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Abstract

This paper introduces a new class called hang yourself (HY)
arguments into the theory of defeasible argumentation. The
novelty of such arguments is that they are inherently destruc-
tive: they cannot be used to support conclusions but only to
attack other arguments. In this paper it is described what
these arguments are, how they can be formalized, and what
the formal consequences are of adding them to a logic for
defeasible argumentation.

Introduction
A popular approach to the study of nonmonotonic reason-
ing is in terms of argumentation (Dung, 1995; Simari and
Loui, 1992; Pollock, 1995; Vreeswijk, 1997; Bondarenko
et al., 1997). The main idea is that defeasible inference
can be characterised in terms of the interaction between ar-
guments for and against alternative conclusions. One of
the advantages of this approach is that defeasible reasoning
can be studied from the perspective of dialogues, in which
two agents, a proponent and opponent, argue about the ac-
ceptablity of a certain statement (Simari and Loui, 1992;
Brewka, 1994; Vreeswijk, 1997; Loui, 1998; Prakken and
Sartor, 1997). Dialogues are very close to the human way
of interacting when trying to convince each other of their re-
spective points of view. It is a way of reasoning that people
are relatively familiar with, so that the study of defeasible
reasoning in terms of dialogues can help to decrease the gap
between intuitive and formal accounts of defeasible reason-
ing.

In this paper, we examine one particular form of argu-
ments that until now has received little attention in the field
of defeasible logic and formal dialogues. In order to illus-
trate this form of arguments, a few informal examples are
given in section . It is also shown that a formalization of the
examples in existing systems can result in an outcome that
is different than what one would expect based on intuitive
grounds. In section , a new kind of formal argument (which
we call HY-arguments) is introduced, and it is shown that
the resulting formalism properly deals with the examples of
section . In section , some of the formal properties of the
resulting system are given.

∗This research was supported by the Netherlands Organisation
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The formal investigations of this paper will be carried out
in terms of an example system for defeasible argumentation,
viz. the one of (Prakken and Sartor, 1997). However, it is
important to note that the problems can also arise in simi-
lar systems, such as default logic (Reiter, 1980), Pollock’s
OSCAR system (Pollock, 1995), defeasible logic (Nute and
Erk, 1998; Nute et al., 1998) or Simari and Loui’s system
(Simari and Loui, 1992).

The problem
In this section, the concept of HY-arguments is illustrated
using a sample framework for defeasible argumentation, for
which we have chosen the framework of Prakken and Sartor
(Prakken and Sartor, 1997). One of the reasons to choose
this system to illustrate the concept of HY-arguments is its
ability to view defeasible reasoning as a dialogue, in which
a proponent and an opponent discuss the validity of a cer-
tain statement. Based on the language of extended logic
programming, the system is formulated as an instance of
Dung’s (Dung, 1995) grounded semantics, and is also given
an equivalent dialogue-game formulation. In order to keep
things concise, we have simplified Prakken and Sartor’s sys-
tem not to include priorities, weak negation or strict rules
other than premises. Under these simplifications, roughly,
arguments can be constructed by chaining rules, and argu-
ments are in conflict when they use rules with conflicting
heads. More precisely, our reference system (which is ref-
ered to as DSclassic) can be defined using the following def-
initions:

Definition 2.1.
A literal is either an atomic proposition (P ) or the negation
of an atomic proposition (¬P ). A negation function (− :
literals → literals) is defined by −P = ¬P and −¬P = P .

