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Abstract

In this paper we develop a language for representing com-
plex qualitative preferences among problem solutions. We
use ranked knowledge bases to represent prioritized goals.
A basic preference description, that is a ranked knowledge
base together with a preference strategy, defines a preference
relation on models which represent problem solutions. Our
language allows us to express nested combinations of prefer-
ence descriptions using various connectives. This gives the
user the possibility to represent her preferences in a natural,
concise and flexible manner.1

Introduction
In this paper we develop a language for specifying complex,
qualitative preferences among potential problem solutions.
Preferences play a crucial role in many areas of AI: in soft
constraint solving constraints may have different priority, in
decision making or planning some goals may be more im-
portant than others, in configuration some properties of the
system to be designed are more critical than others, and so
on.

By a solution we mean an assignment of a certain value
d to each variablev in given set of variablesV such thatd
is taken from the finite domain ofv. Without loss of gen-
erality, we will restrict our discussion here to the boolean
case where the values for each variable aretrue or false.
Solutions thus correspond to interpretations in the sense of
classical propositional logic. Moreover, we also assume that
background knowledge may be given in the form of a set of
propositional formulasB. This background knowledge fur-
ther constrains the set of interpretations: only models ofB
are considered as potential solutions. We are thus looking
for ways of specifying preferences among such models in a
concise yet flexible way.

The number of models is exponential in the number of
variables. For this reason it is, in general, impossible fora
user to describe her preferences by enumerating all pairs of
the preference relation among models. This is where logic
comes into play.

Traditionally, logic is used for proving theorems. Here,
we are not so much interested in logical consequence, we

1This paper was accepted for ECAI-04, the European Confer-
ence on Artificial Intelligence

are interested in whether a model satisfies a formula or not.
In the simplest case we can use a single formulaf , interpret
it as a goal, and say a modelm1 is preferred to modelm2

(denotedm1 > m2) iff m1 |= f andm2 6|= f . Note that al-
ready in this simple case the formulaf alone does not tell us
anything about the preference relation. We need additionally
a specification of how to use it for determining preferences
among models. In the example,f might as well be a condi-
tion the user wants to avoid. In other words, we may have
m1 > m2 iff m1 6|= f andm2 |= f . Only if the specifica-
tion of how the formula is to be used is given, a preference
order on models can be derived.

In the general case, a single formula is not sufficient and
we need a set of formulasF rather than a single formula. We
obviously may have more than one goal. Since it may well
be impossible to satisfy all of them, a preference relation
among the elements ofF is useful to distinguish important
from less important goals. To express the preferences among
goals we will use ranked knowledge bases (RKBs) in this
paper (Brewka 1989; Benferhatet al. 1993; Pearl 1990;
Goldszmidt & Pearl 1991) which are sometimes also called
stratified knowledge bases. Such knowledge bases have
proven fruitful in a number of approaches. A brief introduc-
tion will be given in the next section. Intuitively, the rank
rank(f) of a formulaf in anRKB is an integer expressing
its relative importance. Again, anRKB alone is not suf-
ficient to determine the preference relation on models. We
need in addition a recipe of how to use theRKB for this
purpose, in other words, we need a strategy.

Although the use of integers is convenient here,RKBs
are often used in a purely qualitative way where the actual
numbers are irrelevant. What counts is only the total pre-
order≥ on formulas represented through the integers, where
f1 ≥ f2 iff rank(f1) ≥ rank(f2).

Our focus in this paper will be entirely on these quali-
tative approaches. This excludes, for instance, approaches
which consider ranks as rewards and maximize their sum, as
is often done in soft constraint satisfaction (Schiex, Fargier,
& Verfaillie 1995). For an excellent overview of some of
these approaches see (Lang 2004). Numerical approaches
certainly are highly interesting. Nevertheless, we believe
that they are better treated in the realm of classical deci-
sion theory. The strength ofRKBs lies in their potential
for modeling qualitative preferences.



We will discuss several qualitative strategies which have
been used in combination with anRKB . Different strate-
gies reflect different meanings a user can associate with the
importance ranks. Since there is no single best reading of
such ranks, there is no single best strategy. We thus think it
is important to give users the ability to choose and possibly
combine different strategies in flexible ways. Our main con-
tribution is thus a language for defining complex preferences
among models. The basic building blocks are pairs consist-
ing of a strategy and anRKB . Our language also allows for
(nested) combinations of preference expressions of this kind
using different combination methods.

