not always finitely represented), i.e.
a set of propositional formulas closed by logical
deduction. Of course, the set of propositional
variables will be infinite.

The kind of representation of information
used here -theories- is not new in the area of dy-
namical reasoning. For instance, in Belief Re-
vision ((Alchourrón, Gärdenfors, & Makinson
1985; Gärdenfors 1988)), the epistemic states
are represented by logical theories. This kind of
representation is quite natural and rich enough.
Nevertheless, this is not the richest represen-
tation of epistemic states as can be seen in
the works of Konieczny, Konieczny and Pino
Pérez and Benferhat et al. ((Konieczny 1999;
Konieczny & Pino-Pérez 2000; 2002b; Benferhat
et al. 2000)). However, in order to deal with the
infinite case, the representation of information
by a logical theory will give us sufficient insight
to see the problems about postulates and to find
a general technique for the representation the-
orems.

The representation theorems stated here are,
roughly speaking, of the following kind (for
more precision see Theorem 3):

A merging operator is represented by an as-
signment which maps each group of sources
of information to a total pre-order over val-
uations. The result of merging the group
under the constraints will be the theory
of the minimal models of the constraints
(minimal with respect to the pre-order as-
sociated to the group).

The difficult part in this kind of theorem is, on
one hand, to find the definition of the assign-
ment and, on the other hand, to prove that the
definition works. We introduce here a general
technique to define this kind of assignments (see
Definition 4). We will prove that the definition
can be stated in different equivalent ways, each
of them useful to prove some properties. All this
is inspired by a similar technique used to prove
representation theorems for nonmonotonic re-
lations introduced in (Pino-Pérez & Uzcategui
2000).

Merging operators and
representation theorems

In this section we define merging operators
adapting the postulates in (Konieczny & Pino-

Pérez 2002a). We define the notion of the syn-
cretic assignment needed to state the represen-
tation theorems. This is also a modification of
a similar notion defined in (Konieczny & Pino-
Pérez 2002a) in the finite case. We end the sec-
tion stating the representation theorems.

Our logical framework is the infinite propo-
sitional calculus. The set of valuations will
be denoted by V. When A is a subset of
V, we will denote Th(A), the theory of A,
the set {ϕ ∈ L : ∀M ∈ A,M |= ϕ}. Let T be
the collection of all the theories. Let T ∗ the
set of consistent theories. Let B = M(T ∗)
where M(T ∗) is the collection of finite multi-
sets with elements in T ∗. The elements of B
they will be denoted with uppercase Greek let-
ters Φ,Ψ, . . . (possibly with subscripts); they
are called knowledge sets, while the elements of
T are called knowledge bases. We use the nota-
tion K, H,R, S, T (eventually with subscripts)
for the theories. We denote ∪Φ = {α : ∃K ∈
Φ such that α ∈ K}, and ∧∧Φ = Cn(∪Φ),
where Cn is the operator giving the set of clas-
sical logic consequences of a set of formulas.
The union of multi-sets is denoted by the sym-
bol t. For convenience, we write K t T in-
stead of {K} t {T}, and Kn for the multi-set
{K, K . . .K} where K appears n times.

The candidates to be merging operators are
applications of the following form

∆ : B × T −→ T
∆(Φ, R) will be denoted by ∆R(Φ). R
represents the integrity constraints. Such
applications will be called operators. Such an
operator ∆ is said to be a merging operator if
the following postulates hold:

(IC0) ∆R(Φ) ⊃ R

(IC1) R 6 ` ⊥ ⇒ ∆R(Φ) 6 ` ⊥

(IC2) R ∪ (∧∧ Φ) 6 ` ⊥ ⇒ ∆R(Φ) =
Cn(R ∪ (∧∧Φ))

(IC3) [R ⊂ K ∧R ⊂ K ′ ∧∆R(K tK ′) ∪K 6 `
⊥] ⇒ ∆R(K tK ′) ∪K ′ 6 ` ⊥

(IC4) Cn(∆R(Φ1) ∪∆R(Φ2)) ⊃ ∆R(Φ1 t Φ2)