Rules come in two forms: defeasible rules and premises.
Syntactically, the difference is indicated by the type of ar-
row. A short, single lined arrow (“→”) indicates a premise,
while a short double lined arrow (“⇒”) indicates a defeasi-
ble rule. Another important difference is that premises al-
ways have an empty antecedent. The advantage of modeling
premises as a kind of rules is that in this way arguments be-
come more homogenous. In cases where the difference be-
tween premises and defeasible rules is not relevant, or where
both kinds of rules are meant, a long single lined arrow is



used (“−→”).
Definition 2.2.
A rule is an expression of the form L0 ∧ . . .∧Ln−1 −→ Ln,
where each Li (0 ≤ i ≤ n) is a literal. The conjunction
left of the arrow is the antecedent and the literal right of the
arrow is the consequent. The following kinds of rules are
distinguished:

1. premises: → L

2. defeasible rules: L0 ∧ . . . ∧ Ln−1 ⇒ Ln

Definition 2.3.
An argument is a finite sequence A = [r0, . . . , rn] of rules
such that:

1. for every i (i ≤ 0 ≤ n), for every literal L in the an-
tecedent of ri, there is a h < i such that L is the conse-
quent of rh, and

2. no two distinct rules in the sequence have the same con-
sequent

We say that L is a conclusion of A iff A contains a rule with
L as consequent.

Definition 2.4.
A set S of premises is consistent iff the set of all consequents
of S is consistent.

Definition 2.5.
A defeasible theory is a pair (S,D) where S is a consistent
set of premises and D is a set of defeasible rules. An argu-
ment A is based on (S,D) iff all rules in A are in S ∪ D.

Definition 2.6.
Let A1 and A2 be two arguments. A2 attacks A1 on L iff
A1 has conclusion L and A2 has conclusion −L. An argu-
ment A is coherent iff consequents(A)∪ consequents(S) is
consistent.

The definition of defeat uses the definition of attack, with
as additional condition that one cannot defeat any premises.
Furthermore, an incoherent argument can always be de-
feated in a very trivial way.
Definition 2.7.
Let A1 and A2 be two arguments. Then A2 defeats A1 iff:

1. A2 attacks A1 and on L and the rule in A1 that has L as
its consequent is not a premise.

2. A2 is empty and A1 is incoherent.

We say that A2 strictly defeats A1 iff A2 defeats A1 and A1

does not defeat A2.

Definition 2.7 makes that incoherent arguments are ba-
sically discharged. This feature is not unique to the sys-
tem of Prakken and Sartor. Pollock, for instance, argues
that self-defeating arguments should themselves not be jus-
tified (“warranted”) and also not have any influence on
whether other arguments are justified or not (Pollock, 1987;
Pollock, 1992). The general idea is that an argument that
contradicts itself should not be taken serious and should
therefore not keep other arguments from becoming justi-
fied.1

1Apart from that, there also exist strong technical reasons for
ruling out self-defeating arguments in advance; see for instance
section 5.3 of (Caminada, 2004).

Based on the above described defeat relation between
arguments, Prakken and Sartor use grounded semantics
(Dung, 1995) to define a sceptical notion of defeasible con-
sequence.

Definition 2.8.
A literal is justified iff it is the conclusion of an argument in
the grounded extension.

An argumentation formalism based on grounded seman-
tics can be given a dialectical proof theory.2 The idea is
that a proponent and an opponent are involved in a discus-
sion about the validity of a main argument. They take turns,
and in every turn they provide a counterargument against the
other party’s argument. The rules of the dialogue are such
that each argument of the opponent should defeat the pre-
vious argument of the proponent, while each argument of
the proponent should strictly defeat the previous argument
of the opponent.3 Furthermore, the proponent is not allowed
to repeat any earlier moves, to prevent the dialogue from
non-termination.

Based on the above formalism, the following are exam-
ples of dialogues between a proponent (P) and an opponent
(O).

Example 2.1.
S = {→ A, → D}
D = {A ⇒ B, B ⇒ C, D ⇒ E, E ⇒ ¬C}
P: → A, A ⇒ B, B ⇒ C (A1)
O: → D, D ⇒ E, E ⇒ ¬C (A2)

Here, A2 attacks and defeats A1.

Example 2.2.
S = {→ A, → D}
D = {A ⇒ B, B ⇒ C, D ⇒ E, E ⇒ ¬B}
P : → A, A ⇒ B, B ⇒ C (A1)
O : → D, D ⇒ E, E ⇒ ¬B (A2)

Here, A2 again attacks and defeats A1.