Throughout the paper theRKBs we use contain formu-
las representing goals or desires. Independently of the cho-
sen strategy, making more formulas true can never decrease
the quality of a model. Some authors have also investigated
rejections, that is formulas which should be falsified (Ben-
ferhatet al. 2002). It turns out that the rejection ofp can
be modeled using the goal¬p, given an adequate strategy.
Our choice of a goal based approach thus does not reduce
generality.

The rest of the paper is organized as follows. In the next
section we give a brief reminder on ranked knowledge bases.
The following section introduces basic preference expres-
sions, consisting of anRKB together with one of 4 quali-
tative strategies. We also investigate their relationship. The
subsequent section defines our full preference description
language. In this language, expressions can be combined
using various operators. We then illustrate our language us-
ing a movie selection example. The last section discusses
related work and concludes.

Ranked Knowledge Bases
A ranked knowledge base (RKB ), sometimes also called
stratified knowledge base, is a setF of propositional for-
mulas together with a total preorder≥ onF . A preorder is a
transitive and reflexive relation, totality means that for each
f1, f2 ∈ F we havef1 ≥ f2 or f2 ≥ f1. Usually,RKBs are
represented in one of the following ways:

1. as a sequence(F1, . . . , Fn) of sets of formulas such that
f1 ≥ f2 iff for somei, j: f1 ∈ Fi, f2 ∈ Fj andi ≥ j.

2. as a set of ranked formulas(f, k), wheref is a propo-
sitional formula andk, the rank off , is a non-negative
integer such thatf1 ≥ f2 iff rank(f1) ≥ rank(f2).

The two representations ofRKBs are clearly equivalent: the
rank of a formula corresponds to the set index in the first
formulation. For convenience we will mostly use the second
one in this paper. Note that starting from a pair(F,≥) one
always gets a set of ranked formulas where each formula has
a unique rank.2

Intuitively, we consider formulas with higher rank to be
more important than those with lower rank.3 The exact

2To represent a set of ranked formulas where a formulaf has
more than one rank as a pair(F,≥), one needs syntactic variants
of f , that is, equivalent yet syntactically different formulas.

3(Brewka 1989) uses the reverse numbering, that isF1 is the
most important set. We find it more intuitive to express higher

meaning of the ranks depends on the chosen preference strat-
egy.

Different ways of defining consequence relations for
RKBs have been defined in the literature. In (Brewka 1989)
an inclusion based method was used to define preferred
maximal consistent subsets (called preferred subtheoriesin
(Brewka 1989)) of the premises. A maximal subsetS1 is
strictly preferred toS2 iff there is a rankr such that the for-
mulas of rankr in S1 are a proper superset of those inS2,
and for all ranks higher thanr, S1 andS2 agree on the con-
tained formulas. Benferhat and colleagues (Benferhatet al.
1993) investigated ranked knowledge bases under a cardi-
nality based criterion. To define preferred maximal consis-
tent subsets, they take the number of formulas satisfied in
a particular stratum into account. SystemZ (Pearl 1990;
Goldszmidt & Pearl 1991) generates a ranking from a
knowledge base of rules which gives more importance to
more specific rules. Intuitively, to determine whether a
modelM is preferred, the lowest rankr is considered for
which M satisfies all rules of degreer and higher. A close
connection between SystemZ and possibilistic logic was
established in (Benferhat, Dubois, & Prade 2002). The ma-
jor difference is that possibilistic logic uses reals in theunit
interval rather than integers.

In a possibilistic setting, Benferhat and colleagues (Ben-
ferhat et al. 2002) investigated bipolar preferences based
on the maximal degree of a satisfied goal (a model is bet-
ter the higher the maximal degree) and the maximal degree
of a satisfied rejection (a model is the better the smaller the
maximal degree).

Since all of these strategies from the literature are of in-
terest, the language to be developed in the next sections will
allow the user to pick the one she has in mind when speci-
fying preferences through a ranked knowledge base, and to
combine them in a flexible manner.

Basic preference expressions
In this and the following section we define the language
LPD for expressing complex preferences among models.
We identify 4 basic qualitative strategies which we consider
fundamental, given preferences among goals are specified
usingRKBs. In our language we use identifiers taken from
the set

Strat = {>, κ,⊆,#}.

for particular strategies. The meaning of these identifiers
will be defined shortly.

Definition 1 A basic preference description is a pair(s,K)
consisting of a basic strategy identifiers and anRKB K.