(IC5) ∆R(Φ1) ∪ ∆R(Φ2) 6 ` ⊥ ⇒
∆R(Φ1 t Φ2) ⊃ Cn(∆R(Φ1) ∪∆R(Φ2))

(IC6) Cn(∆R1(Φ) ∪R2) ⊃ ∆Cn(R1∪R2)(Φ)

(IC7) ∆R1(Φ) ∪ R2 6 ` ⊥ ⇒
∆Cn(R1∪R2)(Φ) ⊃ Cn(∆R1(Φ) ∪R2)



For an interpretation of these postulates see
(Konieczny & Pino-Pérez 2002a). But note that
in the works (Konieczny & Pino-Pérez 1999;
2002a) concerning the finite case, the postulate
(IC3) refers to the independence of the syntax.
In that case they used formulas to represent a
piece of information, so it is required that the
operators were invariant under logical equiva-
lence between formulas and an equivalence be-
tween the knowledge sets. In our framework,
dealing with theories, those equivalences be-
come identities and therefore the corresponding
postulate is tautological. Thus, there is a dis-
placement in the enumeration of the postulates
with respect to the work mentioned above.

Next, we are interested in studying mappings
from B into the collection of total pre-orders
over valuations (i.e. reflexive and transitive re-
lations which are total). Some of these map-
pings will be enough to represent our merging
operators. In order to define the good assign-
ments we need to introduce explicitly a property
which is trivially satisfied in the finite case.

Definition 1 A total pre-order ≤Φ over V is
said to be smooth if for all K ∈ T and for
all M |= K that is not minimal in mod (K),
there exists N |= K such that N is minimal in
mod (K) and N <Φ M .

Notice that, for a total pre-order ≤Φ the
smoothness condition can be expressed by the
following

∀K ∈ T ∗,min(mod(K),≤Φ) 6= ∅.

Definition 2 A syncretic assignment is
a mapping (Φ 7→≤Φ) that assigns to each
knowledge set Φ ∈ B a total pre-order ≤Φ over
the set of valuations V verifying the following
conditions:

1) If M |= ∧∧Φ, N |= ∧∧Φ, then M 'Φ N

2) If M |= ∧∧Φ, N 6|= ∧∧Φ, then M <Φ N

3) ∀M |= K ∃N |= T such that N ≤KtT M

4) If M ≤Φ1 N and M ≤Φ2 N ,then
M ≤Φ1tΦ2 N

5) If M <Φ1 N and M ≤Φ2 N , then
M <Φ1tΦ2 N

6) ≤Φ is smooth

The link between these assignments and
merging operators is showed in the next (rep-
resentation) theorem:

Theorem 3 An application ∆ : B × T −→ T
is a merging operator if and only if there exists

a syncretic assignment Φ 7→≤Φ such that

∆K(Φ) = Th(min(mod(K),≤Φ)) (1)

Given a syncretic assignment, it is quite
straightforward to see that the operator de-
fined by the previous equality verifies the pos-
tulates of merging operator. The converse is
not so straightforward. The crucial point is
the definition of the total pre-order ≤Φ asso-
ciated to Φ when we have a merging opera-
tor ∆. The next definition, inspired by Pino
Pérez and Uzcátegui’s work about representa-
tion of nonmonotonic relations (Pino-Pérez &
Uzcategui 2000), tells us how to proceed.

Definition 4 Let ∆ be a mapping of B × T
into T . For any Φ ∈ B we define a relation ≤Φ

over V by putting

M ≤Φ N
def⇐⇒ ∀K, T ∈ T [M |= ∆K(Φ) ∧

N |= ∆T (Φ) → M |= ∆K∩T (Φ)]

Most of the work will consist in showing that
this relation is a total pre-order when ∆ is a
merging operator and that in fact this pre-order
represents the operator, i.e. the equation 1
holds.