Example 2.3.
S = {→ A}
D = {A ⇒ B, B ⇒ C, C ⇒ ¬B, ¬B ⇒ ¬D, A ⇒ D}
P: → A, A ⇒ D (A1)
O: → A, A ⇒ B, B ⇒ C, C ⇒ ¬B, ¬B ⇒ ¬D (A2)
P: ∅ (A3)

Here, A2 is an incoherent argument that is defeated by the
empty argument.

Now that the formalities of DSclassic are made clear, the
next step is to provide a few natural language examples and
to examine how these can be formalized. The first example
is the well-known Nixon diamond.

2For the specific formalism of Prakken and Sartor, complete-
ness and correctness of the dialectical proof theory is proved in
(Prakken and Sartor, 1997). For a more general proof, for any
grounded semantics argumentation system we refer to (Caminada,
2004).

3 The idea is that there is a certain asymmetry in the dialogue.
The opponent has the relatively easy task of casting doubt on a
certain thesis (for which non-strict defeat is already enough). The
proponent, however, should make sure that the thesis is casted away
from all doubt (for which it needs to strictly defeat the possible
counterarguments).



Example 2.4 (Nixon diamond).
P: “Nixon is a pacifist, because he is a Quaker.”
O: “Certainly not, because he is also a Republican.”
S = {→ NQ , → NR}
D = {NQ ⇒ NP , NR ⇒ ¬NP}
P: → NQ , NQ ⇒ NP
O: → NR, NR ⇒ ¬NP

For the Nixon diamond, DSclassic indeed derives the de-
sirable outcome; in every possible dialogue meant to de-
fend NP , the opponent will have the last word, thus NP
is not justified (for similair reasons, ¬NP is also not justi-
fied). Thus, the outcome of the Nixon diamond corresponds
with what one may reasonably expect: proponent’s argu-
ment is rejected because there exists a plausible counterargu-
ment that casts doubt on it. Other examples exists, however,
where the formal outcome and the intuitive outcome are not
necessarily the same.

Example 2.5 (shipment of goods).
P: “The shipment of goods must have arrived in the

Netherlands by now (a), because we placed an order
three months ago (tma)”

O: “I don’t think so. If the goods had really arrived in
the Netherlands, then there would be a customs dec-
laration (cd), and I can’t see any such declaration in
our information system (¬is).”

S = {→ tma, → ¬is}
D = {tma ⇒ a, ¬is ⇒ ¬cd, a ⇒ cd}
P: → tma, tma ⇒ a
O: → tma, tma ⇒ a, a ⇒ cd, → ¬is, ¬is ⇒ ¬cd
P: ∅

Example 2.6 (tax relief).
P: “If all goes well, this administration will implement a

huge tax relief (tr).”
O: “But in the current economical situation, you can

only implement such a tax relief by accepting a sig-
nificant budget deficit (bd), which means we will also
get a huge fine from Brussels (fb).4There goes your
tax relief.”

S = ∅
D = {⇒ tr, tr ⇒ bd, bd ⇒ fb, fb ⇒ ¬tr}
P: ⇒ tr
O: ⇒ tr, tr ⇒ bd, bd ⇒ fb, fb ⇒ ¬tr
P: ∅

What the examples 2.5 and 2.6 have in common is that the
opponent tries to attack the standpoint of the proponent not
by providing an independent counterargument, (such as was
seen in the examples 1, 2 and 3, as well as in the Nixon dia-
mond), but by showing that the standpoint of the proponent
is problematic as it can lead to conflicts. The opponent wants
to indicate that the proponent drew its conclusions too fast
and that if the proponent would have given the matter more
thought, then after some additional reasoning steps he would
have found out that his argument can lead to self-defeat. In
the formalism of Prakken and Sartor, however, as well as

4Countries within the euro-zone have to keep their budget
deficit less than 3%, or face sanctions from the EU.

in similar formalisms, it is the opponent that is blamed for
making a self defeating argument (which, according to defi-
nition 2.7 is defeated by the empty argument), while, in fact,
the opponent is only confronting the proponent with the con-
sequences of its own reasoning.