Rather than using pair notation(s, {(f1, r1), . . . , (fn, rn)})
or (s,K), we will often use a strategy identifier as
an upper index for theRKB , that is, we write
{(f1, r1), . . . , (fn, rn)}s or Ks, respectively.

A basic preference description defines a preorder≥ (that
is, a transitive and reflexive relation) on models. As usual,
the preorder implicitly defines an associated strict partial or-
der defined bym1 > m2 iff m1 ≥ m2 and notm2 ≥ m1.

importance with higher indices.



Let K = {(fi, vi)} be anRKB , s a basic strategy name.
We use≥K

s to denote the preorder on models defined by
(s,K). We first introduce the following notation and auxil-
iary definitions:

Kn(m) = {f | (f, n) ∈ K,m |= f}
maxsatK(m) = −∞ if m 6|= fi for all (fi, vi) ∈ K,

max{i | (f, i) ∈ K,m |= f} otherwise.
maxunsatK(m)= −∞ if m |= fi for all (fi, vi) ∈ K,

max{i | (f, i) ∈ K,m 6|= f} otherwise.

Now we can define the corresponding orderings on models:

• m1 ≥K
> m2 iff maxsatK(m1) ≥ maxsatK(m2).

• m1 ≥K
κ m2 iff maxunsatK(m1) ≤ maxunsatK(m2).

• m1 ≥K
⊆ m2 iff Kn(m1) = Kn(m2) for all n, or there is

ann such thatKn(m1) ⊃ Kn(m2), and for allj > n:
Kj(m1) = Kj(m2)

• m1 ≥K
# m2 iff |Kn(m1)| = |Kn(m2)| for all n, or there

is ann such that|Kn(m1)| > |Kn(m2)|, and for allj >
n: |Kj(m1)| = |Kj(m2)|

The strategies can be described informally as follows:

• > prefersm1 overm2 whenever the most important goal
satisfied bym1 is more important than the most impor-
tant goal satisfied bym2. It was used in (Benferhatet al.
2002) in the context of bipolar representations. With this
strategy the intuitive reading of(f, r) is: if f is true, then
the total satisfaction is at leastr.

• κ prefersm1 overm2 whenever the most important goal
not satisfied bym1 is less important than the most impor-
tant goal not satisfied bym2, in other words, if the rank
r such that all goals of rankr and higher are satisfied is
lower inm1 than the corresonding rank inm2. This is the
κ-ranking used in systemZ. It is also the ordering needed
to model a rejectionp (Benferhatet al. 2002) via the goal
¬p.

• to check whether⊆ prefersm1 over m2 we start from
the most important goals and go down stepwise to less
important ones. If, at the first rank reached this way for
which the formulas satisfied by the two models differ, we
have thatm1 satisfies a superset of the formulas satisfied
by m2, thenm1 is preferred. This is the order used in
(Brewka 1989).

• # is similar to⊆, but rather than checking the sets of
formulas satisfied for each rank, their cardinality is con-
sidered. This is the proposal of Benferhat and colleagues
in (Benferhatet al. 1993).

Among the preorders on models generated by these strate-
gies only≥K

⊆ is partial. The others are total, that is, the
ordering on models is again a ranking.

To illustrate the strategies let us consider the following
RKB :

K = {(a, 2), (b, 2), (c, 2), (d, 1), (e, 1)}

We will represent models by a sequence of atoms true in the
model. For example,acd represents the model in whicha, c
andd are true,b ande are false. Also, wheneverK is clear

from context we omit the upper indexK from the relation
symbols. We havead >> de sincead, contrary tode, satis-
fies a goal of rank 2. On the other hand,ad 6>κ de since both
models falsify a goal of rank 2. Furthermore,abc >κ bd
sinceabc satisfies all goals of rank 2, that is, the maximal
rank of a violated goal is 1. On the other handabc 6>> bd
since both satisfy a goal of rank 2.abd is incomparable to
cd according to⊆, howeverabd ># cd since the former
satisfies two goals of rank 2.

The different strategies are not independent of each other.
We have the following results:

Proposition 2 Let m1 and m2 be models,K a ranked
knowledge base. The following relationships hold:

m1 >K
> m2 impliesm1 >K

⊆ m2,
m1 >K

κ m2 impliesm1 >K
⊆ m2,

m1 >K
⊆ m2 impliesm1 >K

# m2,
m1 ≥K

⊆ m2 impliesm1 ≥K
# m2,

m1 >K
> m2 impliesm1 ≥K

κ m2,
m1 >K

κ m2 impliesm1 ≥K
> m2.