There are another classes of natural oper-
ators that can be characterized in terms of
some family of assignments. First define the
following postulate:

(IC5’) ∆R(Φ1) ∪ ∆R(Φ2) 6` ⊥ ⇒
∆R(Φ1 t Φ2) ⊃ ∆R(Φ1) ∩∆R(Φ2)

A operator ∆ is said to be quasi-
merging operator if the postulates (IC0)-
(IC4),(IC5′),(IC6),(IC7) hold.

The counterpart in terms of assignments
is as follows. An assignment Φ 7→≤Φ, where
≤Φ is a total pre-order over V, is said to be
a quasi-syncretic assignment if it satisfies
the conditions 1− 4 and 6 given in Definition 2
plus the following:

5’) If M <Φ1 N and M <Φ2 N , then
M <Φ1tΦ2 N

Now, we can state our second representation
theorem:

Theorem 5 An operator ∆ is a quasi-merging
operator if and only if there exists a quasi-
syncretic assignment Φ 7→≤Φ such that

∆K(Φ) = Th(min(mod(K),≤Φ))



Two classes of merging operators:
Majority and arbitration

We define in this section two classes of merging
operators. The first one is the class of majority
merging operators. The operators in this class
are supposed to give account of some majority
behavior in extracting information from several
sources: if many sources give us a piece of in-
formation, this piece of information will persist
in the result of merging.

The second class introduced is the class of
arbitration merging operators. The operators
in this class are supposed to give account of
some consensual behavior in extracting infor-
mation from several sources: a piece of infor-
mation that is unlikely for one source of infor-
mation will have a tendency to be rejected in
the result of merging. Conversely, a piece of in-
formation that is likely for all the sources will
have a tendency to remain in the result after
merging.

We define also two classes of assignments cor-
responding exactly to these classes of operators.
For each class we state the corresponding rep-
resentation theorem.

A merging operator is said to be a majority
merging operator iff the following postulate
holds

(Maj) ∀Φ1,∀Φ2∃n such that ∀K ∈
T , ∆K(Φ1 t Φ2

n) ⊃ ∆K(Φ2).

Note that this new version of (Maj) is
stronger than the correspondent postulate in
(Konieczny & Pino-Pérez 2002a). Indeed in the
finite case they are equivalent. We conjecture
that in the infinite case the ancient version of
(Maj) does not imply the new one.

A syncretic assignment is majority syncretic
assignment iff the following condition holds:

7) If M <Φ2 N , then ∃n, M <Φ1tΦ2
n N

Theorem 6 An operator ∆ is a majority merg-
ing operator iff there exists a majority syncretic
assignment such that

∆K(Φ) = Th(min(mod(K),≤Φ)).

In order to establish the postulate charac-
terizing the merging operators having a con-
sensual behavior we need to introduce some
concepts and notation. Let A and B be two
sets, we denote A M B their symmetrical differ-
ence, i.e. A M B = (A \ B) ∪ (B \ A) where

A \B = {x ∈ A : x /∈ B}. Let K and T be two
theories, their symmetrical difference, denoted
K � T is defined as follows:

K � T = Th (mod(K) M mod(T )) .

A merging operator is said to be an arbitra-
tion merging operator if the following postulate
holds:

(Arb) If K1 6⊆ K2, K2 6⊆ K1, ∆K1(H1) =
∆K2(H2) and ∆K1�K2(H1 t H2) = K1 � K2

then ∆K1∩K2(H1 tH2) = ∆K1(H1)

A syncretic assignment Φ 7→≤Φ is said to
be an arbitration syncretic assignment if the
following condition holds

8) If M <H1 N,M <H2 P,N 'H1tH2 P then
M <H1tH2 N

Theorem 7 An operator ∆ is an arbitration
merging operator if and only if there exists an
arbitration syncretic assignment Φ 7→≤Φ such
that

∆K(Φ) = Th(min(mod(K),≤Φ)).