Existing systems cannot account for this inherently de-
structive nature of HY-arguments; instead they treat each
counterargument as a constructive argument for a conflict-
ing conclusion. What is needed then, is a way to formalize
reasoning with HY-arguments in such a way that they can-
not be used to derive conclusions but only to attack other
arguments.

HY-arguments
An HY-argument can be defined as an argument that shows
the problematic nature of another argument by assuming the
conclusions of this other argument and then entailing either a
contradiction, or a conclusion that undercuts the other orgu-
ment5. In this section, a formal logic for defeasible reason-
ing is presented that can deal with this type of argument. The
thus obtained logic is referred to as DSHY .

Definition 3.1.
A rule is an expression of the form: L0∧ . . .∧Ln−1 −→ Ln

where each Li (0 ≤ i ≤ n) is a literal. The conjunction
at the left of the arrow is the antecedent and the literal at
the right side of the arrow is the consequent of the rule. The
following kinds of rules are distinguished:

1. premises: → L

2. defeasible rules: L0 ∧ . . . ∧ Ln−1 ⇒ Ln

3. foreign commitments: ; L

Foreign commitments are “imported” conclusions from
the other agent’s argument and are used in a way similair
to reductio ad absurdum assumptions in classical logic. The
requirement that for an argument to make sense, every for-
eign commitment should be based on an actual conclusion of
another argument, will be formalized in the notion of attack.

Definition 3.2.
Let (S,D) be a defeasible theory. An argument is a finite
sequence A = [r0, . . . , rn] of rules such that:

1. for every i (0 ≤ i ≤ n), for every literal in the antecedent
of ri, there is a h < i such that L is the consequent of rh

2. no two distinct rules in the sequence have the same con-
sequent

3. All premises of A are in S, all defeasible rules of A are
in D, and for all foreign commitments ; C in A it holds
that C is a conclusion of a rule in S ∪ D.

If A is an argument with conclusion L, then the set of
rules relevant to L consist of all rules in A that have a role
in deriving L, starting with the rule with L as its consequent
and ending with one or more premises or foreign commit-
ments.

5In order to keep the discussion concise, the possibility of un-
dercutting is not discussed in this paper



Definition 3.3.
Let A be an argument with conclusion L. The set of rules
relevant to L — written as RL(A) — is the smallest set such
that:

1. L0 ∧ . . . ∧ Ln−1 −→ L ∈ RL(A),
where L0 ∧ . . . ∧ Ln−1 −→ L is a rule in A

2. if L0 ∧ . . . ∧ Ln−1 −→ Ln ∈ RL(A)
then also RL0

(A) ∪ . . . ∪ RLn−1
(A) ⊆ RL(A)

Definition 3.4.
Let A be an argument with conclusion L. We say that L is fc-
based iff RL(A) contains at least one foreign commitment.

Definition 3.5.
Let A1 and A2 be two arguments. A2 attacks A1 on L iff:

1. A2 has a conclusion L and a conclusion −L where at
least L is fc-based, and

2. for every foreign commitment ; C in A2: C is a conclu-
sion of A1 that is not fc-based.

An argument is coherent iff it is not attacked by an argument
without defeasible rules.

For the definition of attack, it is important to notice that
any “traditional” attacking argument can be converted into
an attacking HY-argument. Suppose we have a defeasible
theory (S,D, <) with S = {→ I, → M} and D = {I ⇒
J, J ⇒ K, K ⇒ L, M ⇒ N, N ⇒ O, O ⇒ ¬L}.
Then, a dialogue with “traditional” arguments would look
as follows:

P: → I, I ⇒ J, J ⇒ K, K ⇒ L
O: → M, M ⇒ N, N ⇒ O, O ⇒ ¬L

A dialogue in which traditional defeat should be imple-
mented by an HY-argument then looks as follows:

P: → I, I ⇒ J, J ⇒ K, K ⇒ L
O: → M, M ⇒ N, N ⇒ O, O ⇒ ¬L, ; L

Definition 3.6.
Let A1 and A2 be two arguments. A2 defeats A1 iff A2 at-
tacks A1 on L and
∪ci∈{ci|;ci∈RL(A2)∪R

−L(A2)}Rci
(A1) contains at least

one defeasible rule.