The first 4 relationships can be illustrated using the follow-
ing figure:

κ

>

⊆ #

>

>

>,≥

���*

HHHj -

Fig.1: Relationship among basic orderings

More relationships can be established if we allowK to be
modified.

Proposition 3 Let K be a ranked knowledge base,m1 and
m2 models. LetK∧ =

{(Ci, i) | Ci conjunction of allf with (f, j) ∈ K, j ≥ i}

andK∨ =

{(Ci, i) | Ci disjunction of allf with (f, j) ∈ K, j ≥ i}.

Thenm1 ≥K
κ m2 iff m1 ≥K∧

⊆ m2 and m1 ≥K
> m2 iff

m1 ≥K∨

⊆ m2.

Moreover, since⊆ and # are equivalent if for each rank
there is only a single formula possessing this rank, the
proposition also holds if we use# instead of⊆.

The preference language
So far we discussed basic preference descriptions only. A
user may have different ways of modeling her preferences
for different aspects of a problem. Therefore, we also want
to allow more complex descriptions representing combina-
tions of the corresponding preorders.

We now give the full definition of our logical preference
description language. For reasons which will become clear
later we use the standard propositional connectives together
with a new connective> expressing preference among ex-
pressions.



Definition 4 The logical preference description language
LPD is inductively defined as follows:

1. each basic preference description is inLPD ,
2. if d1 andd2 are in LPD , then the expressions(d1 ∧ d2),

(d1 ∨ d2), (d1 > d2) and−d1 are inLPD .

The formal definition of the meaning of a (non-basic)
LPD expression, that is the definition of its associated pre-
order on models, is as follows:

Definition 5 LetR1 andR2 be the preorders on models rep-
resented byd1 and d2, respectively. Lettr(R) denote the
transitive closure of a relationR. Ord(lpd), the preorder
represented by the complexLPD expressionlpd, is defined
as follows:

Ord(d1 ∧ d2) = R1 ∩ R2

Ord(d1 ∨ d2) = tr(R1 ∪ R2)
Ord(−d1) = {(m2,m1) | (m1,m2) ∈ R1}
Ord(d1 > d2) = {(m1,m2) ∈ R1 | (m1,m2) ∈ R2 or

(m2,m1) 6∈ R1}

d1 ∧ d2 corresponds to the well-known Pareto ordering: a
modelm1 is at least as good asm2 if it is at least as good
asm2 with respect to bothd1 andd2. m1 is strictly better if
it is better according to one of the suborderings, and at least
as good asm2 with respect to the other. The definition for
d1 ∨ d2 needs the transitive closure since the union of two
orderings is not necessarily transitive. The− operator just
reverses the original ordering. Double application of− ob-
viously gives back the original ordering. Note, however, that
other properties of negation do not hold for−, in particular
the de Morgan laws do not hold. For instance,−(d1 ∨ d2)
differs from(−d1 ∧ −d2).4

d1 > d2 is the lexicographic ordering ofR1 andR2 which
gives more priority toR1 and usesR2 only to distinguish
between models which are equally good wrt.R1. Here,m1

is strictly better thanm2 if it is strictly better wrt.R1, or as
good asm2 wrt. R1 and strictly better wrt.R2.

The binary operators∨,∧ and> are associative. We omit
brackets if this does not cause confusion, assuming binding
strength decreases in the order∧, ∨, >.

The languageLPD gives us flexible means of represent-
ing preferences on models. We next discuss some properties
of the language.

Under certain circumstances expressions can be simpli-
fied. We say a preference expressiond1 implies an expres-
sion d2 iff Ord(d1) ⊆ Ord(d2). We say two preference
expressions are equivalent iff they induce the same preorder
on models, that is, iffOrd(d1) = Ord(d2). For instance, let
s ∈ Strat be any of our basic strategies, then the expression:

({(f1, r1), . . . , (fn, rn)}s > {(s1, r
′
1), . . . (sm, r′m)}s)

is equivalent to

{(f1, c + r1), . . . , (fn, c + rn), (s1, r
′
1), . . . (sm, r′m)}s

wherec = max{r′i} + 1.

4
−(d1 ∨ d2) is equivalent to(−d1 ∨ −d2), and−(d1 ∧ d2)

equivalent to(−d1 ∧ −d2), though.

Note that this result depends on the fact that the two basic
preference expressions use the same strategy. A similar re-
sult for different strategies does not hold. Also, for∧ such
simplifications are not possible, even if the strategies of the
subexpressions coincide. The only weak result we get is:

Proposition 6 Let K1 andK2 beRKBs. (K⊆
1 ∧ K

⊆
2 ) im-

plies(K1 ∪ K2)
⊆.