General construction of merging
operators

In this section we consider three general meth-
ods to build merging operators from (pseudo)
distances between valuations (see definition be-
low). In fact we give methods to construct syn-
cretic assignments and then we use the repre-
sentation theorems to obtain the operators.

Let R+ be the set {x ∈ R : x ≥ 0} and
R∗ = R+∪{∞} with the usual order ≤ over ele-
ments of R and putting x ≤ ∞, for any x ∈ R+.
Remember that for any set A ⊆ R+ which is non
empty, inf(A) denotes the greatest lower bound
of A. We can extend the inf to non-empty sub-
sets of R∗ by putting

inf(B) =
{

inf(B ∩ R+) if B ∩ R+ 6= ∅
∞ otherwise

Definition 8 A function d : V×V → R∗ is said
to be a pseudo-distance if the following condi-
tions hold:

1. d(M,N) = d(N,M).

2. d(M,N) = 0 iff M = N.

3. If K and T are consistent theories, there are
M |= T and N |= Ksuch that d(M,N) =
inf{d(Q,P ) : Q |= T, P |= K}.



We can extend d to a function d̄ : V×T → R∗

in the following way:

d̄(M,K) = inf
N |=K

d(M,N)

In turn we extend the function d̄ to a function
¯̄d : T × T → R∗ as follows

¯̄d(K, S) = inf
N |=K

d̄(N,S)

By an abuse of notation we will write d in-
stead of d̄ and instead of ¯̄d. It is easy to see
that

d(K, S) = inf
N |=K,M |=S

d(M,N) = inf
M |=S

d(M,K)

Notice that, by the condition 3 of the defini-
tion of pseudo-distance, the inf above is indeed
a minimum.

Σ and Max operators

Let d be a pseudo-distance as defined above; we
define dΣ : V ×B → R∗ and dmax : V ×B → R∗

as follows:

dΣ(M,Φ) =
∑

K∈Φ d(M,K)
dmax(M,Φ) = max{d(M,K) : K ∈ Φ}

Now for each Φ we define two relations ≤Σ
Φ

and ≤max
Φ over V as follows:

M ≤Σ
Φ N iff dΣ(M,Φ) ≤ dΣ(N,Φ)

M ≤max
Φ N iff dmax(M,Φ) ≤ dmax(N,Φ)

Proposition 9 (i) Φ 7→≤Σ
Φ is a majority syn-

cretic assignment.
(ii) Φ 7→≤max

Φ is a quasi-syncretic assignment.

As a corollary of the previous Proposition and
Theorems 5 and 6 we have the following result

Corollary 10 (i) The operator ∆Σ : B × T →
T defined by

∆Σ
R(Φ) = Th(min(mod(R),≤Σ

Φ))

is a majority merging operator.
(ii) The operator ∆max : B×T → T defined by

∆max
R (Φ) = Th(min(mod(R),≤max

Φ ))

is a quasi-merging operator.

There is an interesting property dealing with
the iterative behavior of an operator that is sat-
isfied by ∆Σ and ∆max when d is indeed a dis-
tance, i.e. when d satisfies the triangle inequal-
ity. To be more precise let us define first the so
called iteration property.

Let R and T knowledge bases, Φ a knowledge
set and ∆ an operator, we define the sequence
(∆n

R(Φ, T ))n≥1 in the following way:

1) ∆1
R(Φ, T ) = ∆R(Φ t T ), and

2) ∆n+1
R (Φ, T ) = ∆R(∆n

R(Φ, T ) t T )

The following property is called the iteration
property

(ICit) If T ⊃ R then ∃n ∆n
R(Φ, T ) ⊃ T

Theorem 11 If the pseudo-distance d : V ×
V → R∗ satisfies the triangle inequality, i.e.
d(M,N) ≤ d(M,P ) + d(P,N), then ∆Σ and
∆max satisfy (ICit).