Note that, just as in Section , we have defined a bi-
nary defeat relation on a set of arguments, so the origi-
nal definitions of grounded semantics and the corresponding
dialogue-game version still apply. However, to capture the
destructive nature of HY-arguments, the notion of a justified
conclusion must be restricted to conclusions derived without
foreign commitments.

Definition 3.7.
A literal is justified iff it is the conclusion of a justified argu-
ment (grounded semantics) without foreign commitments.

It is interesting to see how these definitions apply to the
examples given earlier. The idea is simple: take one of the
conclusions of the proponent’s argument and then show that
starting from this conclusion a contradiction can be derived.

Example 3.1 (Nixon diamond).
P: → NQ , NQ ⇒ NP (A1)
O: → NR, NR ⇒ ¬NP , ; NP (A2)

In this example, a “traditional” attacking argument is writ-
ten in the form of a HY-attack.

Example 3.2 (shipment of goods).
P: → tma, tma ⇒ a (A1)
O: ; a, a ⇒ cd, → ¬is, ¬is ⇒ ¬cd (A2)

The proponent now does not have any argument (like ∅ in
the case of DSclassic) that strictly defeats A2.

Example 3.3 (tax relief).
P: ⇒ tr (A1)
O: ; tr, tr ⇒ bd, bd ⇒ fb, fb ⇒ ¬tr (A2)

Here too, the proponent does not have any argument that
strictly defeats A2.

Properties
In this section, some of the formal effects of allowing HY-
arguments are studied.

rule maximalization
The first thing to be noticed is that the addition of HY-
arguments results in a logic that is based on a different prin-
ciple than without HY-arguments. Take for instance the fol-
lowing example:
S = {→ A,→ D}
D = {A ⇒ B, B ⇒ C, C ⇒ ¬B, D ⇒ E}
In DSclassic, A, B, C, D and E are justified. In DSHY ,
on the other hand, only A, D and E are justified. B, for
instance, is not justified in DSHY , since there is a counter-
argument ; B, B ⇒ C, C ⇒ ¬B against → A, A ⇒ B.

The different outcome of DSclassic and DSHY can be
seen in the following perspective. Basically, there are two
approaches to this example. The first approach is to try to
find one or more maximal sets of conclusions, such that there
exists a coherent argument for these conclusions. This is the
usual approach in nonmonotonic logic; one tries to find ex-
tensions consisting of a maximal set of conclusions; a prin-
ciple we call conclusion maximization.

Another approach would be to try to find maximal sub-
sets of rules such that no incoherent argument can be con-
structed, a principle we call rule maximization. Formally,
this principle can be stated as follows:

Definition 4.1.
Let (S,D) be a defeasible theory. A rule-maximal set of
rules Rrmax is a maximal subset of rules from D such
that no incoherent argument A from DSclassic exists that
is based on (S,D) with defeasible(A) ⊆ Rrmax.

Definition 4.2.
Let (S,D) be a defeasible theory. A literal L follows
from a set of defeasible rules R iff there is an argument
A from DSclassic based on (S,D) with conclusion L and
defeasible(A) ⊆ R.

In the case of the above example, this results in three rule
maximal sets of rules, with associated conclusions that fol-
low from it:
{B ⇒ C, C ⇒ ¬B, D ⇒ E} (follows: A,D,E)
{A ⇒ B, C ⇒ ¬B, D ⇒ E} (follows: A,B,D,E)
{A ⇒ B, B ⇒ C, D ⇒ E} (follows: A,B,C,D,E)



If one takes for each rule-maximal set of rules the set of
conclusions that can be derived (like is done above), and
one takes the intersection of these sets (sceptical semantics),
this results in a set containing only A, D and E. These are
exactly the statements that are justified in DSHY .