The other direction does not hold (to see this, consider the
case where we split anRKB such that formulas with high
rank are inK1, formulas with low rank inK2). For the
cardinality based strategy, using the union of 2RKBs, that
is (K1 ∪ K2)

#, clearly is different from(K#
1 ∧ K

#
2 ). In

the general case complex expressions are not reducible to
single ones which use the same formulas, even if the ranks
are allowed to change.

Example: Selecting a Movie
In this section we want to illustrate the use of our language
with a commonsense example. Assume you are planning to
go to the cinema with your girl friend. Both of you prefer
comedies over action movies over tragedies. Your girl friend
loves to see Hugh Grant and Brad Pitt, followed by Leonardo
di Caprio. Your favourite actors are Julia Roberts and Nicole
Kidman, followed by Gwyneth Paltrow and Halle Berry.
You both feel that the type of movie is as important as the
actors. Moreover, since it is your girl friend’s birthday, her
actors’ preferences are more important today than yours.

We can represent this information using the following
RKBs:

K1 = {(Hugh, 2), (Brad, 2), (Leo, 1)}
K2 = {(Julia, 2), (Nicole, 2), (Gwyneth, 1), (Halle, 1)}
K3 = {(comedy, 3), (action, 2), (tragedy, 1)}

We assume the background knowledge contains information
that the mentioned types of movies are mutually exclusive,
models thus will make at most one of the types true.

Since seeing more of the favourite actors is more fun we
use the cardinality based strategy. Our preferences can thus
be represented as theLPD expression:

(K#
1 > K

#
2 ) ∧ K>

3

Now assume we have the following information about the
movies shown tonight:

M1 : comedy,Hugh,Brad
M2 : comedy,Hugh, Leo, Julia
M3 : comedy,Brad, Leo, Julia,Halle
M4 : action,Brad,Hugh,Nicole
M5 : action,Brad, Leo, Julia,Halle
M6 : tragedy,Brad, Leo, Julia,Nicole

We assume that the list of actors mentioned for each movie
is complete, that is, if one of the names appearing in the
RKBs is not listed, then this actor is not in the correspond-
ing movie.

We represent the information listed above in the back-
ground knowledge in the form of logical implications. For
instance, forM1 we get:



M1 → comedy
∧ Hugh ∧ Brad ∧ ¬Leo
∧ ¬Julia ∧ ¬Nicole ∧ ¬Gwyneth ∧ ¬Halle

We also represent that exactly one of the 6 movies needs to
be chosen, that is exactly one of{M1, . . . ,M6} must be true
in each model. All models thus contain one selected movie
together with its type and its actors.

According to our preference expression,M1 is preferred
overM2 and overM3 because two of your girl friend’s most
favourite actors play inM1. M3 is preferred overM2 since
it is as good with respect to your girl friend’s preferences
(trading Hugh for Brad), but better according to your prefer-
ences since it additionally gives you Halle.

M4 andM1 are incomparable:M1 is the better type of
movie, butM4 is better with respect to its actors.M5 is
worse than bothM4 (worse actors according to your girl
friend) andM3 (worse type), and thus also worse thanM1.
M6 is less preferred than bothM4 andM1: it has less pre-
ferred actors and a worse type.M6 is incomparable toM5.

The only non-dominated movies are thusM1 and
M4. The preference structure among models (represented
through the selected movies) is illustrated in the following
figure (arrows point to strictly preferred models):
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Fig.2: Strict preferences among movies

Discussion
In this paper we developed a flexible preference represen-
tation language. The basic building blocks of the language
are ranked knowledge bases together with a model selection
strategy. Ranked knowledge bases allow us to represent pri-
oritized goals conveniently. We investigated four different
strategies known from the literature, all of them qualitative
in the sense that the induced total preorder on formulas is
what counts, rather than the actual numbers.

Our language also allows for combinations of preference
expressions. Conjunction naturally leads to Pareto orderings
based on the underlying subexpressions. The connective>
allows us to define lexicographic orderings. The language
also has disjunction and a form of negation which simply
reverses the original order.

The work presented in this paper shares some motiva-
tion with (Brewka 2004). Also in that paper a language,
called PDL, for expressing complex preferences is pre-
sented. However, there are several major differences which
are due to the fact thatPDL is taylored towards answer set
optimization:

1. PDL is rule based rather than goal based. The basic
building blocks are rules with prioritized heads rather than
ranked knowledge bases.