Gmax operators

Starting from a pseudo-distance d we are go-
ing to build an arbitration syncretic assignment
which induces, via the representation theorem
7, an arbitration merging operator that is actu-
ally a refinement of the operator ∆max.

Definition 12 Let Φ = {K1,K2, . . . Kn} be a
knowledge set. For any valuation M we put
(dM

1 , dM
2 . . . dM

n ) where dM
i = d(M,Ki), for i =

1, . . . , n. Let LΦ
M be the list (dM

1 , dM
2 . . . dM

n ) or-
dered decreasingly. Let ≤lex The lexicographical
order between lists. Finally we define the fol-
lowing relation:

M ≤Gmax
Φ N iff LΦ

M ≤lex LΦ
N

We denote dGmax the function mapping a
pair (M,Φ) to the list LΦ

M , and we call this the
distance Gmax between the valuation M and
the knowledge set Φ.

Theorem 13 ∆Gmax defined by

∆Gmax
K (Φ) = Th(min(mod(K),≤Gmax

Φ ))

is an arbitration merging operator. Moreover,
if the pseudo-distance d , satisfies the triagular
inequality, then ∆Gmax satisfies (ICit).

Concrete merging operators

This section is devoted to define concrete op-
erators using the techniques explained in the
previous section. Thus, first, we define some
distances from which we define our operators.

Remember that in the finite case the Dalal
distance (Dalal 1988) between a valuation and
a theory is defined using the Hamming dis-
tance between valuations, i.e. the distance be-
tween M and N , is the number of propositional
variables in which they differ. For instance,



the Hamming distance between (1, 1, 1, 0, 0) and
(1, 0, 1, 1, 0) is equal to 2 because they differ ex-
actly in the second and in the fourth variables.

In the infinite case (when the number of
propositional variable is infinite) we define the
generalized Dalal distance below.

First we adopt the following notation: given
a valuation M , we will write M(i) instead of
M(pi) the value of M in the variable pi.

Now, the generalized Dalal distance d1 : V ×
V → R∗ is defined by putting

d1(M,N) =
∞∑

i=1

|M(i)−N(i)|

This function verifies the condition 1 and 2 of
pseudo-distance given at the beginning of Sec-
tion in page 5. Moreover as the rank of this
function is N ∪ {∞} we have that for any pair
of theories T,K the set {d(M,P );M |= T, P |=
K} has a minimum, so the condition 3 is veri-
fied. Also, it is clear that d satisfies the triangle
inequality.

Now we define the discrete distance, d2 : V ×
V → R∗ by putting

d2(M,N) =
{

0 if,M = N

1 if,M 6= N.

The verification that d2 satisfies the condi-
tions of pseudo-distance given in 5 is straight-
forward. The condition 3 is due to the fact that
the rank of d2 is the set {0, 1}. Indeed, d2 is a
distance, i.e. it satisfies the triangle inequality.

It is quite interesting to notice that starting
from this discrete distance we have

≤GMax
Φ =≤Σ

Φ

This is because LΦ
M is a decreasing sequence of

1′s and 0′s, since d(M,K) is 1 or 0 for any val-
uation M and any knowledge base K; indeed it
is equal to 1 if M |= K and it is equal to 0 if
M 6|= K. Thus, it is clear that LΦ

M <lex LΦ
N if

and only if the number of 1′s in LΦ
M is less than

the number of 1′s in LΦ
N, and this is equivalent

to
∑

K∈Φ d(M,K) <
∑

K∈Φ d(N,K).
Putting together this observation with Corol-

lary 10, we have the following result

Corollary 14 There are merging operators
that are both arbitration and majority.

The third distance we consider is the so called
Cantor distance, d3 : V×V → R∗ defined in the
following way:

d3(M,N) =
∞∑

i=1

|M(i)−N(i)|
2i

Notice that this distance gives a hierarchy
over the propositional variables: the first vari-
able is the most important and the importance
decreases as the subscript of the variable in-
creases.