The fact that in the above example the effects of allowing
HY-arguments corresponds with the results of applying rule-
maximality is not a coincidence.

Theorem 4.1.
L is a justified conclusion in DSHY iff L follows from every
rule-maximal set of rules.

Proof. See (Caminada, 2004).

cautious monotonicity
If one views nonmonotonic logic from the perspective of
postulates, then a particularly interesting postulate is that of
cautious monotonicity. This postulate can can expressed as
follows:

If (S,D) ` L and (S,D) ` M then (S ∪ {→ L},D) ` M

In many systems for defeasible reasoning (such as
(Prakken and Sartor, 1997) or (Reiter, 1980)) this property
does not hold, as is illustrated by the following example:

S = {→ p}
D = {p ⇒ q, q ⇒ r, r ⇒ ¬q, ¬q ⇒ s, ⇒ ¬s}

It now holds that:

• (S,D) ` r (there is a coherent classical argument →
p, p ⇒ q, ⇒ r for r that has no classical coherent
counterargument)

• (S,D) ` ¬s (there is a coherent classical argument ⇒ ¬s
for ¬s that has no classical coherent counterargument)

• (S ∪ {→ r},D) 6` ¬s (the argument ⇒ ¬s now has a
classical coherent counterargument → r, r ⇒ ¬q, ¬q ⇒
s)

In DSHY , however, the above counterexample against
cautious monotonicity is no longer valid, since r is no longer
a justified conclusion.

The fact that the above counterexample against cautious
monotonicity no longer holds is not a coincidence.

Theorem 4.2.
Let (S,D) `DSHY

L stand for “L is a justified conclusion
in DSHY under (S,D)”. Then it holds that:
If (S,D) `DSHY

L
and (S,D) `DSHY

M
then (S ∪ {→ L},D) `DSHY

M

Proof. See (Caminada, 2004).

HY and contraposition
To some readers reasoning with HY-arguments may seem
similar to contrapositive reasoning. An interesting question
therefore is how the effect of adding HY-arguments com-
pares to the effect of adding contraposition. We discuss
three examples to illustrate the similarities and differences
between these concepts. It will turn out that the main differ-
ence is that while contraposition can be used to derive new

conclusions, HY arguments can only be used to attack other
arguments. Given the controversial nature of the principle
of default contraposition (cf. Example 4.2 below) this may
be regarded as an advantage of the approach with HY argu-
ments.

As the logic of Prakken and Sartor by itself does not val-
idate the principle of default contraposition, we study the
effects of contraposition by “manually” adding a contrapos-
itive for each default.

Example 4.1.
S = {→ A, → ¬C}
D = {A ⇒ B, B ⇒ C}

In DSclassic, there are justified arguments for A (→ A)
and B (→ A, A ⇒ B). The (only) argument for C (→
A, A ⇒ B, B ⇒ C) is defeated by the strict argument
→ ¬C so C is not justified.

If we look at a system with HY-arguments, only A and
¬C are justified, B is not. The reason is that the argument
for B (→ A, A → B) now has a HY-counterargument ;

B, B ⇒ C, → ¬C.
Suppose we have a system without HY-arguments, but

with contraposition. Contraposition essentially means that
whenever we have a rule A ⇒ B we may also use it in the
contraposed way of ¬B ⇒ ¬A. This means that the number
of usable rules can (at most) be doubled. If we allow contra-
position in example 4.1, we thus get the following effective
rule-bases:
S ′ = {→ A, → ¬C}
D′ = {A ⇒ B, B ⇒ C, ¬B ⇒ ¬A, ¬C ⇒ ¬B}
If we apply DSclassic to these rule-bases, we obtain justified
conclusions A and ¬C, and nothing else. B is not justified
because there now is a (non-HY) argument (→ ¬C, ¬C ⇒
¬B) against B.