2. SincePDL is used to assess the quality of answer sets
(i.e., sets of literals) rather than models, it becomes im-

portant to distinguish between an atom not being in an an-
swer set and its negation being in an answer set. In other
words, the distinction between classical negation and de-
fault negation (negation as failure) is relevant. Since we
are interested in preferences among models here, this dis-
tinction does not play a role inLPD .

3. PDL distinguishes between penalty producing and other
strategies. Both numerical and qualitative combination
strategies are thus used. On the other hand, combinations
corresponding to our disjunction and negation operators
are lacking.

Although we restricted our discussion to purely qualitative
approaches, there is no principle obstacle against integrating
numerical approaches as well, at least at the level of basic
preference expressions. For instance, we could use ranks
as penalties or rewards and define the preorder on models
on the basis of the actual rank values. The reader should
be aware, though, that this only works on the basic level.
The connectives we defined operate on the preorders and do
not take numerical information into account. Any numerical
information would thus be lost in our language at the level
of complex preference expressions.

An interesting related paper is (Son & Pontelli 2004)
which introduces a preference language for planning. The
language is based on a temporal logic and is able to express
preferences among trajectories. As inLPD , preferences can
be combined via binary operators - somewhat different from
ours. The major difference certainly is that our approach
aims at being application-independent, whereas (Son & Pon-
telli 2004) is geared towards planning.

Also related is (Andreka, Ryan, & Schobbens 2002). The
authors investigate combinations of priority orderings based
on a generalized lexicographic combination method. This
method is more general than usual lexicographic orderings
- including the ones expressible through our> operator -
since it does not require the combined orderings to be lin-
early ordered. It is based on so-called priority graphs where
the suborderings to be combined are allowed to appear more
than once. The authors also show that all orderings satisfy-
ing certain properties derived from Arrow’s conditions (Ar-
row 1950) can be obtained through their method. This is an
interesting result. On the other hand, we found it somewhat
difficult to express examples like our movie example using
the method. We believe our language is closer to the way
people actually describe their preferences.

In (Boutilier et al. 1999)CP -networks are introduced, to-
gether with corresponding algorithms. These networks are
a graphic representation, somewhat reminiscent of Bayes
nets, for conditional preferences among feature values un-
der theceteris paribusprinciple. Our approach differs from
CP -networks in several respects: (1) Preferences inCP -
networks are always total orders of the possible values of a
single variable. We are able to represent arbitrary prioritized
goals. (2) The ceteris paribus interpretation of preferences is
very different from our goal-based interpretation. The for-
mer views the available preferences as (hard) constraints on
a global preference order. Each preference relates only mod-
els which differ in the value of a single variable. A set of
ranked goals, on the other hand, is more like a set of dif-



ferent criteria in multi-criteria optimization. In particular,
goals can be conflicting. Conflicting goals may neutralize
each other, but do not lead to inconsistency.

Although our work was mainly motivated by several ap-
proaches developed in the area of nonmonotonic reason-
ing, many related ideas can be found in constraint satisfac-
tion, in particular valued (sometimes also called weighted)
constraint satisfaction (Freuder & Wallace 1992; Fargier,
Lang, & Schiex 1993; Schiex, Fargier, & Verfaillie 1995;
Bistarelli, Montanari, & Rossi 1997). A valued constraint,
rather than specifying hard conditions a solution has to sat-
isfy, yields a ranking of solutions. A global ranking of so-
lutions then is obtained from the rankings provided by the
single constraints through some combination rule. This is
exactly what happens in our approach on the level of basic
preference expressions. Also in constraint satisfaction we
find numerical as well as qualitative approaches. In MAX-
CSP (Freuder & Wallace 1992), for instance, constraints
assign penalties to solutions, and solutions with the lowest
penalty sum are preferred. In fuzzy CSP (Fargier, Lang, &
Schiex 1993) each solution is characterized by the worst vio-
lation of any constraint. Preferred solutions are those where
the worst violation is minimal. This corresponds to theκ
strategy. We are not aware of any approach in constraint
satisfaction trying to combine different strategies. For this
reason we believe the language developed here will be of
interest also for the constraint community.

In future work we plan to investigate the use of partially
ordered rather than ranked knowledge bases on the level of
basic preference expressions. We also plan to investigate
computational issues related the approach. In particular,it
would be interesting to see whether a generate and improve
method like the one developed for answer set optimization
in (Brewka 2004) can be used here as well.
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