First of all, let us remark this well known fact:
the set of valuations with the distance d3 (see
below) is in fact isometric to Cantor’s space;
this is the reason to call d3 Cantor’s distance.

The conditions 1 and 2 of pseudo-distance are
clearly satisfied. Also, it is straightforward to
verify the triangle inequality for d3. In order to
verify the condition 3, let us notice that d3 is
a continuous function mapping the product of
Cantor space by itself in [0, 1] with the topol-
ogy inherited of R. But the Cantor space is
compact because it is an infinite product of the
space {0, 1} with the discrete topology which
is compact, and by the Tychonoff theorem the
product of compact spaces is compact. Since
mod(T ) is a closed set for any T , mod(T ) is
compact. Therefore mod(K)×mod(T ) is com-
pact and so, the continuous function d3 takes a
minimum value in that set, that is to say the
condition 3 holds.

Examples and observations

In order to distinguish the operators after the
distance used to build them we make explicit
mention of it. Thus ∆Σ(di), ∆max(dj) and
∆Gmax(dk) are the operators Σ, Max and Gmax
built from di, dj and dk respectively where
i, j, k ∈ {1, 2, 3}.

The following observation tells us that if in
the knowledge set two sources totally disagree,
then the Σ operator and the Max operator built
from Dalal distance choose exactly the whole
knowledge base representing the integrity con-
straints. More precisely:

Observation 15 Let Φ = {K1,K2, . . . ,Kn} be
a knowledge set such that there are Ki,Kj with
d(Ki,Kj) = ∞. Then for any R

∆Σ(d)
R = R = ∆max(d)

R

To check this observation notice that since
d1 satisfies the triangle inequality, for any
valuation M we have d(M ,Ki) = ∞ or
d(M ,Kj) = ∞ . From this, it follows that
dΣ(M ,Φ) = ∞ and dmax(M ,Φ) = ∞ . This
is the end of the verification.

Nevertheless, under the same assumptions, if
there is Ki in Φ such that d(R,Ki) < ∞ then
the operator ∆Gmax(d) might give nontrivial re-
sults.



Let us illustrate the behavior of these opera-
tors ar work with the following example.

Example 16 Let Φ = {K1,K2,K3,K4} be a
knowledge set, where

K1 = Cn({p2,¬p3,¬p4} ∪ {pi : i ≥ 6})
K2 = Cn({p1,¬p2,¬p3} ∪ {pi : i ≥ 6})
K3 = Cn({¬p1, p3, p4, p5} ∪ {pi : i ≥ 6})
K4 = Cn({p1,¬p2, p3,¬p4,¬p5} ∪ {pi : i ≥ 6})

That is to say

mod(K1) = (∗, 1, 0, 0, ∗, 1̄)
mod(K2) = (1, 0, 0, ∗, ∗, 1̄)
mod(K3) = (0, ∗, 1, 1, 1, 1̄)
mod(K4) = (1, 0, 1, 0, 0, 1̄)

where 1̄ denotes the sequence equal to 1 and ∗
denotes any value in {0, 1} (analogously 0̄ and
∗̄ denotes the infinite sequence equal to 0 and
any sequence of 0’s and 1’s respectively) and by
abuse we identify (∗, 1, 0, 0, ∗, 1̄) with the set of
models of this form, etc.

Let R = Cn({p3 ∧ p4 ∧ ¬p5}) so mod(R) =
(∗, ∗, 1, 1, 0, ∗̄) We proceed to find the mini-
mum values for dΣ(M,Φ), dmax(M,Φ) and
dGmax(M,Φ) when M |= R and d is one of di

for i = 1, 2, 3. First notice that any model N of
Ki verifies N(i) = 1 for all i ≥ 6. So, the mod-
els M of R realizing the minimum values have
to verify M(i) = 1 for all i ≥ 6. There are four
possible cases:

Case 1 M(1) = M(2) = 1, i.e. M =
(1, 1, 1, 1, 0, 1̄).