The results, as far as justified conclusions are concerned,
of example 4.1 can therefore be summarized as follows:

• DSclassic {A,B,¬C}

• DSHY : {A,¬C}

• DSclassic + contrapos: {A,¬C}

In example 4.1, we see that the effect of adding HY-
arguments is the same as the effect of adding contraposition.
The question is whether this is always the case.

Example 4.2.
S = {→ ¬C}
D = {A ⇒ B, B ⇒ C}

Here, DSclassic allows us to derive nothing but the con-
clusion ¬C (using argument → ¬C), as there are simply
no arguments for any other conclusion. If we allow HY-
arguments, then still no other conclusions than ¬C can be
derived; as there are still no arguments for anything else. If,
on the other hand, we allow contraposition, then we can also
derive ¬B (→ ¬C, ¬C ⇒ ¬B) and ¬A (→ ¬C, ¬C ⇒
¬B, ¬B ⇒ ¬A), and since these arguments do not have
any counterarguments, both of them are justified.

The results of example 4.2 can therefore be summarized
as follows:

• DSclassic: {¬C}



• DSHY : {¬C}

• DSclassic + contrapos: {¬C,¬B,¬A}

An intuitive version of this example is: sailors are typi-
cally men, men typically have no beard, but captain Nemo
has a beard. We don’t want to conclude from this that cap-
tain Nemo is not a man and not a sailor.

Example 4.2 makes clear that the outcome of a system
with HY arguments can be different from the outcome of a
system with contraposition. This is not surprising, since HY-
arguments are not able to generate new conclusions; instead,
they merely cast doubt on other conclusions.

Example 4.3.
S = {→ A}
D = {A ⇒ B, B ⇒ C, C ⇒ D, D ⇒ E, E ⇒ ¬C}

Here, DSclassic entails A, B, C, D and E. If we allow
HY-arguments, however, then only A is remains justified. In
order to see why this is, take for instance the argument for
E: → A, A ⇒ B, B ⇒ C, C ⇒ D, D ⇒ E. It now
has a HY counterargument ; E, E ⇒ ¬C, ; C. HY-
counterarguments against B, C and D are also available, so
only A remains justified.

Contraposition allows us the justified conclusions of A,
B and C (but not D or E). This can be seen as fol-
lows. Although there is an argument for D (→ A, A ⇒
B, B ⇒ C, C ⇒ D) there is also a counterargument
(→ A, A ⇒ B, B ⇒ C, C ⇒ ¬E, ¬E ⇒ ¬D) so D is
not justified. For a similar reason, E is also not justified. B
and C, on the other hand are justified. C, for instance, has
an argument → A, A ⇒ B, B ⇒ C that has no coherent
counterargument since → A, A ⇒ B, B ⇒ C, C ⇒
¬E, ¬E ⇒ ¬D, ¬D ⇒ ¬C is incoherent! For similar
reasons, B is also justified.

The results of example 4.3 can therefore be summarized
as follows:

• DSclassic: {A,B,C,D,E}

• DSHY : {A}

• DSclassic + contrapos: {A,B,C}

Summary and Conclusions
In this paper we have enriched the theory of defeasible rea-
soning with a notion of HY-arguments. The key novelty of
this kind of argument is that it has an inherently destructive
nature, which is the main reason why reasoning with such
arguments does not simply boil down to contrapositive rea-
soning.

In this paper we formalised the notion of HY-arguments
in the context of the example system of P&S. We showed
that, unlike their original system, the adapted version with
HY-arguments satisfies the postulate of cautious monotony.
We also showed that, while the original system exhibits a
principle of conclusion maximization, the adapted version
with HY-arguments captures the alternative principle of rule
maximization.

It is important to note that the formalism of Prakken and
Sartor was chosen for illustrative purposes only. An analysis
of how systems like default logic and Pollock’s OSCAR can

be enhanced with HY-arguments is provided in (Caminada,
2004), where it is also argued in which domains of reasoning
HY-arguments are or are not applicable.
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