Case 2 M(1) = 0,M(2) = 1, i.e. M =
(0, 1, 1, 1, 0, 1̄).

Case 3 M(1) = M(2) = 0, i.e. M =
(0, 0, 1, 1, 0, 1̄).

Case 4 M(1) = 1,M(2) = 0, i.e. M =
(1, 0, 1, 1, 0, 1̄).

The Table 1 is very useful to calculate the Dalal
distance. In the boxes of the table we find a 1
in the positions in which the models realizing
the minimun differ.

In Case 1 we have that the minimum
values are d1(M,K1) = 2, d1(M,K2) =
2, d1(M,K3) = 2, d1(M,K4) = 1 there-
fore dΣ(M,Φ) = 8, dmax(M,Φ) = 2 and
dGmax(M,Φ) = (2, 2, 2, 2).

In Case 2 we have that the minimum
values are d1(M,K1) = 2, d1(M,K2) =

3, d1(M,K3) = 1, d1(M,K4) = 2 there-
fore dΣ(M,Φ) = 8, dmax(M,Φ) = 3 and
dGmax(M,Φ) = (3, 2, 2, 1).

In Case 3 we have that the minimum
values are d1(M,K1) = 3, d1(M,K2) =
2, d1(M,K3) = 1, d1(M,K4) = 2 there-
fore dΣ(M,Φ) = 8, dmax(M,Φ) = 3 and
dGmax(M,Φ) = (3, 2, 2, 1).

In Case 4 we have that the minimum
values are d1(M,K1) = 3, d1(M,K2) =
1, d1(M,K3) = 2, d1(M,K4) = 1 there-
fore dΣ(M,Φ) = 7, dmax(M,Φ) = 3 and
dGmax(M,Φ) = (3, 2, 1, 1).

From these observations follows that

mod(∆Σ(d1)
R (Φ)) = {(1, 0, 1, 1, 0, 1̄)} and

mod(∆max(d1)
R (Φ)) = mod(∆Gmax(d1)

R (Φ)) =
{(1, 1, 1, 1, 0, 1̄)}

Now we treat the discrete distance. No-
tice that the model M ′ of R defined by M ′ =
(0, 1, 1, 1, 0, 1, 1, 1, 1, . . . , 1, . . . ) is a model of
K3, but there are no models of R which are mod-
els of K1,K2 or K4.

Thus, for any model M of R different
to M ′ we have d2(M,K1) = d2(M,K2) =
d2(M,K3) = d2(M,K4) = 1. Moreover
d2(M ′,K1) = d2(M ′,K2) = d2(M ′,K4) = 1
and d(M ′,K3) = 0 From these observations we
obtain
∆max(d2)

R (Φ) = R, mod(∆Σ(d2)
R (Φ)) =

mod(∆Gmax(d2)
R (Φ)) = {M ′}

Finally we deal with Cantor distance. Using
the previous table we proceed to find the mini-
mum values.

Case 1 M(2) = M(3) = 1, i.e. M =
(1, 1, 1, 1, 0, 1̄). In this case d3(M,K1) =
1
23 + 1

24 , d3(M,K2) = 1
22 + 1

23 d3(M,K3) =
1
2 + 1

25 and d3(M,K4) = 1
22 + 1

24 . There-
fore dΣ(M,Φ) = 45

25 , dmax(M,Φ) = 17
25 ,

dGmax(M,Φ) =
(

17
25 , 3

23 , 5
24 , 3

24

)
Case 2 M(2) = 1,M(3) = 0, i.e. M =

(0, 1, 1, 1, 0, 1̄). In this case d3(M,K1) = 1
23 +

1
24 , d3(M,K2) = 1

2 + 1
22 + 1

23 , d3(M,K3) =
1
25 , d3(M,K4) = 1

2 + 1
22 + 1

24 . Therefore
dΣ(M,Φ) = 61

25 ,
dmax(M,Φ) = 7

23 ,
dGmax(M,Φ) =

(
7
23 , 13

24 , 3
24 , 1

25

)
.

Case 3 M(2) = M(3) = 0, i.e. M =
(0, 0, 1, 1, 0, 1̄). In this case d3(M,K1) = 1

22 +
1
23 + 1

24 , d3(M,K2) = 1
2+ 1

23 , d3(M,K3) = 1
25 ,

d3(M,K4) = 1
2 + 1

24 . Therefore



PPPPPP mod(R)
mod(Ki) (1, 1, 1, 1, 0, 1̄) (0, 1, 1, 1, 0, 1̄) (0, 0, 1, 1, 0, 1̄) (1, 0, 1, 1, 0, 1̄)

(∗, 1, 0, 0, ∗, 1̄)

(1, 0, 0, ∗, ∗, 1̄)

(0, ∗, 1, 1, 1, 1̄)

(1, 0, 1, 0, 0, 1̄)

0, 0, 1, 1, 0, 0̄ 0, 0, 1, 1, 0, 0̄ 0, 1, 1, 1, 0, 0̄ 0, 1, 1, 1, 0, 0̄

0, 1, 1, 0, 0, 0̄ 1, 1, 1, 0, 0, 0̄ 1, 0, 1, 0, 0, 0̄ 0, 0, 1, 0, 0, 0̄

1, 0, 0, 0, 1, 0̄ 0, 0, 0, 0, 1, 0̄ 0, 0, 0, 0, 1, 0̄ 1, 0, 0, 0, 1, 0̄

0, 1, 0, 1, 0, 0̄ 1, 1, 0, 1, 0, 0̄ 1, 0, 0, 1, 0, 0̄ 0, 0, 0, 1, 0, 0̄

Table 1: Calculating Dalal distances.

dΣ(M,Φ) = 53
25 ,

dmax(M,Φ) = 5
23 ,

dGmax(M,Φ) =
(

5
23 , 9

24 , 7
24 , 1

25

)
Case 4 M(2) = 0,M(3) = 1, i.e.

M = (1, 0, 1, 1, 0, 1̄). In this case
d3(M,K1) = 1

22 + 1
23 + 1

24 d3(M,K2) = 1
23 ,

d3(M,K3) = 1
2 + 1

25 and d3(M,K4) = 1
24

Therefore

dΣ(M,Φ) = 37
25 ,

dmax(M,Φ) = 17
25 ,

dGmax(M,Φ) =
(

17
25 , 7

24 , 1
23 , 1

24

)
Finally from the previous observations we ob-

tain:

mod(∆Σ(d3)
R (Φ)) = {(1, 0, 1, 1, 0, 1̄)}

mod(∆max(d3)
R (Φ)) =

{(1, 1, 1, 1, 0, 1̄), (1, 0, 1, 1, 0, 1̄)}

mod(∆Gmax(d3)
R (Φ)) = {(1, 1, 1, 1, 0, 1̄)}

Final remarks and questions

We have defined merging operators in the in-
finite framework. This is important because in
many situations we do not know in advance how
many variables will be involved. So, we have to
dispose of mechanisms to treat these situations.

An interesting result of studying the infinite
framework for merging operators is to fix some
postulates (e.g. the majority postulate). The
infinite case tells us that the distances used
to define operators have to be very particular:
they have to satisfy the condition 3, i.e. a real-
ization condition which is satisfied, for instance,
by continuous functions over compact spaces.
Another thing very interesting is the smooth-
ness property which guarantees the consistency
of operators defined by smooth assignments.

An interesting question is to study the be-
haviour of operators when we restraint the co-
domain and the nature of information. For in-
stance what happen if instead of T (the set of all
theories) we take the set of theories finitely gen-
erated? Do the representation theorems hold?
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